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1. 1D one-dimensional well potential 
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The solution of this equation is 
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Using the boundary condition: 
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we have  
 

B = 0 and A≠0. 
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nka   (n = 1, 2, …) 
 
Note that n = 0 is not included in our solution because the corresponding wave function 
becomes zero. The wave function is given by 
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((Normalization)) 
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2. Mathematica 
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Fig. Plot of 

2
)(xn  with a = 1, as a function of x. n = 1 (red), 2 (yellow), 3 (green), 4 

(blue), and 5 (dark blue). There are n peaks for the state n . 

 
The expectation values and uncertainty 
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When n = 1, 
 

xp  = 1.67029 ħ>0.5 ħ 
 
((Mathematica)) 
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3. Exercise: Townsend 6-16 problem 

A particle of mass m is in lowest energy (ground) state of the infinite potential energy 
well 
 

0)( xV  for 0<x<L and ∞ elsewhere. 
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At time t = 0, the wall located at x = L is suddenly pulled back to a position at x = 2 L. 
This change occurs so rapidly that instantaneously the wave function does not change. 
(a) Calculate the probability that a measurement of the energy will yield the ground-

state energy of the new well. What is the probability that a measurement of the 
energy will yield the first excited energy of the new well? 

(b) Describe the procedure you would use to determine the time development of the 
system. Is the system in a stationary state? 

 
((Solution)) 
The old wave function of the ground state is given by 
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Note that 
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(b) 
The system is not stationary since )0( t  is not an eigenstate of the new Hamiltonian 

newĤ , but is a superposition of the eigenstates )(n
new  with various kinds of n. 
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((Mathematica)) 

We use m = ħ = 1. a = 1. Red (At t = 0). The Plot of 
2

),( tx  as a function of x (0<x<2a), 

where t is changed as parameter; t = 0 - 3 with t = 0.1. The summation over n (n = 1 – 
10). 
 
(a) t = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
 

 
 
(b) t = 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 
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(c) t = 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
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4. 2D well potential 

Next we consider a particle in a 2D well potential 
 
The potential: 
 

V(x,y) = 0 for 0≤x≤a and 0≤y≤a. V(x,y) = ∞ otherwise. 
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We use the method of the separation variables. Suppose that 
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We assume that 
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Using the boundary condition 
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5. Mathematica 



 

12 
 

A particle in a two dimensional box

Clear"Global`";

 
2

a

2

b
Sinn  x

a
 Sin m  y

b
;

prb  2 . a  1, b  1;

p13D1  Plot3Dprb . n  4, m  4, x, 0, 1, y, 0, 1,

PlotPoints  100

cont1  ContourPlotprb . n  4, m  4, x, 0, 1,

y, 0, 1, PlotPoints  100
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6. Standing wave solutions with a fixed boundary condition 

We consider a free particle inside a box with length Lx, Ly, Lz along the x, y, and z 
axes, respectively. The Schrödinger equation of the system is given by 
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We use the method of separation variables. We assume that 
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The solution of these differential equations can be obtained as a standing wave solution, 
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under the boundary conditions, where kx, ky, and kz are constants. The resulting wave 
function is 
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where nx, ny, and nz are positive integers. 
 
((Mathematica)) ContourPlot3D 
 

 
 
Fig. ContourPlot3D of constzkykxk zyx )(sin)(sin)(sin 222  in the 3D real space. 
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Fig. ContourPlot3D of constzkykxk zyx )(sin)(sin)(sin 222  in the 3D real space. 
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There is one state per volume of the k-space; 
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In the region of k - k + dk, the number of states is 
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where the factor 2 comes from the two allowed state   and   for the spin quantum 

number (S = 1/2); fermions such as electron. The density of state )(D  is obtained as 
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The total particle number N and total energy E can be described by 
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((Note)) Fermi-Dirac distribution function 

The Fermi-Dirac distribution gives the probability that an orbital at energy  will be 
occupied in an ideal gas in thermal equilibrium 
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where  is the chemical potential and  = 1/(kBT). 
(i) F

T
 

0
lim . 

(ii) f() = 1/2 at  = . 
(iii) For  - »kBT, f() is approximated by )()(   ef . This limit is called the 

Boltzman or Maxwell distribution. 
(iv) For kBT«F, the derivative -df()/d corresponds to a Dirac delta function having a 

sharp positive peak at  = . 
 
________________________________________________________________________ 
7. Plane wave solution with a periodic boundary condition 
A. Energy level in 1D system 

We consider a free electron gas in 1D system. The Schrödinger equation is given by 
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and k  is the energy of the electron in the orbital.  

The orbital is defined as a solution of the wave equation for a system of only one 
electron:one-electron problem. 

Using a periodic boundary condition: )()( xLx kk   , we have the plane-wave 

solution 
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where n = 0, ±1, ±2,…, and L is the size of the system. 
 
B. Energy level in 3D system 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
 

),,(),,( zyxzyLx kk   , 

),,(),,( zyxzLyx kk   , 

),,(),,( zyxLzyx kk   . 
 
The wavefunctions are of the form of a traveling plane wave. 
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with 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 
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The components of the wavevector k are the quantum numbers, along with the quantum 
number ms of the spin direction. The energy eigenvalue is 
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So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . 
The ground state of a system of N electrons, the occupied orbitals are represented as a 
point inside a sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have 
just found. 

((The Pauli’s exclusion principle)) 

The one-electron levels are specified by the wavevectors k and by the projection of 
the electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 
Therefore associated with each allowed wave vector k are two levels: 
 

,k , ,k . 

 
In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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where the sphere of radius kF containing the occupied one-electron levels is called the 
Fermi sphere, and the factor 2 is from spin degeneracy. 

The electron density n is defined by 
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The Fermi wavenumber kF is given by 
 

  3/123 nkF  . (9) 
 
The Fermi energy is given by 
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  3/22
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n
mF  

 . (10) 

 
The Fermi velocity is 
 

  3/123 n
mm

k
v F

F 
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((Note)) 
The Fermi energy F can be estimated using the number of electrons per unit volume as 

F = 3.64645x10-15 n2/3 [eV] = 1.69253 n0
2/3 [eV], 

where n and n0 is in the units of (cm-3) and n = n0×1022. The Fermi wave number kF is 
calculated as 
 

kF = 6.66511×107 n0
1/3 [cm-1]. 

 
The Fermi velocity vF is calculated as 
 

vF = 7.71603×107 n0
1/3 [cm/s]. 
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