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Quantum teleportation is a process by which quantum information (e.g. the exact state of an 
atom or photon) can be transmitted (exactly in principle) from one location to another, with the 
help of classical communication and previously shared quantum entanglement between the 
sending and receiving location. Because it depends on classical communication, which can 
proceed no faster than the speed of light, it cannot be used for superluminal transport or 
communication. And because it disrupts the quantum system at the sending location, it cannot be 
used to violate the no-cloning theorem by producing two copies of the system. Quantum 
teleportation is unrelated to the kind of teleportation commonly used in fiction, as it does not 
transport the system itself, does not function instantaneously, and does not concern rearranging 
particles to copy the form of an object. Thus, despite the provocative name, it is best thought of 
as a kind of communication, rather than a kind of transportation. The seminal paper first 
expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres 
and W. K. Wootters in 1993. Since then, quantum teleportation has been realized in various 
physical systems. Presently, the record distance for quantum teleportation is 143 km (89 mi) with 
photons, and 21m with material systems. On September 11th, 2013, the "Furusawa group at the 
University of Tokyo has succeeded in demonstrating complete quantum teleportation of photonic 
quantum bits by a hybrid technique for the first time worldwide." 
 
((Optica vol.2, p.832)) H. Takesue et al. (October, 2015)) 

“Quantum teleportation is an essential quantum operation by which we can transfer an 
unknown quantum state to a remote location with the help of quantum entanglement and 
classical communication. Since the first experimental demonstrations using photonic qubits and 
continuous variables, the distance of photonic quantum teleportation over free-space channels 
has continued to increase and has reached >100 km. On the other hand, quantum teleportation 
over optical fiber has been challenging, mainly because the multifold photon detection that 
inevitably accompanies quantum teleportation experiments has been very inefficient due to the 
relatively low detection efficiencies of typical telecom-band single-photon detectors. Here, we 
report on quantum teleportation over optical fiber using four high-detection-efficiency 
superconducting nanowire single-photon detectors (SNSPDs). These SNSPDs make it possible 
to perform highly efficient multifold photon measurements, allowing us to confirm that the 
quantum states of input photons were successfully teleported over 100 km of fiber with an 
average fidelity of 83.7 ± 2.0%.” 
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Fig. 1. Experimental setup. (a) Setup for generating time-bin entangled photon pairs. ATT, 

attenuator; EDFA, erbium-doped fiber amplifier; PPLN, periodically poled lithium 
niobate waveguide; SHG, second-harmonic generation; SPDC, spontaneous parametric 
downconversion. (b) Quantum teleportation setup. Yellow and gray solid lines indicate 
the optical fibers and electrical lines, respectively. SNSPD, superconducting nanowire 
single-photon detector; MZI, unbalanced Mach–Zehnder interferometer; DSF, 
dispersion-shifted fiber; TIA, time interval analyzer. 
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Alice makes a special type of measurement called a Bell-state measurement. 
 
(a) The state of Bell basis: 
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where 0,10,1  mj , 0,00,0  mj . 

 
(b) The additional basis (it is still called Bell basis) 
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where 1,11,1  mj , 1,11,1  mj  

 

Using the above Bell basis, the state 123   
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can be expressed as follows. 
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If Alice's Bell-state measurement on particles 1 and 2 collapses the two particle state to the state 
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then the particle 3, Bob's particle, is forced to be in the state  
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which is exactly the state, up to an overall phase, of the particle before the measurement. 
 
This is a dramatic illustration of the spooky action at a distance of entangled states that so 
troubled Einstein. 
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((Example-1))  Rotation operator (I) 
 
The operator  
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We consider the pure particle state 123  which is related to the quantum teleportation. The 

density operator for this pure state is given by 
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Tracing out particle 1, the reduced density operators are obtained as 
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This reduced operator is the same as that of the density operator for the Bell’s state. Note that for 
the Bell's two-particle entangled state,  
 




















 

0

1

1

0

2

1
]3;2;3;2;[

2

1)(
23 zzzz   

 
we have the density operator given by 
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 















































 

0000

0110

0110

0000

2

1

0110

0

1

1

0

2

1

ˆ )(
23

)(
2323

. 

 
Tracing over particle 2 furthermore, we have 
 





























10

01

2

1

10

00

2

1

00

01

2

1
ˆ3  

 
which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information 
about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until 
he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into 

the state   that Alice’s particle was in initially. 

