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Runge-Lentz (or Laplace-Runge-Lentz) vector 

In classical mechanics, the Runge–Lenz vector (or simply the RL vector) is a vector used 
chiefly to describe the shape and orientation of the orbit of one astronomical body around 
another, such as a planet revolving around a star. For two bodies interacting by Newtonian 
gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is 
calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the 
RL vector is conserved in all problems in which two bodies interact by a central force that varies 
as the inverse square of the distance between them; such problems are called Kepler problems.  

The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting 
by Coulomb's law of electrostatics, another inverse square central force. The RL vector was 
essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom, 
before the development of the Schrödinger equation. However, this approach is rarely used 
today. 
http://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector 
 

Wolfgang Pauli in 1926 used the matrix mechanics of Heisenberg to give the first derivation 
of the energy levels of hydrogen and their degeneracies. Pauli's derivation is based on the Runge-
Lenz vector multiplied by the particle mass. [W. Pauli, Z. Physik 36, 336 (1926).] 
 
1. Kepler's law of planetary motion 

The Kepler's laws (I, II, and III) describe the motion of planets around the Sun, 
(I) The orbit of a planet is an ellipse with the Sun at one of the two foci. 
(II) A line segment joining a planet and the Sun sweeps out equal areas during equal interval 

of time. 
(III) The square of the orbital period of a planet is proportional to the cube of the semi-major 

axis of its orbit. 
 

The Sun is at the one focus of the ellipse (the planet orbit). The ellipse orbit is described by 
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where a is the semi-major axis, b is the semi-minor axis, and e is the eccentricity (0<e<1).  
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(i) The eccentricity e 

From the definition of ellipsoid, we have 
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When 0201 KFKF  , we have .0201 aKFKF   We apply the Pythagorean theorem to the 

triangle 01OKF , 
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Then we have the expression for the eccentricity 
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21 eab  . 

 
(ii) The perihelion and aphelion 

The focus is at (ae,0) and (-ae,0). For simplicity, we assume that Sun is located at focus (-
ae,0). 
 
The perihelion (r1)  the point nearest the Sun 
 

)1(1 ear  ,  

 
The aphelion ( r2)  the point farthest the Sun 
 

)1(2 ear   

 
(iii) Area of the ellipsoid: 

The area of the ellipse orbit is given by 
 

22 1 eaabA   . 

 
(iv) The mathematical formula the ellipsoid: 
Here we show that mathematically, an ellipse can be represented by the formula 
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where p0 is the semi-latus rectum, and e is the eccentricity of the ellipse, r is the distance from 

the Sun to the planet, and  is the angle to the planet's current position K0 from its closest point P 
(perihelion), as seen from the Sun at F1. We use p0 instead of p since p is typically a linear 

momentum in physics. We also use  instead of , for convenience. 
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In the triangle F1F2K0 (see the above figure), we have 
 

arr 21  , (1) 

 
from the definition of the ellipse. Using the cosine law, we have 
 

 cos44)cos(44 2222222
1 aerearaerearr  . (2) 

 

where  is the angle between the vector PF1  and 01KF . From Eqs.(1) and (2), we get 

 

cos44)2( 2222 aerearra   

 
or 
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or 
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with 
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where (r, ) are heliocentric polar coordinates for the planet, p0 is the semi latus rectum, and e is 
the eccentricity, which is less than one. 
 
For  = 0 the planet is at the perihelion at minimum distance: 
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For   , the planet is at the aphelion at maximum distance: 
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The semi-major axis a is the arithmetic mean between r1 and r2, 
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The semi-minor axis b is the geometric mean between r1 and r2, 
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((Note)) The meaning of semi latus rectum 

The chord through a focus parallel to the conic section directrix of a conic section is called 
the latus rectum, and half this length is called the semilatus rectum (Coxeter 1969). "Semilatus 
rectum" is a compound of the Latin semi-, meaning half, latus, meaning 'side,' and rectum, 
meaning 'straight.'  
 
