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Quantum teleportation is a process by which quantum information (e.g. the exact state of an
atom or photon) can be transmitted (exactly in principle) from one location to another, with the
help of classical communication and previously shared quantum entanglement between the
sending and receiving location. Because it depends on classical communication, which can
proceed no faster than the speed of light, it cannot be used for superluminal transport or
communication. And because it disrupts the quantum system at the sending location, it cannot be
used to violate the no-cloning theorem by producing two copies of the system. Quantum
teleportation is unrelated to the kind of teleportation commonly used in fiction, as it does not
transport the system itself, does not function instantaneously, and does not concern rearranging
particles to copy the form of an object. Thus, despite the provocative name, it is best thought of
as a kind of communication, rather than a kind of transportation. The seminal paper first
expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres
and W. K. Wootters in 1993. Since then, quantum teleportation has been realized in various
physical systems. Presently, the record distance for quantum teleportation is 143 km (89 mi) with
photons, and 21m with material systems. On September 11th, 2013, the "Furusawa group at the
University of Tokyo has succeeded in demonstrating complete quantum teleportation of photonic
quantum bits by a hybrid technique for the first time worldwide."

((Optica vol.2, p.832)) H. Takesue et al. (October, 2015))

“Quantum teleportation is an essential quantum operation by which we can transfer an
unknown quantum state to a remote location with the help of quantum entanglement and
classical communication. Since the first experimental demonstrations using photonic qubits and
continuous variables, the distance of photonic quantum teleportation over free-space channels
has continued to increase and has reached >100 km. On the other hand, quantum teleportation
over optical fiber has been challenging, mainly because the multifold photon detection that
inevitably accompanies quantum teleportation experiments has been very inefficient due to the
relatively low detection efficiencies of typical telecom-band single-photon detectors. Here, we
report on quantum teleportation over optical fiber using four high-detection-efficiency
superconducting nanowire single-photon detectors (SNSPDs). These SNSPDs make it possible
to perform highly efficient multifold photon measurements, allowing us to confirm that the
quantum states of input photons were successfully teleported over 100 km of fiber with an
average fidelity of 83.7 + 2.0%.”
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Fig. 1. Experimental setup. (a) Setup for generating time-bin entangled photon pairs. ATT,
attenuator, EDFA, erbium-doped fiber amplifier; PPLN, periodically poled lithium
niobate waveguide; SHG, second-harmonic generation; SPDC, spontaneous parametric
downconversion. (b) Quantum teleportation setup. Yellow and gray solid lines indicate
the optical fibers and electrical lines, respectively. SNSPD, superconducting nanowire
single-photon detector; MZI, unbalanced Mach—Zehnder interferometer; DSF,
dispersion-shifted fiber; TIA, time interval analyzer.
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Fig. Schematic diagram of quantum teleportation. When Alice and Bob each receive one
particle of an entangled pair from an EPR source (for Einstein-Podolsky-Rosen), the
quantum state from particle 1 can be transferred (teleported) to particle 3.

[J. Audretsch (Editor) Entangled World (Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim,
2002).] p.155 Fig.6.3

We consider the four Bell-states given by
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The state of the particle 1, the particle Alice wishes to teleport, is simply
lvi) =2l ), +b-),

Before Alice makes a measurement, the state of the three particles is given by
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where
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Alice makes a special type of measurement called a Bell-state measurement.

(a) The state of Bell basis:
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where

0)=]i=1m=0),

0)=]i=0,m=0).

(b) The additional basis (it is still called Bell basis)
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Using the above Bell basis, the state |y/123>
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can be expressed as follows.
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If Alice's Bell-state measurement on particles 1 and 2 collapses the two particle state to the state

“//1(2_ )> , for example,
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then the particle 3, Bob's particle, is forced to be in the state
lw)=—-a|+z),-b-z),=—(a|+z), +b|-2),

which is exactly the state, up to an overall phase, of the particle before the measurement.

This is a dramatic illustration of the spooky action at a distance of entangled states that so
troubled Einstein.
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Fig.  Alice measures with the Bell’s state ‘l//l(z_)>. After Bob measures, we get the state

—(a|+ z>3 +b|—2>3), which is the same as |1//1>. The entangled line should not be

confused with the classical information line. After Alice measures with the Bell’s state,

Bob instantly get a copy state |w3> .

