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1. 1D one-dimensional well potential
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The solution of this equation is
@(x) = Asin(kx) + B cos(kx)

where

Using the boundary condition:

p(x=0)=p(x=a)=0



we have
B =0 and 4#0.
sin(ka) =0
ka=nr (n=1,2,...)

Note that n = 0 is not included in our solution because the corresponding wave function
becomes zero. The wave function is given by
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2. Mathematica
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The expectation values and uncertainty
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we have

Ax = 1/<x2>—<x>2 = a,%(Z —#)
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Whenn=1,
ApAx =1.67029 n>0.5h

((Mathematica))
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3. Exercise: Townsend 6-16 problem
A particle of mass m is in lowest energy (ground) state of the infinite potential energy
well

V(x)=0 for 0<x<L and oo elsewhere.



At time ¢t = 0, the wall located at x = L is suddenly pulled back to a position at x = 2 L.

This change occurs so rapidly that instantaneously the wave function does not change.

(a) Calculate the probability that a measurement of the energy will yield the ground-
state energy of the new well. What is the probability that a measurement of the
energy will yield the first excited energy of the new well?

(b) Describe the procedure you would use to determine the time development of the
system. Is the system in a stationary state?

((Solution))
The old wave function of the ground state is given by

@ (x)= 2 sin(ﬁ) only for 0<x<a (0 otherwise).
a a
The new wave function is given by

Ve (%) = \F sin (—) \ﬁsm—)

with the energy of
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e =5 = =0360253, e = =05

(b)
The system is not stationary since |1//(t = O)> is not an eigenstate of the new Hamiltonian

/\

but is a superposition of the eigenstates
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lw(t=0)=|p,)=>c,

v (0)=exp(— 11,0

= ch eXp(— ;l Hnewt)
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or
w0 =(xly(0) =Y e, exp(- ; W0p " ()

where ¢, are determined as in (a)
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Ve (X) = ,/ sin(* ) = an(—)
Then we get
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* m)* n [ n n
=20 W (W () XP (B, = B, ]
((Mathematica))

Weusem=h=1.a=1.Red (At t=0). The Plot of |1//(x,t)

where ¢ is changed as parameter; t = 0 - 3 with 47 = 0.1. The summation overn (n=1 —
10).

* as a function of x (0<x<2a),
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(c) t=2,21,22,23,2.4,25,2.6,2.7,2.8,2.9
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4. 2D well potential
Next we consider a particle in a 2D well potential

The potential:

V(x,y) = 0 for 0<x<a and 0<y<a. V(x,y) = o« otherwise.

nod*d? hn’k?
H(o(xay):__ _+W)¢(xay):E¢(xay): B

o(x,y)

2m dx* m

E—h—z(k 1 k)
2m 7
d* d?
(E + W)?(x,y) =—(k,” +k,)p(x,y)
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We use the method of the separation variables. Suppose that
p(x,y) = X ()Y (y)

X'(x) YO _
X(x)  Y(»)

2 2
—(k~+ ky )
We assume that

X"(x)=—k X (x)

Y'(y)=—ky’Y(»)
Using the boundary condition

Xx=0)=X(x=a)=0
and

Y(y=0)=Y(y=a)=0

Then we have

2
2| . nm . R
%,ny(x,y):(\/:J sin(——)sin(—
a a a

5. Mathematica
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6. Standing wave solutions with a fixed boundary condition
We consider a free particle inside a box with length Ly, Ly, L, along the x, y, and z
axes, respectively. The Schrodinger equation of the system is given by

h2
Hl//(x,y,z) = _Evzl/j(xayaz) = El//(xayaz)

under the boundary condition;

yx=L,y,z2)=y(x=0,y,z)=0
w(x,y=L,z)=y(x,y=0,2)=0
v(x,y,z=L)=w(x,y,z=0)=0

We use the method of separation variables. We assume that

w(x,y,2) = X(0)Y(y)Z(2)
with

X(0)=X(L,)=0, Y(0)=Y(L,)=0, Z(0)=2(L,)=0
The substitution of the solution into the Schrodinger equation yields

X' Y0, 2"() __2mE
X(x) Y Z(2) n?