2. Kepler problem in classical mechanics (hydrogen atom) 

The classical Hamiltonian for the Kepler problem is  
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where m is a reduced mass and  is a positive quantity. For the case of the hydrogen-like atom, 

we can identify 2Ze . This system is invariant under the rotation. So the angular momentum 
is conserved. The classical orbit of the particle is elliptical. The Runge-Lentz vector is defined as 
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or 
 

LpeMA  rmm  , 

 
where L (= pr  ) is the angular momentum and p is the linear momentum.  
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Fig. A (=mM) (denoted by the arrows with purple) on the ellipse orbits. The vector A points in 

the direction of the perihelion. The magnitude is constant. The angular momentum L is 
always perpendicular to the orbit. The perihelion, point of the orbit the nearest to the 
focal point F). The aphelion, the point of orbit from the focal point. 

 
It is obvious from the definition that 
 

0ML , (M lies in the plane of motion). 
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or 
 

2lrmm  MrAr , 
 
since 
 

2)()( LprLLpr  ,  MA m . 

 
Since the angular momentum (along the z axis) is conserved, we can calculate  
 

11 prlL  , 

 

where 1p  is the linear momentum at the perihelion. M is a conserved quantity since 
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and 
 

FLτ  r
dt

d
.  (torque). 

 
((Mathematica)) Proof of dM/dt = 0. 
 

 
 
______________________________________________________________________________ 
We note that 
 

prprpprpLp )()( 2   

 
Then the vector M ( MA m ) always points in the direction of the perihelion from the focal 
point. At the perihelion, 
 

0 rp  

 
We have 
 

Clear"Global`"; rt_ : xt, yt, zt;

Rt_ : rt.rt ;

pt_ : m Drt, t; Lt_ : Crossrt, pt;

Ft_ :


Rt3
rt;

eq1 

 D rt
Rt, t  1

m
CrossFt, Lt 

1

m
Crosspt, Crossrt, Ft 

FullSimplify

0, 0, 0
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In general case, we have the orbital equation as 
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where   is the angle between r and the perihelion direction. From this equation we get 
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Then we have p0 is given by 
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3. Derivation of the Runge-Lentz vector 

The equation of motion of a particle of mass m in the attractive potential is 
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We take the cross product of both sides with the angular momentum L. 
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Since L is constant in time, the left-hand side can be written as 
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From the explicit form 
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Then we have 
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The Runge-Lentz vector is obtained as 
 

LpepLeMA  rr mmm  . 

 
which is a constant of motion. 
 
4. Energy of the system 
We note that 
 

222 2  LM
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H
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The proof is given by using the Mathematica. 
 
((Mathematica)) 
 

 
 
The energy can be derived as follows. 
 

Clear"Global`"; r  x, y, z; p  px, py, pz;

L  Crossr, p; R  r.r ;
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with emA  , 22 lL , and EH  . 
 
4. Construction of the diagram by Mathematica 
 

 
 
Fig. Simplified version of the diagram.   is the angle between A and r. The direction of A is 

from the focal point to the perihelion (P). 
 
We consider a point (K0) of the orbit of the ellipsoid which is expressed by 
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where the essentricity  is given by 
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where a>b. The co-ordinate of the focal point F is )0,( ae . We also consider a point (H2) on the 

circle which is expressed by 
 

222 ayx  . 

 

We assume that the angle 12OHH  is  . The co-ordinates of the points K0 and H2 

 

)sin,cos(2  aaOH  , )sin,cos(0  baOK  . 

 
The slope of the tangential line (K0K4) at the point K0 on the ellipsoid is given by 
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where the angle 104 KKK  is ; 

 

)cotarctan( 
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The unit vector along the vector 20KK , 
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The unit vector along the vector 20KK , 
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We note that 
 

xAmKKKKsKK euuLp  232203330  , 

 
where 
 

emA  ,  ).0,1(xe  

 
Then we have 
 

)( 3323 ueuu  xms  . 

 
The co-ordinate of the point is given by 
 

333003 )sin,cos( usbaKKOKOK    

 
((Mathematica)) 
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5 Invariance of H under the rotation 

Suppose that the Hamiltonian (with the spherical symmetry) is given by 
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in our system, we consider the infinitesimal rotation 
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If Ĥ  is invariant under the rotation,  
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 HRHR ˆ)(ˆˆ)(ˆ  , 

 
or 
 

HRHR ˆ)(ˆˆ)(ˆ   , 

 
or 
 

ˆ H ̂  R ()  ˆ R ( ) ˆ H , 
 
or 
 

[ ˆ R (), ˆ H ]  0 . 

 

Since  ).ˆ(1)(ˆ nL


i
R  , we obtain the following commutation relations. 

