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We discuss phenomena on the interaction between atoms and electromagnetic field, in terms
of the quantum mechanics. The electromagnetic field is classically treated, while the state of

atoms is quantum mechanically treated. Such a method is called semi-classical treatment.

1. Lagrangian (Goldstein, Classical Mechanics)
We start with the Lorentz force given by

F=q(E+lv><B).
c

We use the vector potential 4 and scalar potential ¢ as

B=VxA, E=—V¢—18—A.
c Ot
The Newton’s second law:
dv 104, ¢q
m—=F=qg(-Vg————)+-vx(Vx A4
7 q(=V¢ cat) . ( )
Here we note that
04. ©0A 0A. 04
vx(VxA)]. =v (—+—D)+v (——+—=
[vx( )] =v,( o ax) -( . ax)
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Then we get

04
[VX(VXA)]x:(anAx+v y+vzaAz)—dAx+an.
ox 7 ox Ox dr ot

In considering the Lagrange equation, it is supposed that there are two kinds of independent
variables, r and v. In this case

0A
o 2y Py 20 gy,
ox 7 ox ox Ox

Then we have

dA, 8A
x(VxA)]. = <
[vx(VxA)], o o
or
dA 0©A
vx(VxA)]=V ===
[vx(VxA)]=V(v- )dt o
Using this formula, we get
dv _F
dt
104 dA 04
=q(= V¢———) [V( A)——+—]
dt ot
qu
=—gV(d——v-A)—L2Z
V(& cv ) c dt

Then we have
i(mv + 4 4y =—qv(s L, A).
dt c c

This equation takes the form of Newton’s second law. The rate of change of a quantity that looks
like momentum is equal to the gradient of a quantity that looks like potential energy. It therefore
motivates the definition of the canonical momentum

p:mv+gA,
c



and an effective potential energy experienced by the charged particle,
1
Q(¢ - Zv ’ A) 5

which is velocity-dependent. The force on the charge can be derived from the velocity-dependent
potential energy

1
U=q(¢p——v-A).
c
So the Lagrangian L is defined by
1, 1
L=T-U=—mv' —q(¢——v-A)
2 c
The canonical momentum is defined as

p:a—L=mv+1A.
ov c

Then the mechanical momentum (the measurable quantity) is given by

nzmv:p—iA.
c

The Hamiltonian H is given by
H=pwv-L

:(mv+1A)~v—L
c

1,
=—mv" +
5 q¢
1
=—(p-Lay +q¢
2m c

The Hamiltonian formalism uses 4 and ¢, and not E and B, directly. The result is that the
description of the particle depends on the gauge chosen.

In conclusion we have two kinds of momentum.

Mechanical momentum T =my

Canonical momentum: p=mv+ 94,
c
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or

n:mvzp—gA
c

2. Hamiltonian
The Hamiltonian of the classical radiation field ( p: momentum operator of the system,

Quantum mechanical operator) is given by

where g = -e is the charge of electron (¢>0) and ¢ = 0.

(454 b AW = A2V p (D429 - (Ap(r)

a2y B ) A+ pv - 4)
1 1

:21—.hA-Vy/(r) +?W(")(V'A)

Thus

~ 1. : 2 .
H=— p2+e—2A2+—eA-p+@(V-A) .
2m c c ic

We use the Coulomb gauge V- A = 0. Then we have the perturbations such that

=5 4.p
mc
~ ez )
H": - AZ
2mc

where we use the vector potential 4 for the classical case.

3. Classical radiation field
Maxwell's equation:



The equation of the continuity

V-j+a—p:0,
Ot

g--14_y,

{B:VXA
c Ot

where A is the vector potential and ¢ is the scalar potential.

V2¢+Z—(V-A):—47zp

2 .
vig- L2 A—V[V-A+1%j=—4—7”

¢t or? c ot c

10
ot

Gauge transformation:

{A'A—V}(
\ 1 oy
= + ——
P'=¢ "4

4. Coulomb gauge
We start any pair of 4 and ¢. Using the Gauge transformation we have a pair of 4’and ¢’, where

V-A'=0
or

V(A-Vy)=0
or

Vy=V-A4



This is a Poisson equation with known value of V- 4. The solution of y is uniquely determined.
Therefore we can always choose the Coulomb gauge with V- A4'=0.

5. Vector potential 4 in the Coulomb gauge
Here we assume that

V-A=0 (Coulomb gauge)

In the vacuum, we have

p:O’ j:o
V=0
2
va—iza f—v(l%jzo
c” ot c ot

From the first equation, we have ¢=0
or
(V-4A=0, ¢=0)

Then we have

2
iz‘;‘f =0, with V-4 =0
C

V24 -

The plane wave monochromatic solution for the wave equation is
A=2A, cos(k r— a)t),
where
o =kc or o =ck (Dispersion relation)
Note that
V-Ad=-2(k-A,)sin(k-r—at)=0
since

V-(A,cos(k-r—awt))=[Vcos(k-r—ot)]-A,+cos(k -r—wt)V- A,
=—k-A,sin(k-r—wt) '



Then we have
k-A4,=0

In other words, A, is perpendicular to the wavevector k.

A

Fig. n; propagation vector of the light. & is the polarization vector. The vector potential A4 is
parallel to the polarization vector.

A must lie in a plane perpendicular to the direction of the propagation vector (n).

A= 2|A0|g COS(k = a)t) — |A0|8[ei(k-r_ax) + e—i(k-r—a)t)]: Re[28|A0|ei(k"_“’t)] ’



104

- cot

- _Mg(—l)(—w) sin(k - r — o)
c C

= —2|AO|Q£ sin(k - r — ot)
c

= —2k|A0|8 sin(k - r — t)
= Re[2ik|Aj|ee™ )]

and

B=VxA
= —2|4,|(k x&)sin(k - r— )

= —2|A0|9(n X&) Sin(k r— a)t)’
c

= Re[2i] 4,|(kn x &) "=)]

where n is the unit vector defined by n=k/ |k| and ¢ is the polarization vector (unit vector). The

direction of the magnetic field and electric field is perpendicular to the propagation direction,
forming the transverse wave.