 
((Mathematica)) 
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3. Approach from the quantum qubits 
 

Clear "Global` " ;

exp : exp . Complex re , im Complex re, im ;

1
1

2

0
1
1

0

; 2
1

2

0
1
1
0

;

1
1

2

1
0
0
1

;

2
1

2

1
0
0
1

;

1
a
b

; 2
a

b
; 3

b
a

; 4
b

a
;

123
1
2

KroneckerProduct 1, 1
1
2

KroneckerProduct 2, 2

1
2

KroneckerProduct 1, 3
1
2

KroneckerProduct 2, 4

Simplify;

K1 Transpose 123 1 ;

K2 Transpose 123 . a a1, b b1 ;

Outer Times, K1, K2 1 FullSimplify;

MatrixForm

0 0 0 0 0 0 0 0

0 a a1
2

a a1
2

0 0 a b1
2

a b1
2

0

0 a a1
2

a a1
2

0 0 a b1
2

a b1
2

0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 a1 b
2

a1 b
2

0 0 b b1
2

b b1
2

0

0 a1 b
2

a1 b
2

0 0 b b1
2

b b1
2

0

0 0 0 0 0 0 0 0



 

16 
 

Suppose Alice and Bob share a pair of qubits in the entangled state 
 

BABAB 1100(
2

1
00   

 
Alice needs to communicate to Bob one qubit of information 
 

10    

 

 
 

 
 
Fig. Quantum teleportation scheme and corresponding circuit. 

(P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum 
Information, Springer-Verlag, 2007). p.228. 

 
The initial state of the system of three qubits is given by 
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]1100(11100(0[
2

1

1100(
2

1
)10(

00
)0(

3

BABABABA

BABA

B













 

 
The first two qubits are at the Alice’s location and the last bit is at the Bob’s location. Alice 
applies the CNOT transformation to her two qubits, with the control qubit being the quibit to be 
teleported to Bob.  
 

)]1001(1)1100(0[
2

1

]101011110000[
2

1)1(
3

BABABABA

BABABABA








 

 
where 
 

AA
CNOTU 0000ˆ   

 
AA

CNOTU 1010ˆ   

 
AA

CNOTU 1101ˆ   

 
AA

CNOTU 0111ˆ   

 
She then applies the Hadamard transformation to the first qubit. 
 
 

)10(
2

1
0ˆ H ,  )10(

2

1
1ˆ H  

 
Then we get 
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)01(11)10(10

)01(01)10(00[
2

1

]110011100001[
2

1

]111010101000[
2

1

)]1001)(10()]1100)(10[([
2

1

)]1001)(10()1100)(10([
2

1)1(
3

BBABBA

BBABBA

BABABABA

BABABABA

BABABABA

BABABABA

























 

 
Finally, Alice measures the two qubits in her possession. The measurement outcome. For the 

measurement of A00  Alice, the state of Bob's qubit is equivalent to the original state 

 
BB 101    

 

So Bob does not change, which is indicated by the identity operator Î , 
 

BBI 10ˆ
1    

 

For the measurement of A01  Alice, the state of Bob's qubit is given by 

 














 BB 012  

 

If Bob applies the X̂  transformation to his qubit, the state becomes  
 

12 01

10ˆ 






 
























X  

 

For the measurement of A10  Alice, the state of Bob's qubit is given by 

 















 BB 103  
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If Bob applies the Ẑ  transformation to his qubit, the state becomes  
 

13 10

01ˆ 






 



























Z  

 

For the measurement of A11  Alice, the state of Bob's qubit is given by 

 














 )01(4
BB  

 

If Bob applies the XZ ˆˆ  transformation to his qubit, the state becomes  
 

14 01

10ˆˆ 






 


























XZ  

 

Here note that we use the operators Î , X̂ , Ẑ , and XZ ˆˆ , where 
 











10

01
Î ,  










01

10
X̂ , 

 












10

01
Ẑ ,  





























01

10

01

10

10

01ˆˆXZ . 
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APPENDIX 
((Mathematica)) 
Bell’s states 
 

 

Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

1   1
0
;

2   0
1
;

B1 

1

2
KroneckerProduct1, 1 

KroneckerProduct2, 2  MatrixForm

1
2

0
0
1
2

B2 

1

2
KroneckerProduct1, 2 

KroneckerProduct2, 1  MatrixForm
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______________________________________________________________________________ 

0
1
2

1
2

0

B3 

1

2
KroneckerProduct1, 1 

KroneckerProduct2, 2  MatrixForm

1
2

0
0

 1
2

B4 

1

2
KroneckerProduct1, 2 

KroneckerProduct2, 1  MatrixForm

0
1
2

 1
2

0