((Townsend, Example 5.3))
Show that if Alice's Bell-state measurement yield particles 1 and 2 in the state ‘CDS)> , then

Bob can put his particle into the state particle 1 was in initially by rotating the spin state of this
particle by 180° about the y axis.

((Solution))
If Alice's Bell-state measurement on particles 1 and 2 collapses the two particle state to the

state ‘CDS)> , for example,

‘®§§)>(a|— z), —b|+2),)
the particle 3, Bob's particle, is forced to be in the state
lvs)=-bl+2), +a]-2),
which is exactly the state, up to an overall phase, of the particle before the measurement.

We consider the rotation operator around the X axis.
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((Example-1)) Rotation operator (I)

The operator
R(O)=exp(--S,0)

rotates spin states by an angle € counterclockwise about the X axis.
(a) Show that this rotation operator can be expressed in the form
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(b)  Use matrix mechanics to determine which of the results ‘wf; )> and ‘d)f;)> of Alice's
Bell-state measurement yields a state for Bob's particle that is rotated into the state |1,//> by the

rotation operator IQX (7).

((Solution))



1 1
i) = S el 2), =02, 2 [y Yi-al 2, +bl- 7))

1 _ 1 N
+5‘<I)§2)>[a|— z>3 + b|+ z>3] +5‘<I)<12>>[a(|— z>3 - b| + z>3)

with
+ 1

‘//1(2_)> zﬁ[“ Z>1|_ Z>z i|_ Z>1|+ Z>2]

07)=5ll+2)|+2), £|-2)-2),
(a)

R, (0) = cosgi—i&X sing

2 2

(b)

5 TP . 0 —i
Rx(ﬁ)ZCOSZI—IO'XSIHZZ—IO'X: _
2 2 -1 0

If Alice's Bell state measurement results in her tangling particles 1 and 2 in the state

CDuH> ’
‘(Dig)>[a|— z), +b|+2),]

then Bob's particle is in the state
bl+2), +a|-2),.

Using similar procedures, we have the following results

—a|+2z),+b]-z), for ‘1//1‘2*)>
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—b|+z>3+a|—z>3 for‘CD{;)>
b|+ z>3+a|—z>3 for ‘CD};’>

Thus using matrix mechanics, we have
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for ‘dbf;)> , which is the state |l//> up to an overall phase.

Alice Bob
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Fig.  Alice measures with the Bell’s state ‘(Df;)>. After Bob measures, we get the state

b|+ z>3+a|—z>3 . Through the unitary operator FAQZ(JZ) , we get the state

- i(a|+ z>3 + b|— z>3), which is the same as |1//1>.

Note that
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for ‘y/f; )> , which is not the same as |y/).

((Example-2)) Rotation operator (II)
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Determine which of the results of Alice's Bell-state measurement yields a state for Bob's
particle that is rotated in the state |w> by the operator IQZ (¢) . If you have worked out Problem

5.14, you can simply verify that the remaining state of the Bob's particle is indeed rotated into

the state |1//> by a 180° rotation about the z axis.

((Solution))
ﬁz(¢)=cosgi—i&zsing: e’ ?ﬂ
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Then we have
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2. Approach from the reduced density operator
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We consider the pure particle state |l,//123> which is related to the quantum teleportation. The

density operator for this pure state is given by

/3:|'//123><‘//123|

where
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Note that there are four Bell’s states for particles 1 and 2, which are defined by
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Note that
|a|2 + |b|2 =1. (normalization).

The density operator p can be obtained as
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Tracing out particle 1, the reduced density operators are obtained as
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This reduced operator is the same as that of the density operator for the Bell’s state. Note that for
the Bell's two-particle entangled state,
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we have the density operator given by
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Tracing over particle 2 furthermore, we have
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which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information
about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until
he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into

the state |l//> that Alice’s particle was in initially.

