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In classical mechanics, mirror inversion can be defined as follows. First take any motion that
satisfies the law of classical mechanics. Then reflect the motion into a mirror and imagine that
the motion in the mirror is actually happening in front of your eyes, and check if the motion
satisfies the same laws of classical mechanics. If it does, then classical mechanics is symmetric
under the mirror inversion. Here we discuss the property of the mirror-reflection operator in
quantum mechanics.

1. Reflection (M ,) and Inversion (7) operators

Suppose we redefine the operation 7 . First you reflect in a mirror in the x-plane (x = 0) so
that x goes to —x, y stays y, and z stays z. Then you turn the system 180° about the x axis so that y
is made to go to —y, and z to —z. The whole thing is called an inversion. Every point is projected
through the origin to the diametrically opposite position. All the co-ordinates of everything are
reversed. We use the symbol 7 for this operation. It is a little more convenient than a simple
reflection because it does not require that you specify which co-ordinate plane you used for the
reflection. You need to specify only the point which is at the center of symmetry.

(1) Reflection (mirror)
x' - X
Y=y
z' z

for the plane with x = 0.

(i1))  Rotation around the x axis by 180°

Thus the parity (space inversion) is made of the reflection for the plane x = 0 and the rotation
around the x axis by 180°.



Fig. The operation of inversion (another method). Whatever is at the point P at (x, y, z) is
moved to the point R at (-x, -y, -z). The inversion consists of the reflection M (the points
P to Q) first and the rotation (the points Q to R) second.



Fig. The operation of inversion. Whatever is at the point P at (x, y, z) is moved to the point R
at (-x, -y, -z). The inversion consists of the rotation (the points P to Q,) first and the
reflection M (the points Q; to R) second.

2. Mirror reflection and space inversion (parity)

Here we consider the connection between mirror reflection and space inversion operators.
(1) Reflection (mirror); R, (x =0 plane)

If we make the reflection with respect to the y-z plane (x = 0 plane, denoted by the operator
Ry), then we have

Rf
X—>—Xx,

Rf
Y=Y,

Rf
Z—>Z.

(i1) 7 (parity)
If we now apply to this system a continuous rotation of 180° around the z-axis (the operator

is denoted by I%x (7)), we have



R, R, (1)
X(=x) = (=x),

R, R,(7)

y—=y = (=y),

R, R,(7)
z—>z > (-2).

Then the space inverted state can be obtained by a continuous transformation from the mirror
reflected state,

#=R (7R, (x=0).

3. Commutation relations and mirror reflection operator
We now consider the commutation relation between the rotation and space inversion. First

we consider the operations, f?x ()7 .and ﬁl%x (7).

For the operation R, (77)7 , we have

z R (7)
x—=>(-x) > —x,

T R, (7)
y_)(_y) -V,
z R (7)

z(-z) > z.

For the operation J%I%x (), we have

R(m) =«
x = x—>(-x),

R, (m) 7
y > =y)>y,
R, (7) T

z > (-z)>z.



We see that the rotation operator f?x (r)and 7 commute. The mirror reflection operator M .18

given by
M_ =R (m)7=7#R (7).
Similarly we have
M, =R (n)A=#R (7), M, =R (n)7=7R(n).
where R , () is the rotation operator of 180° around the y-axis. Iéz(ﬂ') is the rotation operator of

180° around the z-axis.
Here we use the mirror reflection operator with respect to the x-z plane, which is defined by

M, =Y#=7Y,
Aon i
where Y =R (7)= GXp(—EJyﬂ) .

4. The rotation operator Y

We now consider the rotation operator R J(7) = Y , which is defined as

Y= IAQy(iz) = exp(—%jyﬂ) , Y=y = exp(%j

We note that

Jieii. Q=i
or

YUY =-J., VI =

This can be demonstrated by using the Baker-Hausdorff theorem. We also note that

. i~ ,
Y’ = exp(—%Jy27z) =(-1)*.



Whenj is an integer,
72 =1.
Whenj is an half integer,

72 =-1

AR

(1) The relation jj =-YJ

z

A A

J Y| j,m)y=-YJ,

j,m>:—mhl}

J-m)

A

Y|j, m> is the eigenket of J _ with the eigenvalue —mf# . In other words, we have

A

Y j,m> = *m

ja_m> ’

e'““"™ is the phase factor depending on the values of j and m.

AA

(i)  Therelation J.Y=-YJ

Jjy

Jam)y= €T | jimm) =1y (j +m)(j ~m+1)

Jj,—m +1> ,

Since J,Y =-YJ_, we have

ij j,m>=—?j_ j,m>
= —h\J(j +m)(j—m+1Y| j,m—1)
=—hJ(j+m)(j —m+1)e V"V j—m+1)
Thus we get
eia(j,m—l) — _eizx(j,m) )

AR

(iii) Therelation JY=-YJ

4L

JY j,m> = ei“(j”")j_|j,—m> = h\/(] —m)(j+m+1)

J—m —1>.



