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In classical mechanics, mirror inversion can be defined as follows. First take any motion that 
satisfies the law of classical mechanics. Then reflect the motion into a mirror and imagine that 
the motion in the mirror is actually happening in front of your eyes, and check if the motion 
satisfies the same laws of classical mechanics. If it does, then classical mechanics is symmetric 
under the mirror inversion. Here we discuss the property of the mirror-reflection operator in 
quantum mechanics. 
 

1. Reflection ( yM̂ ) and Inversion (̂ ) operators 

Suppose we redefine the operation ̂ First you reflect in a mirror in the x-plane (x = 0) so 
that x goes to –x, y stays y, and z stays z. Then you turn the system 180° about the x axis so that y 
is made to go to –y, and z to –z. The whole thing is called an inversion. Every point is projected 
through the origin to the diametrically opposite position. All the co-ordinates of everything are 
reversed. We use the symbol ̂  for this operation. It is a little more convenient than a simple 
reflection because it does not require that you specify which co-ordinate plane you used for the 
reflection. You need to specify only the point which is at the center of symmetry. 
 
(i) Reflection (mirror) 
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for the plane with x = 0. 
 
(ii) Rotation around the x axis by 180° 
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Thus the parity (space inversion) is made of the reflection for the plane x = 0 and the rotation 
around the x axis by 180°. 
 



 

2 
 

 
 

 

 
 
Fig. The operation of inversion (another method). Whatever is at the point P at (x, y, z) is 

moved to the point R at (-x, -y, -z). The inversion consists of the reflection M (the points 
P to Q) first and the rotation (the points Q to R) second. 
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Fig. The operation of inversion. Whatever is at the point P at (x, y, z) is moved to the point R 
at (-x, -y, -z). The inversion consists of the rotation (the points P to Q1) first and the 
reflection M (the points Q1 to R) second. 

 
 
2. Mirror reflection and space inversion (parity) 

Here we consider the connection between mirror reflection and space inversion operators.  

(i) Reflection (mirror); fR (x = 0 plane) 

If we make the reflection with respect to the y-z plane (x = 0 plane, denoted by the operator 
Rf), then we have 
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Rf

 , 
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Rf

 . 
 

(ii)  (parity) 
If we now apply to this system a continuous rotation of 180° around the z-axis (the operator 

is denoted by )(ˆ xR ), we have 
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Then the space inverted state can be obtained by a continuous transformation from the mirror 
reflected state, 
 

)0(ˆ)(ˆˆ  xRR fx  . 

 
3. Commutation relations and mirror reflection operator 

We now consider the commutation relation between the rotation and space inversion. First 

we consider the operations,  ˆ)(ˆ
xR .and )(ˆˆ  xR . 

 

For the operation  ˆ)(ˆ
xR , we have 

 

xxx
xR


)(

)(


, 

 

yyy
xR )(

)(


 , 

 

zzz
xR )(

)(


 . 

 

For the operation )(ˆˆ  xR , we have 
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We see that the rotation operator )(ˆ xR and ̂  commute. The mirror reflection operator xM̂  is 

given by 
 

)(ˆˆˆ)(ˆˆ  xxx RRM  . 

 
Similarly we have 
 

)(ˆˆˆ)(ˆˆ  yyy RRM  , )(ˆˆˆ)(ˆˆ  zzz RRM  . 

 

where )(ˆ yR is the rotation operator of 180° around the y-axis. )(ˆ zR is the rotation operator of 

180° around the z-axis. 
Here we use the mirror reflection operator with respect to the x-z plane, which is defined by 

 

YYM y
ˆˆˆˆˆ   , 

 

where )ˆexp()(ˆˆ  yy J
i

RY


 .  

 

4. The rotation operator Ŷ  

We now consider the rotation operator YRy
ˆ)(ˆ  , which is defined as 

 

)ˆexp()(ˆˆ  yy J
i

RY


 , )ˆexp(ˆˆ 1 yJ
i

YY


  . 

 
We note that 
 

zz JYYJ ˆˆˆˆ  ,  JYYJ ˆˆˆˆ  , 

 
or 
 

zz JYJY ˆˆˆˆ 1  ,  JYJY ˆˆˆˆ 1 
 . 

 
This can be demonstrated by using the Baker-Hausdorff theorem. We also note that 
 

j
yJ

i
Y 22 )1()2ˆexp(ˆ  
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When j is an integer, 
 

1̂ˆ 2 Y . 
 
When j is an half integer, 
 

1̂ˆ 2 Y  
 

(i) The relation zz JYYJ ˆˆˆˆ   

 

mjYmmjJYmjYJ zz ,ˆ,ˆˆ,ˆˆ   

 

mjY ,ˆ  is the eigenket of zĴ  with the eigenvalue m . In other words, we have 

 

mjemjY mji  ,,ˆ ),( , 

 
),( mjie   is the phase factor depending on the values of j and m. 

 

(ii) The relation   JYYJ ˆˆˆˆ  

 

1,)1)((,ˆ,ˆˆ ),(   mjmjmjmjJemjYJ mji  , 

 

Since   JYYJ ˆˆˆˆ , we have 

 

1,)1)((

1,ˆ)1)((

,ˆˆ,ˆˆ

)1,( 
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Thus we get 
 

),()1,( mjimji ee   . 
 

