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1. 2D rotation matrix
Suppose that the vector r is rotated through € (counter-clock wise) around the z axis. The
position vector r is changed into r' in the same orthogonal basis {e, e>}.

In this Fig, we have

e -e'=cosg e,-e'=sing

_ . ) v
e -e,'=—sing e,-e,'=cos¢
We define r and r' as
r'=x'e +x,'e, = xe,'+x,e,’'
2

and

r=xe, +x,e,



Using the relation

e -r'=e -(x'e +x,'e,)=e - (xe+xe,')

' ' ' — 1 1
e, r'=e,-(x'e, +Xx,'e;) = e, - (x¢,+x,e,")
we have

x,'=e - (xe'+x,e,') =x,cosg—x,sing

x,'=e,-(xe'+x,e,') =xsing+ x,cos¢g
or

X' x| [cos¢g —sing) x

(xz 'J - ‘R(¢)[x2j - (sin ¢ cosg J[xzj

((Note))
Rotation around the z axis in the complex plane

x'+iy'= €’ (x +iy) = (cosd + ising)(x +iy) = xcosg — ysing +i(xsing + ycos¢)

[x’J (cosgﬁ —sin ¢J xJ
y) \sing cosg
2. 3D rotation matrix
We discuss the three-dimensional (3D) case,

3
— '__ 1 — 1
r—ijew ’—ij ¢; —ijej
= ‘ ‘

r'= ERz(¢)r = ERz(¢)(2xjej) = ijmz(¢)e_/‘ = ije_/'

where

R.(Pe; =e;'



Thus we have

3 3
(e =(2 x'e) e
j=1 =1

or
3 3 3
Zx/'é‘/ = X= Z(ei e;')x; = ZERUX/
j=1 Jj=1 J=1
where
R, =¢ ¢
(1) The rotation around the z axis.
R, =e-e'=cosp, R,=e e,'=-sing, R;=e-e'=0
R, =e,-¢'=sing, R, =e,-e,'=cosg, R, =e,-¢,'=0
R, =e;-¢'=0, R, =e,-¢,'=0, R, =e; -e'=1
x' Ry, Ry Ry)x
r'=ix' =Ry R, Ry|lx
X3! Ry Ry Ry
where
cos¢p —sing O
R.(p)=|sing cosg O
0 0 1
2
Y R
cosAg —sinA¢g 0 2 Ag)
R_(Ag)=|sinAg cosA¢g O0]= Ag 1—(T¢) 0
0 0 1 0 0 1
(i1) Rotation around the x axis



(iii)

1 0 0
R (P=|0 cosg —sing

0 sing cos¢

1 0 0 1 0 ) 0
‘.Rx(Aqﬁ)—[O cosAg sinA¢}— 0 1—(A¢) -Ag

0 sinA¢g cosAg 2
2
Rotation around the y axis
cosg O sing
R(@= O 1 0
—sing 0 cos¢
A 2
cosAg 0 sinAg 1—( f) 0 A¢
R (Ag) = 0 1 0 |= 0 1 0 )
—sinA¢g 0 cosAg ~Ap 0 1- (A¢)
2

((Mathematica))




Clear["Global *"]; Rx =

Rz =

Cos[¢] O Sin[¢]
0 1 0
-Sin[¢] O Cos[¢]
Cos[¢] -Sin[¢] O
Sin[¢] Cos[¢] O
0 0 1

1 0
0 Cos|[¢]
0 Sin[¢]

0

-Sin[¢] |/

Cos[¢]

Rx.Ry-Ry.Rx // Series[#, {¢, 0, 2}] & //
Normal // MatrixForm

0 -¢2 0
2 0 0
0 0 O

Ry.Rz-Rz.Ry // Series[#, {¢, 0, 2}] & //
Normal // MatrixForm

0 0
0 0
0 ¢?

0
_¢2
0

Rz.Rx-Rx.Rz // Series[#, {¢, 0, 2}] & //
Normal // MatrixForm

0
0

_¢2

0 ¢?
0 0

0 O

Then we have

R (APR, (AP)—R (APR (AP) =

in the limit of ¢ —0. since

0 —(Ag)
(Ag) 0
0 0
R.(Ap))-1

0
0
0



cosg® —sing® 0
R_(¢°)=| sing® cosg> 0
0 0 1
1 —¢> 0
=l¢ 1 0
0 0 1
0 —¢> 0) (0 0 O
=l¢° 0 O|+/0 1 0
0 0 O 0 0 1
3. Example of the sequential geometrical rotation
Here we show an example of the geometrical rotations. Suppose that the initial vector is
given by
1
rO =$(09191)

which lies in the y-z plane. We apply the two kinds of rotation to the vector .

