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Runge-Lentz (or Laplace-Runge-Lentz) vector

In classical mechanics, the Runge—Lenz vector (or simply the RL vector) is a vector used
chiefly to describe the shape and orientation of the orbit of one astronomical body around
another, such as a planet revolving around a star. For two bodies interacting by Newtonian
gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is
calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the
RL vector is conserved in all problems in which two bodies interact by a central force that varies
as the inverse square of the distance between them; such problems are called Kepler problems.

The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting
by Coulomb's law of electrostatics, another inverse square central force. The RL vector was
essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom,
before the development of the Schrédinger equation. However, this approach is rarely used
today.
http://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector

Wolfgang Pauli in 1926 used the matrix mechanics of Heisenberg to give the first derivation
of the energy levels of hydrogen and their degeneracies. Pauli's derivation is based on the Runge-
Lenz vector multiplied by the particle mass. [W. Pauli, Z. Physik 36, 336 (1926).]

1. Kepler's law of planetary motion
The Kepler's laws (I, 11, and III) describe the motion of planets around the Sun,
D The orbit of a planet is an ellipse with the Sun at one of the two foci.
(I) A line segment joining a planet and the Sun sweeps out equal areas during equal interval
of time.

(II)  The square of the orbital period of a planet is proportional to the cube of the semi-major
axis of its orbit.

The Sun is at the one focus of the ellipse (the planet orbit). The ellipse orbit is described by

where a is the semi-major axis, b is the semi-minor axis, and € is the eccentricity (0<e<l1).



(i) The eccentricity e
From the definition of ellipsoid, we have

FK,+FK,=2a

0

When FK, =F,K;, we have FK, = F,K; =a. We apply the Pythagorean theorem to the
triangle FOK,,
2

a’=b*+a’’,

Then we have the expression for the eccentricity

’ b2
e= l—g

Note that



b=ayl—-e*.

(ii) The perihelion and aphelion
The focus is at (ae,0) and (-ae,0). For simplicity, we assume that Sun is located at focus (-
ae,0).

The perihelion (1) the point nearest the Sun
h=al-e),

The aphelion (1) the point farthest the Sun
r,=a(l+e)

(iii)  Area of the ellipsoid:
The area of the ellipse orbit is given by

A=rmab=rma’J1-¢e*.

(iv)  The mathematical formula the ellipsoid:
Here we show that mathematically, an ellipse can be represented by the formula

_ Po
l+ecosy’

r
where Py is the semi-latus rectum, and e is the eccentricity of the ellipse, r is the distance from
the Sun to the planet, and y is the angle to the planet's current position K, from its closest point P
(perihelion), as seen from the Sun at F;. We use po instead of p since p is typically a linear
momentum in physics. We also use y instead of &, for convenience.



h' ,O)
F, (-ae,0) 0 F, (ae,0)

In the triangle F,F,Kj (see the above figure), we have
r+r=2a, (1)

from the definition of the ellipse. Using the cosine law, we have
r’ =r” +4a’e’ —4aercos(w — y) =’ + 4a’e’ + 4aercos y . (2)

where y is the angle between the vector ﬁ” and m . From Egs.(1) and (2), we get
(2a—r)* =r*>+4a’e’ +4aercos y

or

4a> —4ar +r’> =r’ +4a’e* + 4aercos y

or

r(l+ecos y)=a(l—¢*)=p,



or

l+ecosy

r
with

p, =a(l-e?),

where (r, y) are heliocentric polar coordinates for the planet, py is the semi latus rectum, and e is
the eccentricity, which is less than one.

For y =0 the planet is at the perihelion at minimum distance:

Py — a(l_ez) :a(l—E).

= (perihelion)
I+e l+e

1

For y = % ,
r=np,. (semi latus rectum)

For y =, the planet is at the aphelion at maximum distance:

= 1p° —a(l+e). (aphelion)
—€

Note that

The semi-minor axis b is the geometric mean between ry and I,



b= nr, =
1-¢?

((Note)) The meaning of semi latus rectum

The chord through a focus parallel to the conic section directrix of a conic section is called
the latus rectum, and half this length is called the semilatus rectum (Coxeter 1969). "Semilatus
rectum" is a compound of the Latin semi-, meaning half, latus, meaning 'side,' and rectum,
meaning 'straight.’