((Note)) Vx(fF)=VfxF+ f(VxF)

6. Poynting vector
The electromagnetic energy is given by

Lgrip)e L aap Ly > L2 Jsin? (k-1 -
8”(E +B )_87[(4|A0| 7O +4(4,| a0 jsm (k-r—at)
2
_2 |AZ| [1—cos(2k-r—2a)t)]
2mc

2

The time average is

l]EL(EZ + Bz)dt = a)2|A0|2 =u (erg/cm’)
T+ 87 27’ ’

where u is the energy density. The Poynting vector is given by

c
S=—I(ExB).
47r( * )



Since
ExB:2|AO|25x[2|AO|2(nxé)}sinz(k-r—a)t)
c c
10 1
=44, —an[l—cos(Zk-r—Za)t)]
c

the time average of the Poynting vector is obtained as

T
lJ.Sdz‘ = n=ncu. (erg/s-cm?)
0

photons
ho

area |

The intensity s; the energy flow per unit area per unit time.

(erg/s cm?).

27mc

The flux of photons (the number of photons per unit area per unit time)

2
S a)|A0| )
=—=—— 1/s cm”).
s ho  2mic ( )
7. Application —interaction with the classical radiation field

We consider the absorption and emission of light which is caused through the interaction
between atoms and electromagnetic fields. The light is the electromagnetic field which
periodically varies with time. Here we discuss the absorption and stimulated emission, where the
electromagnetic field is semi-classically treated and the atoms are quantum-mechanically treated.
There is another emission, so-called the spontaneous emission, where the electromagnetic field
should be quantum-mechanically treated.

((Classical radiation field))
The electric or magnetic field is derivable from a classical radiation field as opposed to
quantized field,



a :ﬁjf +e¢(f)+iA-ﬁ
which is justified if
V-A4=0. (Coulomb gauge)
We work with a monochromatic field of the plane wave

A= 2|A0|£ cos(k r— a)t)

k=—n, ek=0
C

(¢ and n are the (linear) polarization and propagation directions.)
or

y :|A0|8[ei(k-r—ax)+e—i(k-r—a)t)]

The Hamiltonian is given by
Hof,+ 1,

where H ,1s the time dependent perturbation

I:Il :i|AO|[ei(k~r—a)t) +e—i(k-r—{ut)](8.ﬁ)
mc
— ]:Il+e—ia)t +1:]leia)t
where

A =i|Ao|e"’”(e-13), A, =i|Ao|e'””<e-ﬁ>

(i) Absorption
The first term: responsible for absorption

6|A0|

mc

(6l e

(ﬁ : )ﬁ = ¢i>
and
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((Fermi’s golden rule))

where the energy is conserved during the process; £, —E, = ho

A

hiw

Absorption

Fig.  Absorption process. £, = E, +ho .

(11) Stimulated emission
The second term: responsible for the stimulated emission

(ﬁl )ﬁ = %@f ‘e_ik'rg : i’| ¢1>

and
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Stimulated Emission
Ly

Fig.  Stimulated emission process. £, = E, —ho.

8. The semi-classical form of | A4,|

As is derived above, the transition probability rate is given by

2
2m e
i=»f ) mzcz

4, |(, 772 blg)| o(E, - £ £10)

The semiclassical form of |A0|2 can be obtained using the expressions of the energy density u,

and the magnitude of the Poynting vector, s,

®* 2 er — s 1
u= 5 |AO| ( g3) > W(w)dw | erg——
27mc cm cm” S

s=cu(erg ! 2)—)1(0))da) (erg
scm

=)
cm? s

Note that the units of |A0| is G.cm since erg =G* cm’, I(w)dw is the intensity between w and @

+ dw, and W(a))da) is the energy density between w and @+ dw,

(@) =W (o), W(w) = lJ(a))
C
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We assume that these quantities are dependent on the angular frequency @. We note that the
units of W(w) and I(w) are given by

[erg;s], [W(a))da)] erg 1,
m cm’

)=

[1(@]{% > -@} :[:ﬂ [1(w>dw]=[¥]

cm’ s cm’s
Using the relation

|A0|2—%1( w)dw 2z —W(w)do,

we get the transition probability as

27 ¢ € | 2m?
W, === —[ W(a))}da)‘ g le

Pl I e™"e plg) ‘ S\E iha)),

1

where 5(Ef - E, iha))=g5(a)oia)) and £, - E, =ha,.

(1) Absorption:

4
WL, = hz”f W (@)(d, "&bl

(i1) Stimulated emission:

FR .
W, = h” @)l “re- bl

9. Electric dipole approximation

The vector potential periodically change over the order of the distance (wavelength, 600 nm
= 6000 A). The radius of electron in atoms is much smaller than the wavelength. In this case, we
can use the approximation,

o =1+ik-r+---=1.

Here

13



Cy—

c A

kor=2nr =2 ()= s Lo
c 2 xR '

This approximation is valid for A4 » 7y, (atomic dimension).

((Note))
oz . .
ho = Ze = 26 , ay/Z: atomic level spacing
aO /Z ratom
c A chr, 137
_:x:_z—;m;_ratom
w 2 Ze Z
where
e 1
a=—z=—
( c 137 )

The velocity v, and radius 7, are

Ze* v, Z& Za Z 1
v, =— and %= = = -,
nh c nhc n 137n

The energy level is

In other words

1 ~— «1

_ratom -
x 137
for the light atoms (small Z). In this approximation, we get

22
O T
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(i1) Stimulated emission

W%—;?ﬁWww@kﬂ¢

Next we need to calculate the matrix element <¢f ‘8 . i)| ¢i> . For simplicity we take

c=e (n=e,)

X

Then we get the matrix element as

(p,|p.]¢)-

Suppose that the Hamiltonian is given by
2 1 A2 A 2 A2 A A A
HO :_(px +py +pz )+V(x,y,Z).
2m
Then we have

51, =——1%5.="p.,
2m m

where |¢l> and |¢1> are the eigenkets of H,,

Alg)=Elg).  Ale)=E e}

We have
(¢, [2.1,18) = (¢, |3, - H,]4) = (E, - E) 8, [5|4) = —ho,(g,|54,)
or
(8,1 5.]) =-ho,(8, i6)
or
(¢]5.]0) = imay (¢, |54

In the direction of the electric polarization vector, we have

15



)

(¢l B|g) ~may(g,|e-Flg) = may(g, |F,

€
In other words, the transition matrix element is expressed by
(fle-(—er)i).

where (—er) is the electric dipole moment of electron and & is the polarization vector of the
electromagnetic wave,

Using this expression, we get the final form

4
W, = hz”f W (@ )(g, e bl

T T
= 47;[ ¢ W(a)o)‘ >‘2
= B, W (w,)

or
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W= 47 e?

2
i»f ‘

(@, (e, |7 |0.)