(a) First we apply the rotation R (6=0— %) to ro.
K =5Ry(0=0—>%)r0
After that we apply the rotation R_(¢=0—> %) to ry.

V4
r=R.(¢=0->2)
This procedure corresponds to the change of position vectors, Fg — | = 12

(b) First we apply the rotation R_(¢=0— %) to ry.

R=R.($=0- D,



After that we apply the rotation R ,(60=0— %) tor .

R'=R(0=0-> )

This procedure corresponds to the change of position vectors, rgp — F|' = '

((Mathematica))
Using the Mathematica, we can draw the process of the rotation as follows. It is clear that the
position vector 1’ is different from the position vector r,. This implies that

V2 T , T V2
r=RR, G #n'=R.CR, ()

or



R, <§)5Ry (%)ro #n'=R, (%)SRZ (%)r

z

Fig. Example of the sequential geometrical rotations to explain the noncommunitivity. This
procedure corresponds to the change of position vectors, g — ¥} = r; and , kg — 1' = 17

4. Non-communitivity of finite rotation

We show another example for the non-commutivity of sequential rotations.



. . . T .
Let us consider a 90° rotation around the z axis, denoted by R(E’k) , followed by a 90° rotation
. /2 . . . .
around the x axis, denoted by R(E’l); compare this with a 90° rotation around the x axis, denoted by

R(%, i), followed by a 90° rotation around the z axis, denoted by R(%,k) . The net results are different.

T, T

((Note))
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Fig.  Example to illustrate the non-communitivity of finite rotations (Sakurai, 2011).

5. Rotation operator
The rotation operators is defined by

R(4)= exp(—%jx@ , [related to K. (Ad)]
Iéy (9) = exp(—%JA D), [related to R (Ag)]
R(4)= exp(—%quﬁ) . [related to R_(Ad)]

where J , J ,»and J_ are angular momentum.

Using the relation

0 —(ag) 0
R (ADR (Ag)- R, (ADR (AP =| (Ag) 0 0
0 0 0

=R.(Ag))-1
10



we get the relation for the rotation operator for the infinitesimal angle ¢,
R(APR,(AP) =R (ADR.(AP) = R.(ag)) -

Noting that

s 1(JA ’
R (Ag)=1 hJA¢+2( . ]

R,(A 1—JA+ jAz
(AP)=1--, ¢— 7

s 1(J.A ’
R.(Ap)=1 hJA¢+2( j

we have

[1—%J Ap+— (J A¢J ][1 —J AP+ — (JTMJ ]

_fi-Liy A¢+%(J§¢] -1 A+ [‘] M] 1

n h h
:i_ij(A¢)z+lM2_i

no: N
__i 2
=—J.(A9)
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APPENDIX
2D rotation matrix (type-I rotation)

First we consider the type-I rotation for the two-dimensional (2D) system. Suppose that the
rotation of the orthogonal basis {e;, e;} by angle & around the z axis (counter clock wise) yields
to the new orthogonal basis {e;', &'} as shown in Fig. We note that the position vector r is fixed
under the rotation. This implies that r in the old basis {e;, e;} is equal to r' in the new basis {e;',
e'l;r=r.

<

Fig.  Rotation of the coordinate axes. Eaz r=r'. {e), e>}; the old orthogonal basis. {e;', e,' };.
and the new orthogonal basis.

We assume that

'
€ =a,€ +a,e,

'
€, =a,€ +aye,

with

12



a,, =(e.e')=cosf
a, =(e,e')=sinf
a, =(e.e,")=—sind

a,, =(e.e,')=cosf

or
a, a, cosd sind
R(-0O) = = ]
a, ay —sinf cosd

where the matrix elements {a;} are real and R(—6) is the rotation matrix. We use (-6) for

convenience. The transpose of the matrix R(—6) is givrn by

R (~0) = ay | (cosf —sind
“\a, ay,) \sin@ cos6 )

Then we have

' a, r 1
e =a,e ta,e, = a =N (-0) 0
12

, a, wT 0
e, =a,e +aye, = a =N (-0) 1
2

Suppose that the vector r can be expressed by

r= le.el. = x,e + x,e,
i

" [P I I [P
r _in el. =X el +x2 e2
i

1

r=r
in the basis {ej, e;} and the basis {e|', e;'}, respectively. Then we have

" 1 " 1 —_ 1 —
x'=e'r'=e'r=e"(xe +xe,)=ax +a,x,

" 1 " 1 — 1 —
x,'=e,"r'=e,"r =e,"(xe, + x,e,) = a, X, + ay,x,

13



or

x,' X,
X, X,

((Interpretation))

This is interpreted as an orthogonal transformation as a rotation of the vector, leaving the
coordinate system unchanged. We can rotate r' clockwise by an angle #to a new vector »'. The
component of new vector r' will then be related to the component of old by the same equations

(A).

14