Since J Y =-YJ, , we have

A A

J Y| j,m)=-YJ,

J-m)
= —1J(j —m)(j +m+1)Y
=—h\J(j —m)(j +m+1De V"D j—m—1)

j,m+l>

Thus we get

eia(j,mH) — _eia(j,m) )
(iv)  Therelation Y2 = exp(—%j ,27) = (-1

YZ ]’m> — eia(j,m)Y|j,_m> — eia(j,m)eia(j,—m)

Jom)= (=1

j’ m> ’
or

eia(j,’n)eia(j,—m — (_1)2j )
From the above consideration, we obtain

ia(j,m-1) — _eia(j,m) , eia(j,mH) — _eia(j,m) , (1)

e
Mg e U (Y2 = (=) (= 1) )
From Eq.(1), we get
(=) U = (="M = L= (=1) e
Thus we have
U = (Z)P et 3)

From Egs.(2) and (3), we get

e2ia(j,m) (_1)2m — (_1)2j ]



or

e2iatim — (_1)2(1—"1) ,
or
eia(jJn) — (_1)j*m )
In conclusion we get the formula

Y

j’m> = (_1)j7m|j’_m>

((Note))
(a) Commutation relations

[ J, 1=ihJ [J,.J.1=ih],, [J..J =it

+ :in y?

Ji=J, Jr=1,

[J.,J 1=hJ,, [J.,J 1=—hJ_, [J.,J ]=2hJ
(b)

j+ j,m>=h\/(j—m)(j+m+l) j,m+l>,

J_|j.m)=hJ(j+m)(j —m+1D)|j,m—1).

(c) Baker-Hausdorff theorem
~ A ~ AX Al XD A A X A s A a
exp(Ax)Bexp(—Ax) =B+ F[A,B] + j[A,[A,B]] + ?[A,[A,[A,B]]] +...

6. RHC and LHC photons
The RHC and LHC photons have the angular momentum



~

J.|R)=H[R), J|Ly=-HL),
Here we choose
|R)=|L1), L) =[1,-1),
Then we get
Y|R)=Y[L1) = (-D)""[L-1) =|L),
and
Y|L)=Y[L-1)= (-)"[L1) =|R).
Since
=Rz, )= dR) -,
we get

7)== F(R)+[2) = ).

NG

Ply) = (R | = (L) | R =),

Y is the rotation operator around the y-axis by 7.

7. Parity operator and reflection operator
We use the parity operator 7,

A

T

Ry=#

L) = (1)

LI)=—R),

#|L) = 7|1,-1) = (1)’

L-1)=-L).



From these relations, we have

)= #(R) +]L) == () +|L) =),

1

R>—|L>)=—Efr(

A

T

)= B)-|)) =),

The mirror reflection operator:

~

M

y

x>:?7i'

D=l =), )= PAy) =T

»)=1y).

|x> is the eigenket of M , with the eigenket (-1) and | y> is the eigenket of M , with the eigenket
(+1).

7 The eigenket and eigenvalue of the operator M , for a positive integer |

The operator M , 1s defined by

A A

M =Yr7.

y

From the properties of ¥ and 7, we have

since

=i voaN-l _ oAa-lyg-1 Al
M, =(Yr) =7zY =7ar".

We also note that

A

M =Yi¥a=Y4" = exp(—%jy 27y =1,

10



or

M*=1.

y

We assume that |05> is the eigenket of M , with the eigenvalue 77, ;

~

M)’

a)=n,la),
Then we have
M |a)=n,M |a)=n,|a).

. o2 o
Since My =1, we get

n.=1.
When j is a positive integer, 77a2 =1. So we have
n,=x%l.

The eigen values of M , are real, and the eigenstates of M , have either positive parity (77, =1)

or negative parity (77, =—1). They are sometimes said to be even or odd under reflection.

We start with

JA=4..

z

Then we have

jzfr j,m> = 7?:}2

j,m> =mh7it j,m> .

7

7 m> is the eigenket of J _ with the eigenvalue m#. In fact we have

#| j.m) = (=1y’

j9m>:_jam>:

11



j,m> is the eigenket of 7 with the eigenvalue (-1). Using this relation

My jm)= Y7 jmy= -y jmy=—=(=1"| j,—m),
and
M| jmy=—(-1)"M | j,—m)
= (1Y (=1 jom)
= (_1)2]' J’m>
= ]’m>
From
M | j.m)=~(=)""| j—m),
we have
ML)y=-1-1), M [L-1)=-L]),
or
M,|R)=L) M,|L)=—R).

In other words, R> and |L> are not the eigenkets of M )
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