F
2 £
C

where we use the electric dipole approximation
— 1
W(a,) = ;](wo)

Bj; and B, are called the Einstein B-coefficient. We have

Blz = le

2 2
_4r’e A

o ¢

&
4r*e’

3 (o

) >‘2 (Average)

A

r

I

¢

The factor 1/3 arises from the random distribution of &, since the radiation is isotropic.
((Note))

(¢,

%)

F

rg

b)=¢-(4,

where @ is the angle between ¢ and <¢f ‘f|¢l> , and |£| =1. We need to take an average over the

g

F

random orientations of the electric dipole moment — e‘<¢f

(0,1 =, g ) cos’ 0= cos’ 0 Znf
Here
<cos2 6?> = i;fcosz 027 sin0)d6 = %Zcos2 Osin6d6 = %

17



o

o)

Fig. r,= < f |ﬁ|i>. &1, =Cos 0|£||r0| =Cos 9|r0| with |8| =1. The angle @is variable, since the

orientation of the r, is not fixed.

12.  Relation between Einstein’s A & B co-efficients
The energy density in thermal equilibrium between @ and w+dw is given by Wr(w)dw.
We know that the Planck’s law for the radiative energy density is given by

@ ho

Wr(w)= )
(@) et ™M —1

from the Black-body problem (see the Black body problem in the APPENDIX)
Suppose that a gas of N identical atoms is placed in the interior of the cavity:

ho =E, - E,.

Two atomic levels are not degenerate. N, N, are the level population.

18



ground state atam

Open system

Pass of a heam of
radiation atm

excited state

We assume that
W (@) =Wy () +W,(@)

where
W(w): cycle-average energy density of radiation at @
Wr(a)) : thermal part

W (@) : contribution from some external source of electromagnetic radiation

E Spontaneous emission Stimulated emission
2

\ "

£, Y L N,

Absorption

We set up the rate equations for Ny and N,

19



dN, — —
Ttl = A4,N, — N,B,W(@w)+ N,B,, W (®)
dN,

dt

= — A4, N, + N,B,W (@) — N,B, W ()

Note that the spontaneous emission is independent of W(a)) . In the case of thermal equilibrium,
we have

dN, _dN, _
dt dt

or
N,4,, —N,B,W(w) +N,B,, W(w)=0.

For thermal equilibrium with no external radiation introduced into the cavity
W(w) =W, (o)

with

A21

N
(NlBlz _leJ

The level populations N, and N, are related in thermal equilibrium by Boltzman’s law

W, (w) =

N, ™
— =—7 = exp(fho), (f= VksT)
N, e
Then
Ay
Wr@)=—t = B
B, - B,, ﬂh“_&

20



with

where

or

£21 — eﬂha)
B, Wr(w)

(Example)) ho,=k,T (v=v,, @, =27v,)
For T=300 K, vi = 6.25 x 10" Hz = 6.25 THz

For how << k,T , 4, << BNWT(a)) (v<<r)
For hw>>k,T, A, >> 321WT(CO) (v>> )

For optical experiments that use electromagnetic radiation, v>> 5 THz.

or A, >> B, W (o)

21



Color | Wavelength | Frequency | Photon energy
violet | 380—450 nm -ESB—TBS THz. 2.75-3.26 eV
blue | 450-495 nm | 606668 THz | 2.50-2.75eV
green  495-570 nm | 526-606 THz | 2.17-2.50 eV
yellow | 570-590 nm | 508-526 THz | 2.10-2.17 eV
orange | 590-620 nm | 484-508 THz | 2.00-2.10 eV
red | 620-750 nm | 400-484 THz | 1.65-2.00 eV

https://en.wikipedia.org/wiki/Visible spectrum

So we have
(i) Ay >> B, Wr(w)
Ao spontaneous emission rate
By Wr(w): rate of thermally stimulated emission

(i) (@) =W (0)+ W (0) =W (o)

Therefore the radioactive process of interest involve the absorption and stimulated emission
associated with the external source.

22



Spontaneous emission Stimulated emission
E2 N2

A

A21 BlZWHE BleEE

£, Y Y N,

Absorption

dN,

=A4,N, - N1312WE(50) + Nsz1WE (w))

dN,

—E =N, N,B,W £(@) — N,B,, W s(w)

13. Spontaneous emission (quantum mechanics)
From the above discussion, we get

B, =B,
Ay he’
B, n’c

We note that

2 2
B, =B, :47;—26‘< f 2 ¢i>‘2

r

e

22
¢ >‘2 = LZZTSK%'
Thus we have

ho’
A21 =723 le
T C

3 2 2
=i e e o
32
:éga;;—;‘@f F %>\2

When W z(@) =0
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dN. 1
dtz = _A21N2 = _;Nz

or
0 1
N, =N, exp(-—1)
T

The radiative lifetime is given by

1
T=—o0
AZI
or
1 40)362 . 2 362 ) 2 3
== (0 o] ~ 505 3 T T
or
18
l=7.2354x130 WA 5
T [A(4)]
with
o _27 _e
c . fic

Settingx =1 A and A =400 nm = 4000 A (typical value), we get

18
! zwlz =1.13x10%s".

T 4000°
((Note))

1o 6x10° &

T

for the transition 2P to 1S in atomic hydrogen.
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It is interesting to compare Eq.(1) with the result obtained from the classical radiation theory
(see later). The power radiated by accelerated particle of the charge (-e) is given by the Larmor
formula

_28°(v)’

P
3¢?

2

where v is the acceleration. If we assume that the particle undergoes a circular motion of radius
r, with uniform angular velocity. The centripetal acceleration is

We can argue that the time requires for the classical system to radiate energy #w/2 is equivalent
to the lifetime z. Thus

| 2P 4 (‘.))2 4207 At w ‘
. - Ty = i = T (classical)

Note that the qualitative agreement between the classical and quantum mechanical results is a
manifestation of the correspondence principle. However, the mechanism for the emission of the
radiation is completely different in the two cases, and the classical argument can never produce
the discrete spectrum of the radiation.

14. Larmor’s formula (classical)

The classical electrodynamics tells us that an accelerating charge radiates an electromagnetic
field with far-field electric and magnetic field values. The instantaneous electromagnetic energy
flow is given by the Poynting vector

s="FExB
4

=i%Exme)
= [E’n—(E -n)E]
4

=LE2n
47

The electric field is given by

e

il
c

nx(nxv)
R

E = ]ret

25



v is evaluated at the retarded time ¢,, =¢—R/c. This radiation has the characteristic dipole

pattern and causes the electric dipole to lose energy, that is, to be damped. The pointing vector is
then obtained as

2 2 1 2

. 1.2, .
#F(nxv)zn = #?MZ (sin® O)n,

e 1
S=———[nx(nxv)’n=
drc® R L )
where @is the angle between n and v.

