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For many years, everyone thought that Bell had basically exhausted the subject by
considering all really interesting situations, and two-spin systems provides the most spectacular
quantum violations of local realism. It therefore came as a surprise to many when in 1989
Greenberger, Hone, and Zeilinger (GHZ) showed that systems containing more than two
correlated particles may actually exhibit even more dramatic violations of local realism. They
involve a sign contradiction (100 % violation) for perfect correlations, while the CHSH
inequalities are violated about 40 % (Tsirelson bound = 2 for the CHSH inequality) and deal with
situations where the results of measurements are not completely correlated. (F. Laloé, Do we
really understand Quantum Mechanics?, Cambridge, 2012).

Anton Zeilinger (born on 20 May 1945) is an Austrian quantum physicist who in 2008 received
the Inaugural Isaac Newton Medal of the Institute of Physics (UK) for "his pioneering
conceptual and experimental contributions to the foundations of quantum physics, which have
become the cornerstone for the rapidly-evolving field of quantum information". Zeilinger is
professor of physics at the University of Vienna and Senior Scientist at the Institute for Quantum
Optics and Quantum Information IQOQI at the Austrian Academy of Sciences. Most of his
research concerns the fundamental aspects and applications of quantum entanglement.

http://en.wikipedia.org/wiki/Anton Zeilinger

1. Element of reality
We consider the decay of a simple system into a pair of spin 1/2 particles such as
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where " is a positron and € is an electron. After the decay products have separated and are very
far apart, we measure a component of the spin of one of them. This is the entangled state.

Suppose that §Z of the electron is measured by Alice using the SGz device with B//z and is
found to be equal to 7/2. Then Alice can be sure that éz of positron will turn out equal to
—nh/2, if Bob measures it, since the positron and electron form the entangled state.

Next we consider the different situation. Alice measures the eigenvalue of S, for the electron
by using her SGz device with B//z. She finds that the eigenvalue of §Z for electron is equal to
n/2 . Suppose that Bob measure the eigenvalue of §X for the positron by using his SGx with

B//X, instead of measuring with the SGz device. What is the eigenvalue of §X for the positron

measured by Bob?
According to quantum mechanics, the probability of finding the state |+ X> is the same as that

of finding the state |— X>. The probability is equal to 1/2 for each case, since
2 2 1
P = -2 =|(-x-2f =1

with
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We note that the spin operators S, and §Xfor the positron are not commutable; [§2,§X] #0.

Thus the eigenvalue of éx cannot be determined definitely, even if the eigenvalue of §Z for the

positron can be determined uniquely as —7/2 because of the entangled state.

In the element of reality as defined by EPR theory (local theory), it is assume that all the spin
operators are commutable. So all three components of the spin for the positron can be predictable
with certainty, if we measure the corresponding spin component of the positron. This claim,
however, is incompatible with quantum mechanics, which asserts that at most one spin
component of each particle may be definite.

2 Local realism and quantum mechanics
We consider two spin 1/2 particles, far apart from each other, in a singlet state. The Bell's
state (singlet, spin zero) is given by
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We know that measurements of &,, and &,,, if performed, shall yield opposite values, that we

denote by m;x and myy, respectively. We note that the quantum mechanics asserts that the singlet
state (Bell’s state) satisfies

(6, ®1,+1, ®6,,)

cp(—)) =0

12
or

m,,=—m,,

where m,, and m,, are either 1 or -1. Likewise, measurements of &,, and &,,, if performed,

shall yield opposite values, that we denote by m;y and myy, respectively. We note that the
quantum mechanics asserts that the singlet state (Bell’s state) satisfies

(6, ®1, +1,®6,)|@7) =0

12
or

m —m

1y= 2y °

where m, and m, are either 1 or -1. Furthermore, since &,, and &,, commute, and both
correspond to elements of reality, their product 6,,5,, also corresponds to an element of reality.
The numerical value assigned to the product &,,6,, is the product of the individual numerical
values, m; m, . Likewise, the numerical value assigned to the product &, 6,, is the product of

the individual numerical values, m, m, .These two products must be equal, since
m, m2y = (_m2x)(_m2y) = m2xm2y

We note that the quantum mechanics asserts that the singlet state (Bell’s state) satisfies
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) =0
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The proof of this equation will be given later. From this equation, we can predict with certainty
that if we measure (6,, ® 6,, + 5,, ® 5,,) , we have

mlxm2y + mlym2x = O

where each operator corresponds to an EPR element of reality.
We note that this equation is totally inconsistent with the equation derived above based on
EPR element of reality; m,,m, =m, m,

We note that

01 00 0 0 =-2i 0
. ~A 1 0 0O . AoA 0 0 -=2i
(0,®L+1,®05,,)= Lo o 10 (6,,®1,+1,®0,,)= 5 0 o 0
01 10 0 2i 0 0

0 0 0 -2i

. . . . 0 0 0 O

(0 ®0'2y +0y, ®o0,,)= 6 00 0

2 0 0 O

3. Mathematica

Here, using the Mathematica, we show that the singlet state (Bell’s state) satisfies the
following relations

(OA-IX ®i2 + il ®6-2X)

@) =0

12

(61, ®1, +1,®6,,)| @) =0

12

(61 ® Gy, +6,, ®G,)

) =0

12

(61, ®6,,+6,®6,)|07) =0

12

5 5 5 5 O\ =
(le ®o,, +0,, ®Gzz)(fb >12 =0



and
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((Mathematica))
Clear["Global "] ;
exp_* :=
exp /. {Complex[re_, im_] = Complex[re, -im]};

=)

0
w2= ()
oX = PauliMatrix[1]; oy = PauliMatrix[2];
oz = PauliMatrix[3] ;

X =
1

V2
(KroneckerProduct[yl, ¥2] -
KroneckerProduct[¥2, ¥1]) ;