((Mathematica))

14



Clear["Global %"];
exp_* =exp /. {Complex[re_, im_] =» Complex[re, -im]};

0 0
1 1 1 1
¥l= — s ¥2=— ;
vz | -1 vz |1
0 0
1
1 0
$1= — ;
vz | ©
-1
1
1 0
92= — |, |;
vz |0
1
—a\. o (-a\. . _[(b\._,. [-D)\.
X1=(_b),X2_(b)sXB_(a)1X4_(a)s

Y123 = % KroneckerProduct[y1l, x1] + % KroneckerProduct[y2, x2] +

% KroneckerProduct[¢l, x3] + % KroneckerProduct[¢2, x4] //
Simplify;
K1 = Transpose [¥123][[1]1];
K2 = Transpose[¥123] //. {a—-»al, b- bl};

o = Outer[Times, K1, K2[[1]1]1] // FullSimplify;
o // MatrixForm

0O O 0O OO0 O 0O O
o 23l _aal g o abl _abl |
2 2 2 2
o _aal aal 5 g _abl abl g
2 2 2 2
0O O 0O 00 O O O
0O O 0O 00 O 0O O
o ab _alb g g bbl _bbl |
2 2 2 2
o _ab alb 5 g _bbl bbbl
2 2 2 2
0O O 0O 00 O O O
3. Approach from the quantum qubits
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Suppose Alice and Bob share a pair of qubits in the entangled state

By ) = %(‘OA>‘OB> n ‘1A>‘IB>

Alice needs to communicate to Bob one qubit of information

) =al0)+ A1)

bit

V) Alice bit

|BOO>

EPR state

W) H N\
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| Byo)
Bob

A

FAE W8N N —

Fig. Quantum teleportation scheme and corresponding circuit.
(P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum

Information, Springer-Verlag, 2007). p.228.

The initial state of the system of three qubits is given by
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The first two qubits are at the Alice’s location and the last bit is at the Bob’s location. Alice
applies the CNOT transformation to her two qubits, with the control qubit being the quibit to be
teleported to Bob.

)= tedo)or)fo") + o)) « A< )o°) + Ainjor o)

= talo)fo* o) 1)1}y + Ao+ o)
where
Ucnor|0)®[0%) =[0)®[0*)
Uenor|0)®[1) =[0) ®|1*)
Uenor [1)®[0%) =[1)®|1%)
Uenor 1) ®[1) =[1) ®]0*)

She then applies the Hadamard transformation to the first qubit.

Ao = opl). A= o))

Then we get
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1
2
1
2
1

Finally, Alice measures the two qubits in her possession. The measurement outcome. For the

measurement of ‘00A> Alice, the state of Bob's qubit is equivalent to the original state
[v)=al0%)+ AJ1°)

So Bob does not change, which is indicated by the identity operator I ,
ly,)= a‘08>+ﬂ‘18>

For the measurement of ‘01A> Alice, the state of Bob's qubit is given by
|l//2> = a‘lB> + ﬁ‘08> = (5]

If Bob applies the X transformation to his qubit, the state becomes

o2 YOG

For the measurement of ‘10A> Alice, the state of Bob's qubit is given by

Iw3>=“\08>—ﬂ\18>=(_aﬂj
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If Bob applies the Z transformation to his qubit, the state becomes

A

ey %Y

For the measurement of ‘1 1A> Alice, the state of Bob's qubit is given by

IW4>=<a\IB>—ﬂ\°B>)=(_ﬂ]

o

If Bob applies the ZX transformation to his qubit, the state becomes

{8 2w

Here note that we use the operators ) , X s yA , and ZX , Where
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APPENDIX
((Mathematica))
Bell’s states

Clear["Global " *"];

*

exp_* :=
exp /. {Complex[re , im ] = Complex[re, -im]};
1).
llfl—(o),
0).
wz-(1)1
YyBl =
1
—— (KroneckerProduct[y1, ¢y1] +
V2
KroneckerProduct[y2, ¢¥2]) // MatrixForm
1
V2
0
0
1
V2
YB2 =

1
—— (KroneckerProduct[yl, y2] +
V2

KroneckerProduct[y2, ¢y1]) // MatrixForm
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KroneckerProduct[y2, y2]) // MatrixForm
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(KroneckerProduct[y1l, 2] -
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KroneckerProduct[y2, ¢1]) // MatrixForm
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