[nx (nxy)] =(nxv)* = sin* 0.

The total power radiated is given by the integration of § over a sphere surrounding the charge,

2
[$-da= 4;:3 |ﬁ|2j%sin2 On - da
2
20 1.
= 4;3 |V|ZIFSIHS O0(27xR*)d6O
2 T
:%Mz [sin’ oo
¢ 0
2e” | .2
3
where
]{sin3 6do =i.
3

0

15. Larmor formula ((Griffiths))

Suppose that a charge g = —e 1is attached to a spring and constrained to oscillate along the x
axis. It starts out in the state |n>, and decays by spontaneous emission to the state |n>
The electric dipole moment is given by

p= —e<n'|fc|n>e)r

where

26



[/
xn>= me(a +a)|n>

S WU | PV | O P
2mw

and
(1B _ h ' ! —
<n |x|n>— —2mw(«/n+1<n|n+1>+\/n<n|n 1>

= L(\/ n+ 15n ail T \/;é‘n n_1)
\ 2mae ’ ’

A photon is emitted with the angular frequency given by

ho

n',n = En' - En = ha)(n'-i_%) - ha)(l’l + %) = ha)(n'—n) 5

during the transition from the state |n> to the state |n'> When n'=n+1, we have

P = he®

n+1
2ma)( )

The energy of the n-th state is
1
E=hon+ E)

The transition rate is

40 5, 40 he’ (n41)~ 20
3m

A=
3¢ Y T 3ne 2ma

The life time of the n-th state is

1 3mc’

T4 20
Each radiated photon carries an energy % . The power radiated is evaluated as

2 2
_ 20 =22 (L ho)
3mc 3mc 2
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((Classical theory))

In the classical electrodynamics,

_ 24%*

P
3¢?

where a is the acceleration
2
a=-w"x,cos(wt)

Then we have

2 4.2 2.2 4
2e°w’x, e x,

P " <cosz(a)t)>= 30

where the time dependence is estimated by the average value as

1 1
cos’(wt)) = —(1—cosat)) = —
Noting that
1 2.2
E= Ema) X, (the total energy)
we have

o' 2E  20°¢

P= =
3¢ mw*  3mc’

E

which is the same as that based on the quantum mechanics.

16. Absorption cross section
The absorption cross section is defined as

Oabs = absorption cross section

_ (energy/unit time) absorpted by the atom (i — (')

Energy flux of the radiation field (erg/cm’s)

oW, . (erg/s
— 1 ; l%j( g ) [sz]
—a)—|AO|2(ergS/cm2)
27w ¢
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ha)'z; e |A| ‘(pf‘e 8p|(p>‘ (E —Ei—ha))
Gab =
1
gwjﬁ‘”
47z h

{hcj‘@f‘e & p|¢) ‘ 5E —-E, ha))

In the electric dipole approximation,

4r* e*

O s = ‘<(pf‘e g p|(p>‘ (a)ﬁ—a))

m’w he
2
A Yoo o, ol

-3 e, \e-ﬁ|¢%>\25<wﬁ-w>

When & =e_, we have

<¢f ‘f?x| ¢,-> =ima;, <(Pf "AC| ¢z’>

Then
2
O s = %a(mza); )K(pf ‘)2|¢1>‘25(a)ﬁ - 0))
= 4x*aw, (o, 314 5(w, - o)
where

Thomas-Reiche-Kuhn sum rule indicates that
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D fi=L
-
Using this rule

Jou@do=dzaSofo,H6)

h 2mw,
= 47[20{%; 7 u ‘<¢f

2

é)

X

fi
—4rlag—
2m ;fﬁ

e P
2m

2
= 27r2c£ ¢ 2}
mc

17. Thomas-Reiche-Kuhn sum rule
We consider a particle in one dimension whose Hamiltonian is given by

~ 1 .
H=—7p"+V (%)
2m =

We have the Thomas-Reiche-Kuhn rule that

. n’
ZH:KO X n>‘2(En -E)) = Ey.

where

1:I|n>=E

n)

n
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[[H,%],%]= [[él,)e],;e] +[[V(%),%],x]
m

~2

Then

S [ L
OleA. 81,51 =" ()

On the other hand

(O[[[H,%1,%1/0) = (0|l 7, %1% 0) — (0| [ 7, %] 0)

= SAOlA. 21n)n10)~ 0[], £10))

= ; {(EO -E, )<0|fc| n><n

[510) ~ (E, ~ £, 0[3] n){n 3]0}

= —2;(5‘,, ~E, }(0[x|n)|

Combining Egs. (1) and (2), we obtain

> (e, £, ol -2

2m

or

. h
;a}nOKOM n>‘2 = E

2)
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where
E -E, =ho,,
18.  Electric dipole transition selection rule: hydrogen atom
= K(”f ‘f |¢l‘>‘2
<¢’f ‘f|¢5i> = <¢’f "%|¢i>ex + <¢’f ‘j/|¢,.>ey + <¢’f ‘2|‘/5i>ez
is a vector. Then we have
= K‘”f 7l# ‘ K(Pf [de, ‘ K‘/’f e, ‘ K‘/’f ‘2|¢i>‘2
Here we note that
o+ 316 = (o [+ 316) (o, [+ 516) = (o5~ 51, o i+ 5l)
or
(o, [z +5lg )] =ko ke, ) +|o/[510)
Similarly we have
K(”f ‘x — |¢,->‘2 - K(”f lf\¢f>\2 * K(”f ‘9 |¢f>‘2
Then we have
1= Ko o) = ho el Sl le-staf +fo, )

Spherical tensor of rank 1

T _ _(fc+ij/)
1 V2

o=z
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T = [—x L. j
L2

From the Wigner-Eckart theorem,

<nv’lv’m||j21(l)

n,l,m>¢ 0 for m'=m+q and for I'=/+1,/,] -1
f”q“) is the odd parity operator,

S A (D)

al,;"w=-T,
and

7

n,l,m)=(-1)

n,l,m>

Then the matrix element <n',l',m'|f"q“) n,l,m) is equal to zero for I'=1.

Then we have

. ~ 1 A

(1) <n',l’,m'|T1(1) n,l,m>:—$<n',l',m'|x+ly n,l,m>¢0
for m'=m+1 and for ['=[+£1

(i1) <n',l',m'|ffll) n,l,m>:%<n',l',m'|fc—ij/ n,l,m>¢0
for m'=m—1 and for I'=/+1.

(i) (0 m| T "m0 m)=(n', 1" m' |2 n,0,m) == 0

for m'=m and for ['=/=*1.