Al2 =
(KroneckerProduct[oXx, oy] +
KroneckerProduct[oy, oX]) ;
Al2.x

{{0}, {0}, {0}, {O}}



A23 =
(KroneckerProduct[oy, oz] +

KroneckerProduct[oz, oy]) ;
A23_.x

{{0}, {0}, {0}, {O}}

A31 =
(KroneckerProduct[ox, cz] +

KroneckerProduct[oz, ox]) ;
A31._.x

{{0}, {0}, {0}, {O}}
(KroneckerProduct[oXx, oX]) .x + X

{{0}, {0}, {0}, {O}}

(KroneckerProduct[oy, oy]) -.x + Xx

{{0}, {0}, {0}, {O}}

(KroneckerProduct[oz, 07]) .x + X

{{0}, {0}, {0}, {O}}

GHZ state ‘V/GHZ_> for the spin 1/2 systems
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Fig. A source (S) of particle triples produces three identical particles which then move
towards three equidistant magnetic orientation detectors. Alice, Bob and Chris set up
detectors to measure the magnetization along the direction of the particle’s motion (the z-
direction) or along two other mutually perpendicular directions (X and y-directions).

In 1989, a striking extension of Bell's theorem to the case of three particles was taken by
Greenberger, Horne, and Zeilinger. In contrast to Bell's theorem, which concerns statistical
averages, this so-called GHZ theorem shows that a conflict between quantum mechanics and
local realism can be obtained with a single measurements. GHZ consider three observers, Alice
(1), Bob (2), and Chris (3). The GHZ experiments are a class of physics experiments that may be
used to generate starkly contrasting predictions from local hidden variable theory and quantum
mechanics, and permits immediate comparison with actual experimental results.

Using the Mathematica, here we show that the singlet state (GHZ state) are the eigenkets of
the following operators



A(xx = le ® O-xz ® O-x3 .

First we consider the GHZ state ‘VIGHZ_> given by

Ve )=+ 2) e 2) —-2) -2 -2)) =

S O O O o o =

It is seen that ‘WGHS_> is an eigenstate of several operators with the eigenvalue +1,

Ag|Vens ) =|Wons ), (1a)
A|Vers ) =|Vewe ) (1b)
Apn{Wers) =|Wons ), (1c)

(1d)

Then we obtain

‘//GHZ_> = ‘V/GHZ_> >

AWV AYXV AWX

We can also show that ‘l//GHS_> is an eigenstate of the operator AAXX with the eigenvalue -1,



A
AXXX

WGHS_> = _‘ WGHS_>

Once three particles are sufficiently far apart, each spin of them possesses its own physical
characteristics. We use Ay to denote the result of measuring the X component of the spin of
particle 1 by Alice, By the result of measuring the y component of the spin of particle 2 by Bob,
and Cy the result of measuring the y component of the spin of particle 3 by Chris, and so on, with
Ax=+1 ..., Cy = £1. When the X component is measured in connection with two measurements
of the y component, we see that the product is +1:

AB,C, =+1,
Similarly, we have

ABC, =+1, ABC, =+1
However, when the particles are in flight, two of the three experimentalists can decide to modify
the direction of their analyzer axes, orienting them in the X axis direction. Then the product of the
three spin components will be -1:

ABC, =-1 (2)
However, we note that

AB.C, =(AB,C)ABC,)ABC,) =1 €)

because Ay2 = By2 = Cy2 =1. Thus Egs.(2) and (3) are incompatible.
Local realism would mean that &,, has a physical reality in the EPR sense, since it can be

measured without disturbing &, and &5,

A =B._C

yTy”
However, it is also possible to obtain Ay by measuring &,, and G, :

A =-BC

X=X



Local realism implies that it is the same Ay, but this is not the case in quantum mechanics. The
value of Ay is contextual. It depends on physical properties incompatible with each other which
are measured simultaneously.

((Mathematica))

Clear["Global *"]1; ¢l = (é) Y2 = ((1)) :

ox = PauliMatrix[1] ; oy = PauliMatrix[2] ;
oz = PauliMatrix[3];
X =

1 (KroneckerProduct[y1l, ¢1, ¥1] -

V2

KroneckerProduct[¥2, 2, ¥2]) ;

Axyy = KroneckerProduct[ox, oy, oy]; AXyy.x - X

{{0}, {0}, {0}, {O}, {O}, {O}, {O}, {O}}

Ayxy = KroneckerProduct[oy, oX, oy]; AyXy.x - x
{{0}, {0}, {O}, {O}, {O}, {O}, {O}, {O}}

Ayyx = KroneckerProduct[oy, oy, oX]; AyyX.x - x
{{0}, {0}, {0}, {O}, {O}, {O}, {O}, {O}}

Axxx = KroneckerProduct[ox, ox, oX] ; AXXX.X + X

{{0}, {0}, {0}, {O}, {O}, {O}, {O}, {O}}

Al123 = AXyy.Ayxy.Ayyx; Al23.x + AXXX.x
{{0}, {0}, {0}, {0}, {O}, {O}, {O}, {O}}

5. ‘y/GHZ+> state for spin 1/2 systems

We consider the GHZ state ‘WGHZ+> defined by
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It is seen that ‘l//GHS+> is an eigenstate of several operators with the eigenvalue -1,

A<yy‘l//GHS+>=_‘l//GHS+>9 (la)
AsylWens) = 1Warz) (1b)
Ayy><|‘//GHs>:_|‘//GHS>- (lo)

Then we obtain

AQ’)’ Ayxy Ayyx

‘//GHZ_> = _AxyyAyxy l//GHZ_> - A‘W WGHZ—> 7 WGHZ_> ’

)

We can also show that ‘l//GHS+> 1s an eigenstate of A(xx with the eigenvalue +1,

A
A(XX

‘//GHS+> = ‘WGHS_>'

Once the three particles are sufficiently far apart, each spin of them possesses its own physical
characteristics. We use A to denote the result of measuring the X component of the spin of
particle 1 by Alice, ..., C, the result of measuring the y component of the spin of particle 3 by
Charlotte, and so on, with A, ==1 ..., Cy = 1. When the X component is measured in connection
with two measurements of the y component, we see that the products is +1:

ABC,=-1, ABC, =-1, AB,C, =1
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However, when the particles are in flight, two of the three experimentalists can decide to modify
the direction of their analyzer axes, orienting them in the X axis direction. Then the product of the
three spin components will be -1:

ABC, =1 )
However, we note that

AB.C, =(AB,C)ABC/)ABC,)=-1 €)

because Ay2 = By2 = Cy2 =1. Thus Egs.(2) and (3) are incompatible. Local realism would mean
that &,, has a physical reality in the EPR sense, since it can be measured without disturbing 6'y2 and

O'y3,

A =-BC

yoy o

However, it is also possible to obtain A, by measuring &,, and J,; :

A( = BXCX *
Local realism implies that it is the same Ay, but this is not the case in quantum mechanics. The
value of Ay is contextual. It depends on physical properties incompatible with each other which

are measured simultaneously

((Mathematica))
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Clear["Global +"]; ¢yl = ((1)) Y2 = (2) ; oxX = PauliMatrix[1];
oy = PauliMatrix[2] ; oz = PauliMatrix[3] ;

X = L (KroneckerProduct[¥1, ¥1, ¥1] + KroneckerProduct[¥2, 2, ¥2]) ;

V2
Axyy = KroneckerProduct[ox, oy, oy]; AXYY.x + X

{{0}, {0}, {0}, {0}, {O}, {O}, {0}, {O}}

Ayxy = KroneckerProduct[oy, oX, oy]; AyXy.x + x
{{0}, {0}, {O}, {O}, {O}, {O}, {O}, {O}}

Ayyx = KroneckerProduct[oy, oy, oX]; AyyX.x + X
{{0}, {0}, {O}, {O}, {O}, {O}, {O}, {O}}

AxxX = KroneckerProduct[ox, oX, oX] ; AXXX.x - X

{{0}, {0}, {0}, {0}, {O}, {O}, {0}, {O}}

Al123 = AXyy.Ayxy.Ayyx; Al23.x + AXXX.x
{{o}, {0}, {0}, {0}, {O}, {O}, {O}, {O}}

AXYY.x + X
{{0}, {0}, {O}, {0}, {O}, {O}, {O}, {O}}

AyXy.x + x
{{o}, {0}, {0}, {0}, {0}, {O}, {O}, {O}}

AyyX.x + X
{{oy, {0}, {0}, {0}, {0}, {O}, {O}, {O}}

AXXX_.x - X

{{0}, {0}, {0}, {0}, {O}, {0}, {0}, {O}}

GHZ state for photon systems
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1 0
Let us denote |H> by matrix (Oj and |V>) by matrix (J; they are thus the two eigenstates of

the Pauli operator, &,, correspondingly with the eigenvalues +1 and -1. We can also easily verify
that |H> and |V '> or |R> and |L> are two eigenstates for the Pauli operator &, or &, with the

values +1 and -1, respectively. For convenience we will refer to a measurement of the H'/V'
linear polarization as an X measurement and of the L/R circular polarization as a y measurement.

((Note)) Pauli matrices for photon polarization
For convenience we use the Pauli matrices

| Measurement | +1 IR>
Wy>
—_— o
~1
= |L>
I Measurement [ *1 .
Wy>
—_— Oy '
;.r— |V'>
v Measurement v I IX>
oo O’z 1
— - |y>

0 1
(a) The Pauli operator &, = (1 OJ :

| H '> and |V '> are the eigenkets of &, with the eigenvalues +1, and -1, respectively.
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V=)

HY)=|H", G,

0 —i
(b) The Pauli operator 6, = (i 0 ] :

|R> and |L> are the eigenkets of &, with the eigenvalues +1, and -1, respectively.

6,[R)=[R), 6

1 0
(c)  The Pauli operator &, = [0 J

|X> and |y> are the eigenkets of &, with the eigenvalues +1, and -1, respectively.

((Comparison)) photon and spin states

45%) =[H) == () +]y) [#x)= 7+ 2)+|-2)

—45e)=Iv) =7 )|y X =+ 2)-|-2)

Ry =7 (x)+iy) [+y)= (2 +i-2)

L= g5 (=il =)= +2)-i-2)
7. Expressions of the three photon state

(a)  Basis {|{H"), |V}

1

_(|X>1|X>2|y>3 +|y>1|y>z|x>3)

“/’(+)>: N
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where |X> and |y> denote horizontal and vertical polarizations, respectively. This state indicates

that the three photons are in a quantum superposition of the state |X>1|X>2|y>3 and |y>l|y>2|x>3.
Note that

)= llH) V). )= 75 0H) V)

Then we have the form

)= AR, =BV )V, =V, + V)

((Mathematica))
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Clear["Global %"]; X1 = (é) ;yl= (2) :

X =
1
V2

KroneckerProduct[yl, y1, x1]) ;
1 1 1 1

= (1),v1_ = (1)

HHH1 = KroneckerProduct[H1, H1, H1] // Simplify;

HHV1 = KroneckerProduct[H1, H1, V1] // Simplify;

HVH1 = KroneckerProduct[H1, V1, H1] // Simplify;

HVV1 = KroneckerProduct[H1, V1, V1] // Simplify;

VHH1 = KroneckerProduct[V1, H1, H1] // Simplify;

VHV1 = KroneckerProduct[V1, H1, V1] // Simplify;

VVH1 = KroneckerProduct[V1, V1, H1] // Simplify;
VW1 = KroneckerProduct[V1, V1, V1] // Simplify;

(KroneckerProduct[x1, x1, y1] +

fl=alHHH1 + a2HHV1 + a3 HVH1 + a4 HVV1 +
a5 VHH1 + a6 VHV1 + a7 VVH1 + a8 VVV1 // Simplify;

eql = Solve[fl == x, {al, a2, a3, a4, a5, a6, a7, a8}];

rulel = {bl - HHH, b2 - HHV, b3 - HVH, b4 - HVV,
b5 - VHH, b6 - VHV, b7 - VVH, b8 - VVV};
Pl=albl + a2b2 + a3 b3 + a4 b4 + a5b5 +
a6 b6 + a7 b7 + a8 b8;
P1/.rulel/.eql[[1]]