 

0].ˆ,ˆ[ nLH . 

 
Since n is any unit vector , 
 

0̂]ˆ,ˆ[ xLH ,  0̂]ˆ,ˆ[ yLH ,  0̂]ˆ,ˆ[ zLH .  

 
and 
 

0̂]ˆ,ˆ[ 2 xLH ,  0̂]ˆ,ˆ[ 2 yLH ,  0̂]ˆ,ˆ[ 2 zLH .  

 
Hereafter, We use the notation such that 
 

)(ˆ rr  HH  . 

 

)(ˆ rLLr    

 
where H and L are differential operators. 
 
5. Runge-Lenz vector in quantum mechanics 

Here we introduce a Runge-Lenz vector which in quantum mechanics is defined by  
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This operator is Hermitian since )()( pLLp    Note that r [=(x, y, z)] is the position vector, 

L is the orbital angular momentum, 
 

prL  . 

 
M commutes with the Hamiltonian H (the proof is given using Mathematica) 
 

0],[ iMH , 

 
where H is the Coulomb Hamiltonian 
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We also have 
 

0],[],[],[ 2  iiiii MHMMMHMH  

 
The commutation relations between the angular momentum L and linear momentum p are given 
by 
 

kijkji pipL ],[ , 

 
which leads to the expression 
 

pLppL i2 . 

 
Then we have 
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0 LMML . 
 
(the proof is given using the Matheamtica). We also note that 
 

2)( LLpr  , rpLrLp  i2)( 2 , 

 
222)( LpLp  . 

 
We find that 
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2 22422  LM H
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eZ . 

 

The 2  term arises from the non-commutativity of quantum operators. These equations can be 
easily proved using the Mathematica (see below in detail). 

We know that the angular momentum operators satisfy the commutation relations, 
 

kijkji LiLL ],[ . 

 
We also get 
 

kijkji MiLM ],[ , 

 
and 
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The Li’s generate rotations and define a closed algebra. But Li.s and Mi’s do not form a closed 
algebra since the last relation involves the Hamiltonian. However, we consider the case of 
specific bound states. In this case, the vector space is truncated only those that are eigenstates of 
H, with eigenvalue E<0. In this case we replace H with –E, and the algebra is closed. 

We define a new vector N such that 
 

MN 2/1)
2

(
E

m
 . 

 
where EH   with 0E . In this case we have the closed algebra, 
 



24 
 

kijkji LiLL ],[ , 

 

kijkji NiLN ],[ , or kijkji NiNL ],[  

 
and 
 

kijkji LiNN ],[ , 

 

0],[ 2 LiM . 

 
In the present notation, we have 
 

0],[ HLi , 0],[],[],[ 2  iiiii LHLHLLHL  

 
and 
 

0],[ HN i , 0],[],[],[ 2  iiiii NHNHNNHN  

 
8. Dynamic Symmetry operation 

We consider the symmetry operation generated by the operators L and N, which corresponds 

to the rotation in four spatial dimensions. We introduce ),,,( 4321 xxxx  and ),,,( 4321 pppp . Note 

that x4 and p4 are fictitious and cannot be identified with dynamical variables.  
 

2332231 pxpxLLL x  , 

 

3113312 pxpxLLL y  , 

 

1221123 pxpxLLL z  , 

 

1441141 pxpxLN  , 

 

2442242 pxpxLN  , 

 

3443343 pxpxLN  . 

 
This algebra is isomorphic (equivalent) to that of rotations in four dimensions [or the SO(4) 
group]. 
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9. New operators iI  and iK  

We define two sets of new generators as 
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Then we get 
 

kijkji IiII ],[ ,  III i  

 

kijkji KiKK ],[ ,  KKK i  

 

0],[ ji KI . 
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We have two Casimir operators 2I  and 2K  or any combination of them; for example 
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We also have the commutation relations 
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0],[ 2 kII ,  0],[ 2 kKK  

 

0],[ 2 kIK ,  0],[ 2 kKI  

 
10. Eigenvalue of Hamiltonian 

We also have the following commutation relations 
 

0],[],[  HKHI ii . 

 
and 
 

0],[],[ 22  HKHI ii  

 
since 
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1
],[  HNLHI iii ,  0],[

2

1
],[  HNLHK iii  

 
So that these operators are also conserved. In this basis the algebra becomes equivalent to that of 
two decoupled algebras of angular momenta. The eigenvalues of the operators I2 and K2 will 
have the eigenvalues, 
 

I2; )1(2 ii ,  K2; )1(2 kk . 

 
where i and k are either integer or half integers. We note that 
 

)(
2

1 2222 NLKI C , 

 

0.' 22  NLKIC . 
 