19. Radiation due to Electric quadrupole and magnetic dipole
A. Radiation due to electric dipole moment (review)

S'i):i%é"[ﬁo,f]
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since
. m_~ .
=i—[H,,r].
4 h[ 071

The matrix element:

(il bld) =i e (8, 1H,.71g,)
=i e (E,~E,)#,Fl4,)
= ima,,z- (¢, |fl¢,)
= im_—w;’"a{(/ﬁn —eflg,)
==i™ g, Dlg,)
The electric dipole moment:
D = g = —eF
B. Radiation due to the magnetic dipole moment

We can manipulate the operator (k- 7)(¢- p) into a form that consists of two terms, one
representing a magnetic moment, the other an electric quadrupole moment

(k-r)(&- p) Z%[(k-f)(g-i)) —(&-F)(k-p)+(k-r)(&-p)+(e-F)(k-p)]
We consider the first term,

(r|(k - #)(&- p)~(&-F)(k- P)

V/>=?(k‘r)[st(r)]—?(s’r)[k'Vt//(r)]
=Rl V- [k-V (]G}

= ?(k x&)rxVy(r)]

= (kx&)(r|F x plw)
= (kx 8)<r|i|w>

where L =7 x p is the orbital angular momentum. We can identify (kxg&) with the direction of
the magnetic field The orbital magnetic moment is given by
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Hp €
S ) S §
" /] 2mc

So that this corresponds to the transition due to the interaction of the magnetic dipole moment of
the charged particle with the magnetic field associated with the photon. This is in close analogy
with the electric dipole transition, except that the magnetic dipole transition probability is much

smaller.
Next we consider the second term.

(k-r)&-p)+(&-F)(k-p) (1)
Here we show that
(k-p)e-F)=(¢-F)(k-p)

((Proof))

(rltk )& Plor) =2 G- V)@ ()

h 0
=— > k—1J&x,
F Lk tep (]
h 0
=— > ke [0, +x,—
P Lk O+, )]

h h 0
:_.Zkigjé;,jl//(r)+_.Z€jxjki_l//(r)
i3 i3 OX,

n
i

zé(k.g)<r|w>+<r|(a-f)<k-p)|w>

(k-e)w(r){(s-r)(k—vw))

Since k-&=0, we have

(r|k- )& Pw) = (r|e- k- ply)
or

(-F)(k-p)=(k-p)e-F).

Here we use the relation
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p= —2—[2mH0,r]—1h[H ,F],

since
[%,p,’1=2ihp,, (5,5, 1=2ihp, [2,5.°]=2ilp_ .
Then we get

(g-F)(k-p)=(k-p)(&-F)

=i%<k-[ﬁlo,f]><s-f) @

We must add the relations Eqs(1) and (2). As we do this, we keep & to the left,

(k-F)(&- p)+ (e F)(k- p) =zﬁ[(k~f)<s-[ﬁo,f])+<k-[ﬁo,m(s-f)]

_Z—Z{k Xe[Hy %+ k[H,y, % ek}

JJI

= i;zgikj{)%j[lfloajej]+[F[O"£j]£i}
i,

since

The matrix element can be calculated as

A A

[H,,55%]

(¢,

¢,)=(E,—E,)¢,%

where
- (E —E)
nm h n m/

We note that the electric quadrupole moment is defined as

2

o

A N
;= q(XX, -~

;) 3)
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where g = -e (¢>0) for the electron.

The extra term proportional to ¢, ; in Eq.(3) does not matter because it gets multiplied by &k,

giving &-k which is zero. We interpret this as an electric quadrupole transition. Its transition
probability is of the same order of magnitude as the one from the magnetic dipole moment and
much smaller than the transition probability from the electric dipole moment.

((Note))
Sk (.10,10.) =a Tk (055, -5l o, lo.)
=g ek (55 10,) - T Tek,o, (0 |10.)
=g ek (0155 |) =S (1))
= qggikj (8,153 |2.)

since ¢-k=0.

C. M1 transition due to the magnetic moment: 21 cm H1 [hydrogen (1)] atom
Here we introduce a full magnetic dipole operator which is defined as

Hp 7 & Hp -5, &
— B2 (L+28)=—-E(J+ S
h( ) h( )

The hyper transition in an atomic hydrogen from F' =1 to F' = 0 state at 1420 MHz transition is
an M1 transition. The M1 transition involves a change in a spin (a) from the state ‘F =1lm, = 1,>

to |F = O,mf = 0>, and (b) from the state ‘F = 1,mf = 0,> to ‘F =m, = O>.
0., =é(k x&)- (L +29)
The matrix element is given by

<1, m|OAM1

0,0) = %(k x&)-(Lm|(L+28)

0,0)

~i(kxg)-(l,m|S

0,0)
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Note that the magnetic moment of the proton is much smaller than that of the magnetic moment.

Then § is actually equal to the spin of electrons. Using the kronecker product, the spin operator
of electron are given by

0 010
n - 0 0 0 1
xe:E(é\-x@lZ):E
2 21 0 0 O
01 00
0 0 —-i O
R ho. A #10 0 0 —i
=—(6,®1,)=—
e=5@®h) =000 0
07 0 O
1 0 0 O
N A 01 0 O
SZE—E(6-2®12):E
2 210 0 -1 O
00 0 -1

The matrix elements can be evaluated as

(L1$.,]0,0)=0, (1,0[S..]0,0) = g . (L-1S.[0,0)=0
A h A 5 h
LS .[0,0) = ——F—, 1,0{5,]0,0)=0, 1,-1|5,[0,0) =—F—
< xe > 2\/5 < xe > < xe > 2\/5
A h A A ih
L1|S 0,0 =l—, 1,0(S ,/0,0) =0 L-1|5,/0,0) =—=
< ye > 2\/5 < ye > < ye > 2\/5
Then we have the transitions
S, component: 1,0> - 0,0> allowed (photon: linear polarization)
S..»S,, component: |L,1) —[0,0) allowed (photon |R) polarization wit 71)
|1,—1> - 0,0> allowed (photon |L> polarization wit — 7 )
((Note))
(a)
(L1)S..[0,0) =0, (1,0[S_,]0,0) = g . {(1-18_|0,0)=0
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((Proof))

S.JLY) =§&Ze‘+e,+p> :§‘+e,+p> :§|1,l>,

§.Lo)="5. [rom) )
2

NG
:E‘+ _P>_‘_6’+P>

2 V2
-2/00)

2 2"
(b)
(LS |0,o>=—i, (1L,0[S.[0,0)=0,  (1-1$ |o,0>=i
= 2.2 e 22
((Proof))
. h . 7 [1,0)—0,0)
Sxe|1,l>:50xe‘+e,+p>:—‘— + > ER I