HHH  HVV ~ VHV . VVH
2 2 2 2

(b)  Basis {|H"), |V}

)= () 0, +19) ¥ ¥
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where |X> and |y> denote horizontal and vertical polarizations, respectively. This state indicates
that the three photons are in a quantum superposition of the state |X>1|X>2|X>3 and |y>l| y>2|y>3.
Using the basis of {| H '>, V '>} ,

l//(+)> can be rewritten as

) =S QR HOL I, RN, V) [, ), V) V) ),

((Mathematica))
Clear["Global *"]; X1 = ( 1) ;yl= (O) ;
0 1
X =
1
—— (KroneckerProduct[x1l, x1, x1] +
V2

KroneckerProduct[yl, y1, y1]);

1 1 1 1

=77 [1)3va- NS (1)

HHH1 = KroneckerProduct[H1, H1, H1] // Simplify;
HHV1 = KroneckerProduct[H1, H1, V1] // Simplify;
HVH1 = KroneckerProduct[H1, V1, H1] // Simplify;
HVV1 = KroneckerProduct[H1, V1, V1] // Simplify;
VHH1 = KroneckerProduct[V1, H1, H1] // Simplify;
VHV1 = KroneckerProduct[V1, H1, V1] // Simplify;
VVH1 = KroneckerProduct[V1, V1, H1] // Simplify;
VVV1 = KroneckerProduct[V1, V1, V1] // Simplify;

=

fl=alHHH1 + a2 HHV1 + a3 HVH1 + a4 HVV1 +
a5 VHH1 + a6 VHV1 + a7 VVH1 + a8 VVWV1 // Simplify;

eql = Solve[fl == x, {al, a2, a3, a4, a5, a6, a7, a8}];

rulel = {bl > HHH, b2 - HHV, b3 - HVH, b4 - HVV,
b5 - VHH, b6 - VHV, b7 - VVH, b8 - VVV};
Pl=albl + a2b2 + a3 b3 + a4 b4 + a5b5 +
a6 b6 + a7 b7 + a8 b8;
P1/.rulel/.eql[[1]]

HHH HVWV VHV  VVH
+ + +
2 2 2 2

18



(c)  Basis {|R),|L)}
_ 1
‘l//( )>:ﬁ(|x>1|x>2|x>3 _|y>1|y>2|x>3)

where |X> and |y> denote horizontal and vertical polarizations, respectively. This state indicates
that the three photons are in a quantum superposition of the state |X>1|X>2|X>3 and |y>l|y>2|x>3.

Using the basis of {| R>, L>} ,

1//(’)> can be rewritten as

[#) = S(R)RY,IR), +[R)[R)|L), +]L) L) [R), +[L) L)L),

((Mathematica))

19



Clear["Global %"]; X1 = (1) ;yl= ((1)) :

X =
1
V2

KroneckerProduct[yl, yl1, x1]) ;
1 1 1 1

RL= = (i),u- = (1)

RRR1 = KroneckerProduct[R1, R1, R1] // Simplify;

RRL1 = KroneckerProduct[R1, R1, L1] // Simplify;

RLR1 = KroneckerProduct[R1, L1, R1] // Simplify;

RLL1 = KroneckerProduct[R1, L1, L1] // Simplify;

LRR1 = KroneckerProduct[L1, R1, R1] // Simplify;

LRL1 = KroneckerProduct[L1, R1, L1] // Simplify;

LLR1 = KroneckerProduct[L1, L1, R1] // Simplify;
LLL1 = KroneckerProduct[L1, L1, L1] // Simplify;

(KroneckerProduct[x1, x1, x1] -

fl=alRRR1 + a2RRL1 + a3RLR1 + a4 RLL1 +
a5LRR1 + a6 LRL1 + a7 LLR1 + a8 LLL1 // Simplify;

eql = Solve[fl == x, {al, a2, a3, a4, a5, a6, a7, a8}];

rulel = {bl-RRR, b2-RRL, b3 - RLR, b4-RLL,
b5- LRR, b6-LRL, b7->LLR, b8-LLL};
Pl=albl + a2b2 + a3 b3 + a4 b4 + a5b5 +
a6 b6 + a7 b7 + a8 b8;
PlL/.rulel/.eql[[1]]

LLL LLR RRL RRR

+ + +

2 2 2 2

General case

1

) =5 (XL, +yh )l

|H'> =cosé’| X>+sin6‘| y>,

20



|V'> = —sin0| X> + cosH| y> ,

We make a plot of the probabilities for the eight states {| H '> 1| H '> 2| H '> 5
a function of 6.

VOV IV, ) as

Fig. plot of the probabilities for the eight states {| H'>1| H'>2| H'>3,
function of 6.

VIV VY, ..} asa

9. Reality

For convenience we will refer to a measurement of the H'/V' linear polarization as an X
measurement and of the L/R circular polarization as a y measurement. We have three particles,
and we can choose to measure each on arbitrary basis. We designate a chosen set of observation

21



on these particles by a sequence of symbol x and y. If we may choose to measure particles 1, 2,
and 3 in only the basis X. This measurement is denoted by Xxx.

We may also choose to measure particles 1 and 2 in basis y and particle 3 in basis X. "This

measurement is denoted by yyx. The state |l//> expressed in the corresponding basis set becomes

((Mathematica))
Clear["Global +"]; x1 = (é) ;yl= (g) :

H11=i2 (i);vn:% (_11);R1=% (111)
s ()
() &)

X =
% (KroneckerProduct[R1, L1, H11] +

KroneckerProduct[L1, R1, H11] +
KroneckerProduct[R1, R1, V11] +
KroneckerProduct[L1, L1, V11]);

x // Simplify

{{%} (0}, {0}, (0}, {0}, {0}, (O}, {%}}



10. yyX-, yXy-, and Xyy -type measurements
(a) XYYy measurement
The state given by

Xy (+ 1
> )> Zﬁdxlﬂ Vo) Ya) [ Y)] %) %)
—IH)@[R) 8L +[H) @ |L)e[R,)
+VV®|R,)®|R;)+|V,) ®|L,) ®|L;)]

0.25

xyy _) 0.20

0.15 |

H'RL

H'LR

Fraction

0.10 7

0.05 A

0.00 -

Fig. Fraction of the various outcomes observed in the Xyy measurement (Pan et.al.)