The second relation implies that 
 

)1()1(  kkii , 

 
or 
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i = k. 
 
Correspondingly, the allowed values of C are 
 

C: )1(2 2 kk , 
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 . (energy level of hydrogen atom). 

 
where 
 

12  kn . 
 
Since KIL   with i= k, 
 

l = i + k, i + k - 1,…….., |l - k|, 
 
or 
 

l = 2k, 2k - 1,…….., 0. 
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or 
 

l = n - 1, n – 2,…….., 0. 
 
______________________________________________________________________________ 
8. Proof of formula by using Mathematica 
(1) 
 

0 LM , 0 ML  
 
(2) 
 

0],[ 2 LiM  

 
(3) 
 

2).( LLpr  , )(2)( 2 rpLrLp  i  

 
(4) 
 

0).(  Lpp  

 
(5) 
 

22)( ppLp i  

 
(6) 
 

0],[ iMH  
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zyx LiLL ],[ , zyx MiLM ],[ , xzy MiLM ],[  
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(9) 
 

zyx HL
m

iMM
2

],[   

 

xzy HL
m

iMM
2

],[   

 
((Mathematica)) 
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Clear"Global`";

ux  1, 0, 0; uy  0, 1, 0; uz  0, 0, 1; r  x, y, z;

R  x2  y2  z2 ;

L :  — Crossr, Grad, x, y, z &  Simplify;

P :  — Grad, x, y, z &; Lx : ux.L &; Ly : uy.L &;

Lz : uz.L &; Px : ux.P &; Py : uy.P &;

Pz : uz.P &; PSQ : PxPx  PyPy  PzPz &;

LSQ : LxLx  LyLy  LzLz &;

Mx :
1

m
PyLz  PzLy   —

m
Px  Z1 e12

R
x  &;

My :
1

m
PzLx  PxLz   —

m
Py  Z1 e12

R
y  &;

Mz :
1

m
PxLy  PyLx   —

m
Pz  Z1 e12

R
z  &;

M1  ux Mx  uy My  uz Mz &;
Proof
Mx Lx + My Ly + Mz Lz = 0

MxLxx, y, z  MyLyx, y, z  MzLzx, y, z 
FullSimplify

0

Proof
Lx Mx + Ly My + Lz Mz = 0

LxMxx, y, z  LyMyx, y, z  LzMzx, y, z 
FullSimplify

0

Proof 

[Mi ,L
2]∫0
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MxLSQx, y, z  LSQMxx, y, z  Simplify


1
m

2 —2 
e12 m x Z1 x, y, z

x2  y2  z2


e12 m x z Z1 0,0,1x, y, z
x2  y2  z2



x —2 0,0,2x, y, z  e12 m x y Z1 0,1,0x, y, z
x2  y2  z2



x —2 0,2,0x, y, z  e12 m y2 Z1 1,0,0x, y, z
x2  y2  z2



e12 m z2 Z1 1,0,0x, y, z
x2  y2  z2

 —2 1,0,0x, y, z 

3 z —2 1,0,1x, y, z  x2 —2 1,0,2x, y, z 
y2 —2 1,0,2x, y, z  3 y —2 1,1,0x, y, z 
2 y z —2 1,1,1x, y, z  x2 —2 1,2,0x, y, z 
z2 —2 1,2,0x, y, z  2 x —2 2,0,0x, y, z 
2 x z —2 2,0,1x, y, z  2 x y —2 2,1,0x, y, z 

y2 —2 3,0,0x, y, z  z2 —2 3,0,0x, y, z

Proof

x  P μ Lx + y P μ Ly   +z  P μ Lz  = L2
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x PyLzx, y, z  PzLyx, y, z 
y PzLxx, y, z  PxLzx, y, z 
z PxLyx, y, z  PyLxx, y, z 
LxLxx, y, z  LyLyx, y, z 
LzLzx, y, z  FullSimplify

0

Proof

 P μ Lx x + P μ Ly  y  +  P μ Lz z = L2+ 2 i Ñ (Px x+Py y +Pz z)