5.J10)=26, ‘+e’_1’>j§‘_”+‘”>
:E‘_E’_P>+‘+E’+P>
2 V2
_E|U>+|l>‘l>
5

_110)+]0.0)
-3
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(©)

S h 2 ; in
L1|S [0,0)= 2 1,0/S ./0,0)=0 1,-1[5 [0,0) = —
<’ ye’> 2\/59 <’ ye’> <’ ye 7> 2ﬁ

((Proof))
5 . h _h[1,0)-]0,0
S JL)==6, +e,+p>=,__e,+p>=l§ >ﬁ >’
~ ho. o3 + =t
S..[1,0) 565 ">ﬁ /)
=Ei—e,—p>—i+e,+p>
2 V2
_h L1 —|1,-1)
2 2
~ h .
S, 1,—1):5% o)
h
=—l§ +e>_p>
__h 1,0)+(0,0)
2 2
3500
3000 -
2500 -
2000 -
1500 |-
1000 -
0 560 1 dOO 1500 2600
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Fig.

,>—> ,> —>—> ,>.Thex-axis:the

magnetic field B(Oe). The y axis is the frequency (in units of MHz).

11,1>
F=1 [1,0> A
|1,—1>A
H (S12)

L R

Lingar
vy

F=0 [0,0>

The enrgy level of the ground state 1 S;,, state in hydrogen (H) atom. The levels are depicted
wuth the account for the proton-electron spin system (the total momentum F) and the Zeeman
splitting. The energy levels resulting from the Zeeman effect are denoted by the states

F=1m, = 1,0,—1> and |F =0,m, = 0>. The photons with right hand circular polarization are

,>t0

with left hand circular polarization are generated during the transition from

generated during the transition from

, >, with the angular momentum 7% . The photons
1) to [0,0), with
the angular momentum —7%. The photons with the ;linear polarization generated during the
transition from |1, > to |0, >,with the angular momentum 0.

20. The coefficient A for the spontaneous emission
The constant 4 for the spontaneous emission is given by

4 2
V;Z z)ojdwﬁ(wo Y axyen Qr )3 JErs dQZ‘ f(etk,s) p+ilk - r)(e(k, >‘
Vm , (27)'c'h

XZ‘ fleth,s)- p+i (k- 7)(&(k,s)- p) 2(£(k 5) F)ik - p) , . (k-F)(e(k,s)- p)+2 (e(k,s)-F)(ik - p)|>

(a) Electric dipole contribution
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47%e*

Ag=1 5 wojdwa(wo w)mdQZ\ [ ete,s)- pli)

47ze

= e deé(a)o 60)(2)#33?1 3 Kf|p| >‘

_Ax’e Va)o
Ve, Q)ch 3 Shrtalif

= 20\ rlalif

_de “’0 (o

=40 ) et

(b) Magnetic dipole contribution

47ze

-4 jda)é(a)o o) z<f|(l.(k-r)(S(k,S)-P)—(s(k,S)-r)(ik-P)|i>

(2 )3 3h - 2

mag

(r[k - P)eho5) - ) — (e(h,5) - ) - ) =?(k~r)[8(k,S)-Vt//(r)]—?(s(k,S)-r)[k-Vt//(r)]
= etk ,5)- Y O]~k -V (D) alh,s) 1)

= e e )<V ()
i
= (k x s(k,s))<r|f X j)|(//>
= (k % &(k,))(r|L|y)
The orbital magnetic moment is defined by

Hp €
- sy L
e fi 2mc

leading to

(r|tk - #)(e(h,5)- P) — (e(k,s) - F

i) = e el N2 {r| il )

or
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(k-F)(e(k,s)- p)—(e(k,s)-F)(k - p) = —2%(1‘ xe(k,s))it

Thus we have

2

Z<f|—ﬂ(kxg(k s)ali)

N

dr’e’
Apug = = J‘da)é'(a)o )

(2 )3 Sh

47%e* m’c? @*

m ez c dQZ‘ f|(e X£(k S))ﬂ| >‘

a0

dod(w, — o
Vma)oj (@, ~ @)

2

:sza)o Qry'c’h & ¢ 3

()

4’ Ve, mc o, 87z<

_ 4(‘)03
3hc’

2

A

i

(©) Electric quadrupole contribution

4 47ze

eq

a0y | i Do D)+ (e Bk - ) of

Ida)é‘(a)o a))( )3 3h 4 5

Note that

( p)i) =iﬂz<9,.kj<f (A

lmz glk a)f< |)21.)2j|i>

where

and

¢ i> =(E, - Ei)<f|)%ifcj|i> - ifLw)ﬁ<f|fC")2

0>

( 1),

We note that the electric quadrupole moment is defined as

r

;) (1)

where g = -e (¢>0) for the electron.
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APPENDIX Black body problem

A.1  Maxwell’s equation
We start with the Maxwell’s equation (in cgs units)

V-E=0
V-B=0
1 0B

VXE =———
c ot

e
c ot

VxB

We assume that

E =Re[E,e™™]
B=Re[Be™]

Then we have

S
Il

(=)

< Q4
I
o o

X
et

Il
o8
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~

VxBoz—iQEO
C
2 2 0 1 o°
VX(VXE)=V(V-E)-V’E=-V’E=-—(VxB)=———E
Ot c” ot
or
1 0
V’E=——
¢’ or
or

V’E,+k’E, =0

with @ = ck . Similarly, we have

1 oB
VB=——
c” ot
2
V2~0+c£2 B,=0

or
VB, +k’B,=0
We now consider an electromagnetic wave in the closed cube with side L.

v A

I
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Fig. Boundary condition for the electric field (red) (tangential component continuous) and the
magnetic field (green) (normal component continuous).

From the boundary conditions we have

P :El(sin(klx)j(sin(kzy) sin(lgz)}
t cos(k,x)

E =E

y

sin(k,x) \( sin(k,y) \( sin(k,z)
’ cos(k,y)

E-E, (sin(klx)j(sin(k2 y)J( sin(k,z) j
: cos(k,y)

where
V4 V4 V4
klzzl’lx, kz :Zl’ly, k3 :zl’lz
(ng, ny,n,=1,2,3,...)
sin(k,x) .
— Asin(k,x)+ Bcos(k,x).
cos(k,x)
Note that
Ei=0 for y=0and y = L planes and z = 0 and z = L planes.
E,=0 for z=0and z = L planes and x = 0 and x = L planes.
E,=0 for x =0 and x = L planes and y = 0 and y = L planes.