(b) yXy measurement

v+ 1
) =ﬁ(|yl>|x2>|y3>+|y1>|X2>|y3>
=%[|L1>®|H2'>®|R3>+|R1>®|H2'>®|L3>

+|R1>®|V2'>®|R3>+|L1>®|V2'>®|L3>]
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b (25

HVIR LVIL

0.20 1

0.15 1

Fraction

0.10 7

yxy —

0.05 1

0.00 -

Fig. Fraction of the various outcomes observed in the yxy measurement (Pan et.al.)

(©) YyyX measurement
The state for the yyx measurement is given by

e\ _ 1
‘W ‘)>—ﬁdy1>|y2>|x3>+|xl>|x2>|y3>
=%[|Rl>®|L2>®|H3'>+|L1>®|R2>®|H3'>

+|Rl>®|R2>®|V3'>+|L1>®|Lz>®|V3'>]

RRV' '

Vyx —

Fraction

0.10 1

0.05 { RRH' LRV LLH"

0.00 -

Fig. Fraction of the various outcomes observed in the yyX measurement (Pan et.al.)

11.  The eigenstates of 5,, ® 5,, ® G, : XXX-type measurements

We consider the eigenstates of &,, ® 7,, ® 7, . In quantum mechanics, we get
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6, ®6,, ®6, V) ®V,) ®V,") = V) ®V,") ® V")

6, ®6,, ®6,|H,Y®|H,)®|V,) =—|H,)®|H,") ®|V;")

OA-lX ®6-2X ®6-3X H1'>®|V2'>®|H3'> = _|H1'>®|V2'>®|H3'>

6-1x ®6-2x ®6-3x V1'>®|H2'>®|H3'> = _|V1'>®|H2'>®|H3'>

Then we find that there are four eigenstates of &,, ® 5,, ® 7;,

V) ON,) @V, [H)®[H,)®V;),
|H,)®|V,)®|H,"), and |V,)®|H,") ®|H,")

which have the same eigenvalue (-1).

0.25_VVV H'H'V' H'V'H' VHH

0.20 -

0.15 -

0.10 1

0.05 -

0.00

Fig. Prediction from the local hidden theory. There are four states denoted by
Ve N, eV, [H)®H,Y®V,), [H)®V,)®H,), and [V,)®H,)®H,".
(Pan et.al.)
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Thus any superposition of these states has the eigenvalue (-1). However, there is only one GHZ
state, among these states, which is defined by

XXX(— 1
Yo ()>=T[|X1>|XZ>IX3>—|y1>|y2>|y3>]

2
1
=5 (H)®[H) B M) +[H) 8V, ) ®[H,)

+VIHL ) HL) + VOV VD
where

0,®0,Q0,

XX(=)\ XXX(—)
lPGHZ > - _‘ lPGHZ > .

Similarly, in quantum mechanics we get

6, ®6,, ®6,|H,Y®[H,)®|H,") =|H,)®|H,)®|H,)

5, ®6,, ®6, VY ®V,)®|H,) =V, ®,)®|H,')

6, ®6,,®6,|V,)®|H,)®V,) = |V,)®|H,) ®V,’)

Oix ®G,, ®T;, H1'>®|V2'>®|V3'> :|H1'>®|V2'>®|V3'>

Then the four states

[H)®[H.) 8[H,),

Vi) @V, ) 8[H,),

Vi) ®[H,)®Vy),

H)®M.) eV )
have the same eigenvalue (+1).

Thus any superposition of these states has the eigenvalue (+1). However, there is only one GHZ
state, among these states, which is defined by
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XXX (+ 1
“PGHZ ()>=f[IXJIXz)IXs}+|y1>|y2>|y3>]
1
= Eq H, O H O H )+ [HOVL V) + VO HL VG + VOV HL)
where

c,®0, ®0,

XX(+)\ XXX(4)
lPGHZ > - +‘ lIJGHZ > .

In quantum mechanics, XXX(+)> is the eigenket of 6,, ® 6,, ® &,, with the eigenvalue of +1,

since

Glx ® O-2x ® O-3x

XXX(+)\ _ XXX(+)
VaHz > = “// GHZ >

where

HV'V'  VHV' VVH HHH

0.25 1
0.20
0.15 -
0.10 1
0.05
0.00 |
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Fig. Fraction. Prediction from the quantum mechanics. There are four states denoted by
[H ) HL) HLY, [HONVOVY, [V HL VLY, and [V )V, ') HS'") , which are different from
the states predicted from the local hidden theory. (Pan et.al.)

11. Detail of the GHZ experiment
We consider the GHZ state given by

X(+ 1 ' '
e )= LR )L @1, L)@ |R) B H,)
+[R)®[R,) ®V;) +[L) ®|L,) ®V;')]
For polarization measurements in the L/R basis, the photons in modes 1 and 2 have equal

probability for the combinations |Rl> ® | L2>, L1> ® | R2>, R1> ® | R2>, and |L1> ® | L2> I
|Rl> ® | R2> is obtained, the photon in mode 3 has to be in the state |V3 '>.