PyLzx x, y, z  PzLyx x, y, z 
PzLxy x, y, z  PxLzy x, y, z 
PxLyz x, y, z  PyLxz x, y, z 
LxLxx, y, z  LyLyx, y, z  LzLzx, y, z 
2  — Pxx x, y, z  2  — Pyy x, y, z 
2  — Pzz x, y, z  FullSimplify

0

Proof
 Px P μ Lx + Py P μ Ly    +  Pz P μ Lz  =0

 P. (P x L)=0
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PxPyLzx, y, z  PxPzLyx, y, z 
PyPzLxx, y, z  PyPxLzx, y, z 
PzPxLyx, y, z  PzPyLxx, y, z 

FullSimplify

0

Proof

 P μ Lx  Px +   P μ Ly  Py  +  P μ Lz  Pz = 2 i Ñ (Px2 + Py2 + Pz2)

  (P x L). P. = 2 i Ñ P2

 

PyLzPxx, y, z  PzLyPxx, y, z 
PzLxPyx, y, z  PxLzPyx, y, z 
PxLyPzx, y, z  PyLxPzx, y, z 
2  — PxPxx, y, z  PyPyx, y, z 

PzPzx, y, z  FullSimplify

0
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Proof

P  L2  P2 L2

K1  PyLzPy Lzx, y, z  PyLzPz Lyx, y, z 
Pz LyPy Lzx, y, z  PzLyPzLyx, y, z 
PzLxPzLxx, y, z  PzLxPx Lzx, y, z 
Px LzPzLxx, y, z  PxLzPx Lzx, y, z 
PxLyPxLyx, y, z  PxLyPy Lxx, y, z 
Py LxPxLyx, y, z  PyLxPy Lxx, y, z 

FullSimplify;

K2  PSQLSQx, y, z  Simplify;

K1  K2  Simplify

0

Definition of Hamiltonian

H = 1

2 m
 (Px2 + Py2 + Pz2) - Z2 e2

r
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H1 :
1

2 m
PSQ  Z1 e12

R
 &;

Proof  [H, Mx]=0, [H, My]=0,  [H, My]=0,

H1Mxx, y, z  MxH1x, y, z  FullSimplify

0

H1Myx, y, z  MyH1x, y, z  FullSimplify

0

Proof  Mx2 +  My2 + Mz2 - Z2 e4 = 2

m
 H (L2 + Ñ2)

MSQ1  MxMxx, y, z  MyMyx, y, z 

MzMzx, y, z  Z12 e14 x, y, z  Simplify;

eq1 
2

m
 H1LSQx, y, z  —2 H1x, y, z;

MSQ1  eq1  FullSimplify

0
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Proof
[Lx, Ly] = i Ñ Lz, 

[Mx, Ly] = i Ñ Mz,
[My, Lz] = i Ñ Mx,

LxLyx, y, z  LyLxx, y, z   — Lzx, y, z 
Simplify

0

MxLyx, y, z  LyMxx, y, z   — Mzx, y, z 
Simplify

0

MyLzx, y, z  LzMyx, y, z   — Mxx, y, z 
Simplify

0

Proof

[Mx, My] =- i 2Ñ
m

H Lz,

 [My, Mz] =- i 2Ñ
m

H Lx, 

MxMyx, y, z  MyMxx, y, z 


2 —

m
H1Lzx, y, z  Simplify

0

MyMzx, y, z  MzMyx, y, z 


2 —

m
H1Lxx, y, z  Simplify

0
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APPENDIX  Kepler’s law 
 
For convenience, we use the following diagram for the ellipse orbit. 
 

 
 
 
A.1 The angular momentum 

In general case 
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P x,y
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Since the gravitational force is directed toward the origin (so called central field),  
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The energy is dependent only on r (actually one dimensional problem). 
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The effective potential energy Ueff has a local minimum  
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Since E = constant, we have an equation of motion 
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______________________________________________________________________ 
Plot of the effective potential as a function of r 
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Fig. The effective potential vs r with l = 0.1 – 0.5 
 
A.4 Perihelion and aphelion 

When 0r  for the perihelion (nearest from the Sun) and the aphelion (farthest from Sun) r1 
and r2 are the roots of Eq.(1). 
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A.5 Kepler’s Third Law 
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A.6 Derivation of the Kepler's First Law 
We start with  
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The solution of this equation is given by 
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