(iii) The relation   JYYJ ˆˆˆˆ  

 

1,)1)((,ˆ,ˆˆ ),(   mjmjmjmjJemjYJ mji  . 
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Since   JYYJ ˆˆˆˆ , we have 

 

1,)1)((

1,ˆ)1)((

,ˆˆ,ˆˆ

)1,( 
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Thus we get 
 

),()1,( mjimji ee   . 
 

(iv) The relation j
yJ

i
Y 22 )1()2ˆexp(ˆ  


 

 

mjmjeemjYemjY jmjimjimji ,)1(,,ˆ,ˆ 2),(),(),(2   , 

 
or 
 

jmjimji ee 2),(),( )1( . 

 
From the above consideration, we obtain 
 

),()1,( mjimji ee   , ),()1,( mjimji ee   , (1) 
 

mjmjjmjimji ee   )1()1()1( 2),(),(  . (2) 

 
From Eq.(1), we get 
 

),(),()1,(1 )1(....)1()1( mjimmjimmjim eee    . 

 
Thus we have 
 

),(2),( )1( mjimmji ee   , (3) 

 
From Eqs.(2) and (3), we get 
 

jmmjie 22),(2 )1()1(  . 
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or 
 

)(2),(2 )1( mjmjie  , 

 
or 
 

mjmjie  )1(),( . 

 
In conclusion we get the formula 
 

mjmjY mj   ,)1(,ˆ  

 
((Note)) 
(a) Commutation relations 
 

zyx JiJJ ˆ]ˆ,ˆ[  , xzy JiJJ ˆ]ˆ,ˆ[  , yxz JiJJ ˆ]ˆ,ˆ[  , 

 
ˆ J   ˆ J x  i ˆ J y , 

 
ˆ J 

  ˆ J  , ˆ J 
  ˆ J  , 

 

  JJJz
ˆ]ˆ,ˆ[  ,    JJJ z

ˆ]ˆ,ˆ[  , zJJJ ˆ2]ˆ,ˆ[  . 

 
(b) 
 

1,)1)((,ˆ  mjmjmjmjJ  , 

 

1,)1)((,ˆ  mjmjmjmjJ  . 

 
(c) Baker-Hausdorff theorem 
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6. RHC and LHC photons 

The RHC and LHC photons have the angular momentum 
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RRJ z ˆ ,  LLJ z ˆ , 

 
Here we choose 
 

1,1R ,  1,1L , 

 
Then we get 
 

LYRY   1,1)1(1,1ˆˆ 11 , 

 
and 
 

RYLY   1,1)1(1,1ˆˆ 11 . 

 
Since 
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we get 
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2

1ˆ , 
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i
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2

1
)(ˆ

2

1ˆ . 

 

Ŷ  is the rotation operator around the y-axis by .  
 
7. Parity operator and reflection operator 

We use the parity operator ̂ , 
 

RR  1,1)1(1,1ˆˆ 1 , 

 

LL  1,1)1(1,1ˆˆ 1 . 
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From these relations, we have 
 

xLRLRx  )(
2
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The mirror reflection operator: 
 

xxYxYxM y  ˆˆˆˆ  , yyYyYyM y  ˆˆˆˆ  . 

 
 

x  is the eigenket of yM̂  with the eigenket (-1) and y  is the eigenket of yM̂  with the eigenket 

(+1). 
 

7. The eigenket and eigenvalue of the operator yM̂  for a positive integer j 

The operator yM̂  is defined by 

 

̂̂ˆ YM y  . 

 

From the properties of Ŷ  and ̂ , we have 
 

  yy MM ˆˆ 1
, 

 
since 
 

1ˆˆ)ˆˆ(ˆ   YYYM y  , 

 
1111 ˆˆˆˆ)ˆˆ(ˆ   YYYM i

y  . 

 
We also note that 
 

1̂)2ˆexp(ˆˆˆˆˆˆˆ 222   yy J
i

YYYM


, 
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or 
 

1̂ˆ 2 yM . 

 

We assume that   is the eigenket of yM̂  with the eigenvalue  ; 

 

 yM̂ ,  

 
Then we have 
 

 
22 ˆˆ  yy MM . 

 

Since 1̂ˆ 2 yM , we get 

 

12  . 

 

When j is a positive integer, 12  . So we have 

 

1 . 

 

The eigen values of yM̂  are real, and the eigenstates of yM̂  have either positive parity ( 1 ) 

or negative parity ( 1 ). They are sometimes said to be even or odd under reflection. 

We start with 
 

zz JJ ˆˆˆˆ   . 

 
Then we have 
 

mjmmjJmjJ zz ,ˆ,ˆˆ,ˆˆ   . 

 

mj,̂  is the eigenket of zĴ  with the eigenvalue mħ. In fact we have  

 

mjmjmj j ,,)1(,ˆ  , 
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mj,  is the eigenket of ̂  with the eigenvalue (-1). Using this relation  

 

mjmjYmjYmjM mj
y   ,)1(,ˆ,ˆˆ,ˆ  , 

 
and 
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From 
 

mjmjM mj
y   ,)1(,ˆ , 

 
we have 
 

1,11,1ˆ yM , 1,11,1ˆ yM , 

 
or 
 

LRM y ˆ   RLM y ˆ . 

 

In other words, R  and  L  are not the eigenkets of yM̂ . 
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