28



Fig. Set up for the creation of a GHZ state using two pairs of polarization entangled photon
(Pan et al.). BS: half beam splitter. PBS: polarized beam splitter. POL: polarizer. /4
quarter wave plate. F: narrow bandwidth filter. 4/2: half wave plate. The half wave plate

Lz[| X>+| y>. Quarter wave plates and polarizer just before the

7

detectors are used for correlation measurements.

switches |y> to |H'>:

This figure shows the experimental results for this correlation measurement. Quarter wave plates

and polarizers just before detectors D;, D,, and D3 in Fig. are set to |Rl>®|R2>®|V3'> or
|Rl>®|R2>®|H3'>. The results clearly confirms the strong correlations of |Rl>®| R2>®|V3 '> in
comparison to |R1>®|R2>®|H3'>.
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Q

140

120 -

100 -

80 +

60 -

40 -

20 4

Fourfold coincidences in 3 h

0 r ' ' ' .
-150 100 -50 O o0 100 150
Delay (um)

o

0.25

RRV'
0.20 1

0.15 4

0.10 -

Fraction at zero delay

0.0 1 RRH"

0.00 .

Fig. A typical experimental result used in the GHZ argument.This is the yyx experiment
measuring circular polarization on photons 1 and 2 and linear polarization on the third.
(Pan et.al.)
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For photon i we call these elements of reality X; with values +1 (-1) for |H'> (|V'>’)

polarizations and Y; with values +1 (-1) for |R> (| L> ); we thus obtain the relations

(a) The relation: Y{Y,X; = -1,

form
Each eigenvlaues Resultant eigenvalue
IR)®|L,)®H,) 1 -1 -1
IL)®R)®[H,) -1 1 1 -1
R)®IR)®N) 1 1 -1 -1

in order to be able to reproduce the quantum predictions of equation

X(+ 1 ' '
™) = LR)IL )0 1M, )+ L) B[R )@ M, )
+[R)®[R,)®V, ) +|L,) ®|L,) ®|V,')]
(b) The relation Y X,Y3 = -1,

from

Each eigenvlaues Resultant eigenvalue
|Ll>®|H2'>®|R3> -1 1 1 -1 (eigenvalue)
R)®|H,)Y®|L) 1 1 -1 -1
R)®V,)®R,) 1 11 -1
eV, e[L) -1 -1 -l -1

in order to be able to reproduce the quantum predictions of equation

Xy (+ 1 ' ' '
‘WGHZ”( >>=5[|L1>®|H2>®|R3>+|R1>®|H2>®|L3>+|R1>®|V2>®|R3>
+|L)®|V,") ®|L;)]

() The relation X;Y,Y3; =-1,
from
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Each eigenvlaues

Resultant eigenvalue

in order to be able to reproduce the quantum predictions of equation

X(+ 1 ' '
‘WGHZW( )>=§[|R1>®|L2>®|H3 >+ L1>®|R2>®|H3>

|
+[R)®|R,)®|V,) +|L,) ®|L,) ® V)]

Because of Einstein locality any specific measurement for X must be independent of whether an

Xor Y measurement is performed on the other photon. As Y,Y, =VY.,Y, =Y,Y; =1, we can write

X1X2X3 = (X1Y2Y3)(Y1X2Y3)W1Y2X3) =(=DE=DEH=-1

(1)

We now consider a fourth experiment measuring linear |H'>/|V '> polarization on all three

photons, that is, an XXX experiment. We investigate the possible outcomes that will be predicted
by local realism based on the elements of reality introduced to explain the XXX experiments. We

obtain
X X, X, =1
from
[H)H,H)
[HOMIVS)
VI HL V)
ViV H)

Each eigenvlaue
1 1 1

-1

—
1
[

-1 1 -1
-1 -1 1

2)

Resultant eigenvalue
1

1
1
1

in order to be able to reproduce the quantum predictions of equation

XXX(+ 1 ' ' ' ' ' ' ' ' ' ' ' '
h@z(§:;WQWJWQ+WJMWAMWMHJWMWQMNW».

32



with

Gy

®o, 0o,

XXX(+)\ XXX(+)
\PGHZ > - +‘ \IIGHZ > N

Then the value X, X,X;=-1 from Eq.(1) is incompatible with the value X X,X,=1 from

Eq.(2), predicted from the quantum mechanics.

12.  Eigenstates of 6, ® 6, ® G,

6,06, ®6,=

X

-

(el R s T S e B s S e T

O = O O O O O O
O O = O O O O O
o T e T s B S o A s B s T
O OO O = O O O
[ T R T T B T
o T e R s Y s A e Y s B s B ]
O OO O O O O =

e

There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four
states is (+1).

i) Four states are the eigenkets of &, ® o, ® 6, with the eigenvalue (-1). One of these
states is the GHZ state

XXX(=)\ XXX(=)
lIIGHz > - _‘ \PGHZ >

0,®0,Q0,
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(i)

) = %q X1 %) Ys) = Yol ¥2) %)

= %H H O HL VG +[HOIVL ) HL) + VO HL ) HLD = VIV, V)

i) = %q X Y2) %) = [l %)l ¥s)

= %(| HOTHL V) = [HOV O HS ) + VT HL ) HS) = VOV Vs )
i) = %q X )| Y2l ¥s) = Yl% )] %)
= %H HOHL IV = [HOV, O HL) + VI HL ) H) + VOV, VL)

Four states are the eigenkets of &, ® 6, ® 6, with the eigenvalue (+1). One of these

states is the GHZ state

XXX(+)\ XXX(+)
TGHZ > - +‘ lI’GHZ >

c,®0, ®0,

we) = %q X1 %) V) + [ Yol 2)l%s)

= %(| H1'>| H2'>| H, '> N | H1'>|V2 '>|V3 '> - |V1 '>| H2'>|V3 '> + |V1 '>|V2 '>| H3'>)

lvs) = %q X[ Y2l %) + )% )| ¥s)

= %(| H1'>| H2'>| H3‘> - | H1'>|V2 '>|V3 '> + |V1 '>| H 2'>|V3 '> - |V1 '>|V2 '>| H3'>)
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Iv/8>=%(|x1>| Vo)l ¥a) +yoPe) %)

= S CHHH )+ HOVING) = ML) = VG )