We assume that

X0 0 2O,
X(x) Y () Z(z)

The solution of these differential equations can be obtained as a standing wave solution,
X (x) =sin(k_x), Y(y)=sin(k,y), Z(z) =sin(k_z)

under the boundary conditions, where k, &y, and k, are constants. The resulting wave
function is

v (x,y,z) = Asin(k, x)sin(k y)sin(k_z)

The condition that y =0 at x = L requires that
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where ny, ny, and n, are positive integers.
((Mathematica)) ContourPlot3D

05
0.0

e

0.5

n.o
n.o

0.5

Fig.  ContourPlot3D of sin’(k,x)sin’(k,y)sin’(k,z) = const in the 3D real space.
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ContourPlot3D of sin®(k,x)sin’(k,y)sin’(k.z) = const in the 3D real space.
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There is one state per volume of the K-space;
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In the region of k - k£ + dk, the number of states is
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where the factor 2 comes from the two allowed state |+> and |—> for the spin quantum

v
27

number (§ = 1/2); fermions such as electron. The density of state D(g) is obtained as
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The total particle number N and total energy E can be described by

3126 32
¢ 2 2
) [ Saalin) o

N= j D(&)dz =

and

P

A v (2m\'% L, 2 v (2mY" s,
E=|eD(g)de = — &' de=— — | € .
;')‘ () 27’ ( n’ ) '([ 52z "

Then we have

gg 3/2
E §°F 3
—_—= = —gF
N 2 in
3°r
((Note)) Fermi-Dirac distribution function

The Fermi-Dirac distribution gives the probability that an orbital at energy ¢ will be
occupied in an ideal gas in thermal equilibrium

1

f(5)=m, (12)

where u is the chemical potential and = 1/(kgT).
(1) limu=c¢,.

T—0

(i) Ae=12ate=pn

(iiiy  For & - mwksT, f(s) is approximated by f(&)=e”“* . This limit is called the
Boltzman or Maxwell distribution.

(iv)  For kgT«er, the derivative -df{ £)/d¢ corresponds to a Dirac delta function having a
sharp positive peak at = s

7 Plane wave solution with a periodic boundary condition
A. Energy level in 1D system
We consider a free electron gas in 1D system. The Schrodinger equation is given by

: 7 dy,(x)

Hy,(x) = p—m()— ST ey ), (1)

where

17



_hd
i dx’

and ¢, is the energy of the electron in the orbital.

The orbital is defined as a solution of the wave equation for a system of only one
electron: {(one-electron problem)).
Using a periodic boundary condition: y,(x+ L) =y, (x), we have the plane-wave

solution
v, (x)~e™, (2)

with

2 2 2
gk:h_kz_h_ 2z ,
2m 2m\ L
’kL—lork=2—7Tn,

L

where n =0, £1,£2,..., and L is the size of the system.

B. Energy level in 3D system
We consider the Schrédinger equation of an electron confined to a cube of edge L.

p2 n’ 2
Hy, =_—y, =———Vy, =¥, . 3)
2m 2m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

v (x+L,y,z)=y,(x,y,2),
‘//k(xay+LaZ) :l//k(xayaz) >
v (x,y,z+ L) =y, (x,),2).

The wavefunctions are of the form of a traveling plane wave.

i () =e*", 4

with
kx = (2n/L) ny, (nx =0, =1, £2, £3,.....),
ky = (2n/L) ny, (ny =0, £1,£2,£3,.....),
k,= (2n/L) n,, (n,=0, £1,£2, £3,.....).

18



The components of the wavevector K are the quantum numbers, along with the quantum
number m; of the spin direction. The energy eigenvalue is

g(k):h—z(k2+k2+k2)=h—2k2 (5)
2m " 7 : 2m
Here
fi
Py, (r) ==V, (r) =1ky,(r). (6)

i
So that the plane wave function y, (r) is an eigenfunction of p with the eigenvalue 7k .

The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in K-space.

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found.

((The Pauli’s exclusion principle))

The one-electron levels are specified by the wavevectors k and by the projection of
the electron’s spin along an arbitrary axis, which can take either of the two values +7/2.
Therefore associated with each allowed wave vector k are two levels:

k,¢>.

k1),

In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k£ = 0, which has the lowest possible one-electron energy £=0. We have

L3 47Z'k3_Vk3

N=2 k=
Qzy} 3" 32T

, (7)

where the sphere of radius kr containing the occupied one-electron levels is called the
Fermi sphere, and the factor 2 is from spin degeneracy.
The electron density # is defined by

n=—=—k,’. (8)
The Fermi wavenumber £ is given by

k. = (37[211)/3. )

The Fermi energy is given by

19



£ :%(wn)“. (10)

The Fermi velocity is

v, = h”;F :%(37[271)‘/3. (11)

((Note))
The Fermi energy & can be estimated using the number of electrons per unit volume as
& = 3.64645x10"° n*” [eV] = 1.69253 no*” [eV],
where n and ng is in the units of (cm'3) and n = n0><1022. The Fermi wave number kr is
calculated as

ke = 6.66511x107 no"” [em™].
The Fermi velocity v is calculated as

ve=7.71603x107 ny"” [c/s].
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