From the condition
V-E=0

we have
E_ = E, cos(kx)sin(k,y)sin(k,z),
E, = E, sin(k,x)cos(k,y)sin(k;z) ,
E_ = E,sin(kx)sin(k,y)cos(k;y)

46



From the condition

VXEOIi an

o

we have
B_ = B, sin(k,x)cos(k,y)cos(k;z),
B, = B, cos(kx)sin(k,y)cos(k;z),

B_ = B, cos(k,x)cos(k,y)sin(k,z)

where
By=0 for x =0 and x = L planes
B,=0 for y=0 and y = L planes.
B,=0 for z=0 and z = L planes.

We note that
V-E =(Ek +E,k, +E k,)sin(k,x)sin(k, y)sin(k,z) =0

This means that the vector (E), E, E3) is perpendicular to the wave vector k = (ky, ky, k3).
For each £, there are two independent directions for (£, E», E3); polarization.

k
& &

k

Y
m

E

A.2. Density of states for the modes
Since E\k, + E,k, +E.k, =0, only one of ki,k», k3 can be zero at a time. Since if two or three

are zero, E, = E; = E5 = 0. There is no electromagnetic field in the cavity. Each set of integers
(nx, ny, n,) defines a mode of the radiation field and corresponds to two degrees of freedom of the
field when two polarization directions are taken into account.
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F
!_,_,_/"' Allowed
=
S
k:
! 7y -
ke not allowed

3
There are 2 states per (%j .

w=ck=c\k’+k’+k’

or

2
w 2 2 2
—2=kr +k +kz
c 2 y

The density of states (k to k +dk)

2
ok = L A7

Vi*dk
3 2= 2 -
8 T T
[L)

where V= 1L>.
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Va'dw

C

ck,

Since w

of modes having their frequencies between @ and ot+dw,

2

Vo

=VD(w) (density of modes)

3

2

Po

T C

k

where c is the velocity of light and
> > [ pk,

We have the following formula;

or



z - Ipwdw = V{D(w)dw.
k
For single mode |k> , the energy is given by
1
E, = +2)ho,.
2
We use the Planck distribution. The total energy is given by
E, =S nio, = [V don o= [u(@)d
or = Zk:”k @, = JW on o= Iu(w) @,
or the energy density by

E, _ T”(“’)d” - Tu(z)d;t ,
S 0

where

hao’ 1 _ ho’ 1 kT X
e’ exp(x)—1 7’h°c’ exp(x)—1"

(Planck’s law for the radiation energy density). It is clear that

3
u(w X
@ _ py=—>t
ky,'T exp(x)—1
*hie?

is dependent on a variable x given by

haw
k,T°

X =

(the scaling relation). The experimentally observed spectral distribution of the black body
radiation is very well fitted by the formula discovered by Planck.

) ) ho
1 Region of Wien (x =
(D g ( T

B

>>1),
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3
kT
223xe
Thoc

—X

uy () =

(2) Region of Rayleigh-Jeans (x = :—6; >>1),

B

KT X KT,

Uy, (@)= ~ X
w(®@) 7’h’c’ exp(x)-1  7°h°c’
u (w)
kB> 73
c3 712 h2

1.5- Planck

0.0

. . . | X=
0 2 4 6 8 10 kBT

Fig.  Scaling plot of f{x) vs x for the Planck's law for the energy density of electromagnetic
radiation at angular frequency @ and temperature 7. Planck (red). Wien (blue, particle-
like). Rayleigh-Jean (green, wave-like).
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u (w)

kB 13

03 7r2 h2

L5F
1.0 -

0.5+

0.0

Fig.  Scaling plot of Planck's law. Wien's law, and Rayleigh-Jean's law.

A.3  Deivation of u(A, 7)

o0

[u(@)do = T Z?Z L
0

0 exp(——) —
p( kBT)
Since @ =—, da):—2ﬁc@
K T he' 1
[u@do=[ =5 ————do
0 0T exp(——)-1
k,T
3
. h(2ﬂcj
_J' A 1 2 @
- 23 2
, Tc exp(ZﬂflC)_ A
Ak, T
or
Tu(a))da) = Tu(ﬂ)dﬂ = ]21672'27"ICL;Q’/1
2 27hce
0 0 o exp( ) -1
Ak, T

Then we have
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where

A4

or

or

167 ke 1

u(A)= pE 27he
exp( )—1
Ak, T
h =1.054571596 x 10 ergs, ks = 1.380650324 x 10™'® erg/K

c=12.99792458 x 10" cm/s.
J=10"erg

Wien’s displacement law
u(A) has a maximum at

27hc

=4.96511, (dimensionless)
B
A= 0.28977 (A in the units of cm)
T (K)

2.897768551
A=——7—"-—"x

10°. (A in the units of nm)
T'(K)

T is the temperature in the units of K. 4 is the wave-length in the unit of nm

T(K) A (nm)
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1000 2897.77

1500 1931.85
2000 1448 .89
2500 1159.11
3000 965.924
3500 827 .935
4000 724 .443
4500 643.949
5000 579.554
5500 526.867
6000 482 .962
6500 445 _.811
7000 413.967
7500 386.369
8000 362.221
8500 340.914
9000 321.975
9500 305.029
10000 289.777

Amax[nm]

2000 -

Wien's displacement law

1500 -

1000 -

500

1000 2000 3000 4000 5000 6000 7000

Fig. Wien's displacement law. The peak wavelength vs temperature 7(K).

A.5 Rate of the energy flux density

It is assumed that the thermal equilibrium of the electromagnetic waves is not disturbed even
when a small hole is bored through the wall of the box. The area of the hole is dS. The energy
which passes in unit time through a solid angle d(€2, making an angle € with the normal to dS is
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J(A,T,0)dAdQdS = cu(A,T)dA cos GZ—Q ds,
T

where c is the velocity of light. The right hand side is divided by 47z, because the energy density
u comprises all waves propagating along different directions. The emitted energy unit time, per
unit area is

dQ (A,T)
j j J(A,T,0)dAdQ = j cu(A,T)dA j cos 0= j C”sz

E% Ju(a,1)dz

=—¢
4

where

g=ju(,1,T)d,1,

27 /2
Jcosﬁd—Q:L jdgzﬁ J‘cosﬁsinﬁdﬁ
A Ar sy

1 /2

=— 27 j Lsin20)a0
47 o 2

11 1
Pl 29 71'/2:_
42[ cos(20)]; 1

(only for the half upper plane).
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ey
I COSH “¢
S y
siné d¢
X