13.  Eigenvalue problem 6, ® 6, ® 5,

0,®0,®0, =

(0 00 0 0 00 -1
o 00 0 0 01 0
o 00 0 ©0 10 O
o 00 0 -1 00 O
o 00 -1 0 00 O
o 01 0 0 00 O
o 10 0 ©0 0O0 O

-1 00 0 0 00 0

There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four
states is (+1).
(1) Four states are the eigenkets of 6, ®6, ®5, with the eigenvalue (-1). One of these

states is the GHZ state “PGHZ XXX(+)> ,

v,) = fq X% )| Ys) =)l Y2)l%s)
- %(| H1'>| L2>| R3> _|H1'>| R2>| L3> _|V1'>| L2>| L3> +‘V1V>| R2>| R3>)
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IWQ=;%0&NWN&>%VM&N%>
— S HILIR )+ HIRL) - MIILIL) V)RR

i) = _%q X1 Y2l ¥a) + v ) %)
Z%H HOL)[R,) = [H )R, ) L) + M L) L) + ‘V1'>| R)IRs))

(i)  The four states are the eigenkets of &, ® 6, ® G, with the eigenvalue (+1). One of these

states is the GHZ state denoted by‘\pGHz xxx(—)> ,

W) = fq X% Ys) + [ ¥2) %))
- %H H1'>| L2>| L3> + | H1'>| R2>| R3> +|V1'>| L2>| R3> _‘V1'>| R2>| L3>)

hw>=§;dmﬂwﬂ&>+WJVJW9)
— S HILIL) + YRR - MILYR) + W R L)

lws) = %d X1 Y2l ¥s) = [yl ) %))

b

1 :
= 5(_| H ) L)[Ls) = [HORyIRs) + [V LR ) + ‘Vl >| R,)ILs))
14.  Eigenvalue problem 6, ® 5, ® 5,
6,06,86, =
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(0 0 0O OO0 O 0 -1
O 0 0 00 0 1 O
0O 0 0 00 -10 0
0O 0 0 01 0 0 O
0O 0 0 10 0 O O
0O 0 -1 00 O O O
o 1 0 00 0 0 O
-1 0 0 00 O O 0]

There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four
states is (+1).
(1) Four states are the eigenkets of 6, ®6, ® 5, with the eigenvalue (-1). One of these

states is the GHZ state “I’GHZ XXX(+)> ,

|vs) =%(| X1 %) ¥s) =yl %)

=L RLIR ) H R VL) R R

|ws) z_%q X Yo ) %)+ Y% V)

=L R R M LR - R

v.) = %d XY ) ¥s) =yl %) %))
= %H H, ) L)L) =[H)RIRs) + V) Ly ) R3>+‘V1y>| R,)|Ls))
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(i)  The four states are the eigenkets of 6, ® 6, ® 6, with the eigenvalue (+1). One of these

states is the GHZ state denoted by“{’GHZ XXX(‘)> ,

I'/fs>=%(|x1>|xz>| Vo) +|Yl¥2)%)

b

= LRI AR IR+ VLR - R L)

lw:) = %H X Y2 )% )+ Y0 %)l V)

b

= LR IR ML L) - R R

|ws) = _%q X Yo ) V) + )] %) %))

2

1 ,
25(_| H L) Rs) =[H) Ry Ls) +[Vi ) L)) L3>+‘V1 >| R,)IR:))
15.  Eigenstates of 6, ® 5, ® 5,

o,86,80, =

o o0 0000 0 -1
o o0 0000 -1 0
o 0 0001 0 O
o o o001 0 0 O
o o0 01 00 0 O
o o 1 000 0 O
o -1 00 00 0 O
-1 0 00 0 0 0 O
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There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four
states is (+1).

(1) Four states are the eigenkets of 6, ® 6, ® 6, with the eigenvalue (-1). One of these

states is the GHZ state “PGHZ XXX(”> , given by

The other three states are not the GHZ state;

v,) = _%(|X1>|X2>| Ya) Yl ¥a) %)
:%(|L1>|L2>|V3'>—|L1>| Ro)IH3) =[RIL)IHS) +[R)IR VA

lws) = %d X Y2l %)+ Yl %)l s)

= L LIV LRI - R, + [R)R V)

i) = fq X[ Y2l Ya) = [y %) %)
= %(| Lo[L V) + LRy ) H3) = [ROT L)) = [ROIR, V5D

(i)  Four states are the eigenkets of 6, ® 6, ® 6, with the eigenvalue (+1). One of these state

is the GHZ state “PGHZ XXX(_)> ,
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W) = %H X1 %) Ys) + Y] ¥2)l %)

= LU LRI+ [RILIVG) - R RH.)

lvy) = %(i|x1>| Vo)l %)+ )% )|y )
Z%H Lol Lo H) + L[ RV ) = [ROIL VA + [ROIR, ) H D

i) = _i%q X Y2l Ya) + [y %)l %)
=%(|'-1>|'-z>|Ha'>+|L1>| Ro)IV ) = RO VS =R R, ) H3 )
16. Summary

(a)  The GHZ state “PGHZ XXX(+)>

“PGHZ XXX(+)> is the simultaneous eigenket of

5, ®6,®06, l//GHZXXX(+)> = |Wenz XXX(+)> ]

OA_V ®s,® 6-)' l//GHZXXX(+)> = —|¥chHz XXX(+)> )
6,86, ®6, Vo, XXX(+)> = "|¥ehz XXX(+)> 5
5, ®6, ®F '/’GHZXXX(+)> — 4 WGHzxXX(+)>
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(b)

The GHZ state “PGHZ XXX(‘)>

“{’GHZ XXX(7)> is the simultaneous eigenket of

A A A XX(=)\ _ XXX(=)
0,80, ®0,|\Wgy; > =HVeuz >
A ® A ® A XxXx(=)\ _ XXX (=)

o,RQ0, V0, Wey; = H¥ehz

A A A XX(=)\ XXX(—)
G,®0, 86, Ve >—+'//GHZ >
A A A xox(=)\ XXX (=)
0, ® 0, 0y |Wey, >__“//GHZ >

17.

(1)

where

The GHS state in the configuration yyx, yxy, and Xyy

“PGHZ(+)> state

X (+ 1 ' '
Vo) =S 1R)®|L,) ©[H, ) +|L) 8[R,)®|H,)

|
+[R)®|R,)®|V,) +|L,) ®|L,) ®V,)]

XYy (+ 1 [ 1
‘V/GHZM )>=E[|L1>®|H2>®|R3>+|Rl>®|H2>®|L3>
+[R)®V,)®|Ry)+|L,) ®|V,") ®|L;)]

o\ 1 ,
Ve ™) = 1H) @R O|L) +[H) @ |L)IR)
+V,)®|R,) ®|R;) +|V,") ®|L,) ®|L,)]

A A A Xyy(+) _ Xyy(+)
O-x®o'y®0'y"//GHz >__‘l//GHZ >

A yy(\ _ yxy (+)
Oy Vehz > = _‘ Yehz >

®o,®0,
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9

WX(+)> _

YYX(+)
YV ehz = _“//GHZ >

o,®0, &0,

(i1) ‘PGHZ(_)> state

X(— 1 , ' ' '
oy 7) = SALLH ) +RR)H) + LRV +[R)IL)V: )

yxy(- 1 ' ' ' '
P ™" )> :5(| L[ Ho)ILs) +[ROHL )R, +[L VL) Rs) +|Rl>‘V2 >| L))

Xyy(— 1 ' f ' '
Pz ™" )>:§(|H1 L)L)+ [HO[R ) Rs) + (V) L2>|R3>+‘V1 >|R2>| L))

where

6, 06,06 |Wap ny(,)> Hy e ny(,)>

~ A ~ yxy(=)\ _ yxy (=)
6,806,806, Wan; >—+V/GH2 >

. . . yyx(-) yyx(-)
G, 80, ®0,|Wenz > TWonz >
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APPENDIX-I. Eigenvalue problem 6, ® 5, ® 5,

o,®0,80,=

0 0 0O O 0O 0 0 -2
o 0o 0 0 0 0 1 0
o 0o 0 0 0 -2 0 0
O 0 0 0 2 0 0 O
0O 0 0 -2 0 0 0 O
O 0 1 0 0 0 0 O
0O - 0 0 0 0 0 O
i 0 0 0 0 0 0 0

There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the
other four states is (+1). There is no eigenket corresponding to the GHZ state.

i) = %(”XIN Xo)[ %) + Y1) ¥2)] ¥5))

1. . . g
= 5('| HOHL R +i[HOV Y L)+ iV ) HL L) + |‘V1 >|V2'>| R;))

v,) = %H X% )| s) + 1Y) va)l %)

1 . ] ) g
= E(_'| HOHL R +1[H VL) + iV HL L) - |‘V1 >|V2'>| R;)

vs) =%(|X1>| Vo)) =¥ ) ¥a)
— S (HAHIR )= [HAVL) + M HL )= V2R
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IWO=;%UMNhN%>%%N&N&»
— S IR = HAVAL )+ ML) + v V2R

(i)  The four states are the eigenkets of 6, ® 5, ® 5, with the eigenvalue (+1). There is no
eigenkets corresponding to the GHZ state.
1 .
vs) =gz Axob %) =[vly:) v>))
1. . . o,
= E('| HOHL ) Rs) +1[H VL) + V) HL L) + "Vl >|V2'>| R:))
1 .
Vo) = ﬁH X% )| ¥s) + 1Y) 2| %))
1. : : A ’
= E('| H O H )R =T H IV L) =iV ) HL ) L) + "Vl >|V2'>| R;)
1 .
lvy)= ﬁ(|xl>| Vo) %s) + 1 Y)1%)] v3))
1 ' s
- §(| H1'>| Hz'>| R3> _| H1'>|V2'>| L3> + |V1'>| H2'>| L3> _‘Vl >|V2'>| R3>)
1 .
i) = _ﬁ('|xl>| V)l Vs) + Y% %)
1 ' s
= 5(_| H T HL )[R, = [H IV L) + [V HL L) +‘V1 >|V2'>| R:))
APPENDIX-II Eigenstates of 6, ® 6, ® 5,
6,86, ®6,=
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(0 00 O O O 0 1
O 00 0O O O -1 0
0 00 O O -1 0 O
O 00 O i1 O 0 O
0 00 -1 0O O 0 O
0 01 0 O O 0 O
O 10 0 0 O 0 O

. -1 00 0 0O 0O 0 O

There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four
states is (+1).

(1)

Four states are the eigenkets of 6, ® 6, ® 6, with the eigenvalue (-1). These states are

not the GHZ state.

If//l>=%[lxl>|xz>lxs>+ y)ly2)lys)]

- LULIL) +LIRIR) +RLIR) + RRIL)

v,) = %[i|xl>| Xo)Ys) + [V ¥2) %1

LI LR IR) < RILIR) - RIRIL)

i) = %[i|x1>| Yo%) + [ Ya)l %)y )]
= %H L)L)l L)+ LRI R) = [ROIL)IR) +[R )R, L))

If//4>=%[IX1>|yz>|ya>+i|y1>|Xz>|Xa>]
— S LILIL) - LR)R )+ RILIR) + [R)R LY
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(i)  Four states are the eigenkets of 6, ® 6, ® 6, with the eigenvalue (+1). These states are

not the GHZ state.

IWQ=;%HKN&N&>—H%NhN%M

=%(| L)L )R} +[ LR L) + R LY L) +[R)RIR)

) =75 il < v )

= LG IR LR IL) - RIL L) RIR IR

|%>=%[ilxl>| o)) = [Yixe)] )]

= L HLILIR)HLIR L)~ [RILIL) + R )RR

i) = %HXIN Vo)l ¥s) = 1Y) %) %:)1
- %(| L1>| L2>| R3>+|L1>| R2>| L3>_|Rl>| L2>| L3>_|R1>| R2>| R3>)
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