Fig.  Radiation intensity is used to describe the variation of radiation energy with direction.

dQ

dsS

L2
dS cos6
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Fig.  Geometrical factor. The photons pass from the lower half plane to the upper half plane in
a straight way through a pin hole with the effective area (dS cosé). Since the area dS is
small enough, the form of the wave changes from plane wave to spherical wave. The
spherical wave propagates in all directions (the total solid angle 4 ) after passing through
the pin hole. The fraction of the photons propagating over the solid angle (d<2) is d€24

In other words, the geometrical factor is equal to 1/4. Then we have a measure for the intensity
of radiation (the rate of energy flux density);

2 2
S(X’T)zcu(/l,T)=47r he 1
4 Y5 2hc
exp( )1
Ak, T
where
S (4 ,T)di = power radiated per unit area in (4,4 + d4)
Unit
he” L] _erg.s cm’ _ergl 107J 1_ *IK_[K]
A em® & em’s (107°m) s m o m’

The energy flux density S(A,7T) is defined as the rate of energy emission per unit area.

((Note)) The unit of the poynting vector <S> is [W/m?]. <S> is the energy flux (energy per

unit area per unit time).

(1) Rayleigh-Jeans law (in the long-wavelength limit)

1 1 1 27k, T
Sps(4) =ZCMRJ(/1) = 4772?‘0; e ﬂf
Ak, T
for
Ak, T o1
27hic

(2) Wien's law (in short-wavelength limit)
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1 ’he 27hc
S, (1) =—cu, ()= exp(—
w(A) 1 w(A) pe p( ;thT)
Ak, T <l
27hc

We make a plot of S(A4,7)as a function of the wavelength, where S(A4,T)is in the units of
W/m® and the wavelength is in the units of nm.

1
Lo U 10" w/m?)

T =2000 K

10+

0.1+

0.001

——

n n n n 1 n n n n 1 n " n n 1 n n n n | A. (nm)
0 5000 10000 15000 20000

1073

Fig. cu(1)/4 (W/m®) vs A (nm). T=2 x 10° K. Red [Planck]. Green [Wien]. Blue [Rayleigh-

Jean]. Wien's displacement law: The peak appears at A = 1448.89 nm for 7= 2 x 10° K.

This figure shows the misfit of Wien's law at long wavelength and the failure of the
Rayleigh-Jean's law at short wavelangth.
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Fig. (a) and (b) cu(1)/4 (W/m®) vs A (nm) for the Plank's law. 7= 1000 K (red), 1500 K, 2000
K, 2500 K, 3000 K (blue), 3500 K, 4000 K (purple), 4500 K, and 5000 K. The peak shifts
to the higher wavelength side as 7" decreases according to the Wien's displacement law.
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Power spectrum of Sun
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Fig. Power spectrum of sun. cu(A)/4 (W/m’) vs A (nm). T = 5778 K. The peak wavelength is
501.52 nm according to the Wien's displacement law.
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Fig.  Power spectrum of cosmic blackbody radiation at 7= 2.726 K. The peak wavelength is
1.063 mm (Wien's displacement law.

A.6. Stefan-Boltzmann radiation law for a black body (1879).

Joseph Stefan (24 March 1835 — 7 January 1893) was a physicist, mathematician and poet of
Slovene mother tongue and Austrian citizenship.

http://en.wikipedia.org/wiki/Joseph Stefan

Ludwig Eduard Boltzmann (February 20, 1844 — September 5, 1906) was an Austrian
physicist famous for his founding contributions in the fields of statistical mechanics and
statistical thermodynamics. He was one of the most important advocates for atomic theory at a
time when that scientific model was still highly controversial.
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http://en.wikipedia.org/wiki/Ludwig_Boltzmann

The total energy per unit volume is given by

4 © 3 2 4
g:E“”:Iu(w)dmzju(ﬂ)di:(lzgf)3 X :”(szs)
V r°h'c’ jexp(x)—-1  15h°c
((Mathematica))
w X3
f ax
0 e -1
7T4
15

A spherical enclosure is in equilibrium at the temperature 7 with a radiation field that it contains.
The power emitted through a hole of unit area in the wall of enclosure is

where o is the Stefan-Boltzmann constant

27 4
o= 67:) ;B 0.5670400x10* erg/s-cm™-K" = 5.670400 x 10* W m? K
c

and the geometrical factor is equal to 1/4. The application of the Stefan-Boltzmann law is
discussed in lecture notes of Phys.131 (Chapter 18) (see URL at

http://bingweb.binghamton.edu/~suzuki/General PhysLN.html
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A.7  Duality of wave and particle
Region of Rayleigh-Jeans:  wave-like nature

Region of Wien: particle-like nature

The mean energy contained in a volume AV in the frequency range between @ and wt+Aw, is
given by

E(0) =(E(0)) = AVW(0)Aw = AVD(@)hoAwi = AVD(@)hoAo

Mo —
where
= 1
S 1’
and
2
D(@)=—3

The mean-square of the fluctuation in energy is obtained as
0
AE(@)) = ([E(@)]) - (E(o)) =k,I*—(E
(AE@)P) = ([E@)T) - (E@)) =k,T* < (E(@))

from the general theory of thermodynamics,

or
(IAE(@)T) :AVAa)D(a))ha)kBTzaiT ﬁhl — = AVAGD(@)I' 0’| m{ — w1 :
e S )
or
(IAE(@)]') = AVAGD(0)h*e’ [ + 1] = AVA@D(@)h’ @’ (An)’
where

n+n’ =(An)?
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(See the Appendix for the detail). Note that
(An)’ =<(n—n)* >=<n’>-n" (from the definition).
(1) Rayleigh-Jean (wave-like)

ho —2

For = Phw<<1, n->>n
k,T ph

(An)* =n*, or (An)=n (wave-like, Rayleigh-Jeans)
<[AE(a))]2> ~ AVA@D(0)h* o’
Then we have

[AE@F) AvAeD@we® 1 1 &
<E(a))>2 ~ (AVAwD(@)han)?  AVAwD(w) AVA® o

(11) Wien (particle-like)

haw _,

For =Phw>>1, n-<n
k,T ph

(An)> =7 (particle-like, corpuscle, Wien)
(IAE(@)T') = AVA@D(0)h* 't = ho(AVA©D(@)hen) = ho{E(w))
or

(AE@F)
(E(@)

(ii1))  Planck

3
1 c
2

AVA®w @ <E(a))>

<[AE(a))]2> = ho(E(w)) +
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