2. Kepler problem in classical mechanics (hydrogen atom)
The classical Hamiltonian for the Kepler problem is

1 K
H=—p' ——,
2mp r

where m is a reduced mass and x is a positive quantity. For the case of the hydrogen-like atom,

we can identify x = Ze*. This system is invariant under the rotation. So the angular momentum
is conserved. The classical orbit of the particle is elliptical. The Runge-Lentz vector is defined as

K 1
M=—-——r+—pxL,
r mp

or
A=mM =-mxe, + px L,

where L (= rx p) is the angular momentum and p is the linear momentum.
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Fig. A (=mM) (denoted by the arrows with purple) on the ellipse orbits. The vector 4 points in

the direction of the perihelion. The magnitude is constant. The angular momentum L is
always perpendicular to the orbit. The perihelion, point of the orbit the nearest to the
focal point F). The aphelion, the point of orbit from the focal point.

It is obvious from the definition that

L-M=0, (M lies in the plane of motion).

p.M:__p.r’
r

and



r-M:r-(—£r+ipr)
r m

1
=—xt+—r-(pxL
o (pxL)
1
=« +—I’
m
1
=& +—I
m
or
r-A=r-mM =—-mxr +1%,
since

r-(pxL)=L-(rxp)=1, A=mM .
Since the angular momentum (along the z axis) is conserved, we can calculate
L=I=rp,

where P, is the linear momentum at the perihelion. M is a conserved quantity since

d d1 1d
—M=-k——r+——(pxL
dt Kdtr’”rmdt(p>< )
:—£[£—"(er—2.p)]+i[F><L+px(er)]
mr r m
k.p_rle-p, «
__E[?_ rz ]_mrz[erx(rxp)+px(rxer)]
S KR MO K o pye—rpt(pre)r—(p-rle,]
mr r mr
k.p re-p), k. p (per
m[r r? ] m[ r+ r? ]
=0
where
a1, _Lip_re py
dtr mr r



and
d
T =EL: rxF. (torque).

((Mathematica)) Proof of dM/dt = 0.

Clear["Global ™"]; r[t ] := {X[t], Y[t], Z[t]};

R[t ] :=Vr[t].r[t] ;
p[t_] :=mD[r[t], t]; L[t ] :=Cross[r[t], p[t]];
FIE] = —— r[t];
R[t]®
eql =
—KD[r[t] t] = (Cross[F[t], L[t]]) +
R[t] m ’

1
— (Cross[p[t], Cross[r[t], F[t]1]1) 7/
m

FullSimplify
{0, 0, 0}

We note that
pxL=px(rxp)=p’r—(p-r)p

Then the vector M (A =mM ) always points in the direction of the perihelion from the focal
point. At the perihelion,

pr=0

We have

10



A=mM

=-Mke, + p’re,
|2
=(—-mx+—)e,
rl
2

- (cmi+D)e)

where e, =—e, and

|2
A =—Mx+—.
h

In general case, we have the orbital equation as
r-A=Arcosy=-mxr+1°,
where y is the angle between r and the perihelion direction. From this equation we get
r(Aycos y + mg)=1?,
or

r( A I’

—-cosy+1)=—
mx mx

|2

r= mx — Po
l+icos;( 1+ecos y
mx

Then we have py is given by

2 :
Pp=—-. (semi latus rectum)
mx

and
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A=A =mxe.

2

Since A, =—Mmx +—, we have
f
1

|2
—=mx(l+e)
h

3. Derivation of the Runge-Lentz vector
The equation of motion of a particle of mass m in the attractive potential is

We take the cross product of both sides with the angular momentum L.

Lxd—p:F:—éLxr.
dt r

Since L is constant in time, the left-hand side can be written as

dp d
Lx—=—(L .
“at gt E P

From the explicit form

L=rx —mrxd—r
)4 at’

we get

mx dr dr
27[(" 'E)" -r’—]

dt
i)
=—Mx—| —
dt\r

Then we have
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d d(r

—(L mx—| —1|{=0

dt( P+ Kdt(rj ’
or

d r

—(-Lxp-mx—)=0.

dt( *P Kr)

The Runge-Lentz vector is obtained as
A=mM =-mre, - Lx p=-—Mxe, + px L.
which is a constant of motion.

4. Energy of the system
We note that

M2=ﬂL2+x2.
m

The proof is given by using the Mathematica.

((Mathematica))

Clear["Global "]1; r={xX, Yy, z}; p = {pPX, Py, PZ};

L =Cross[r, pl; R=vr.r;

1
ML= —r+ —Cross[p, L];
R m

HL = — =,
- 2m p'p R’
2 , _
eql=M1.M1- —H1 (L.L) // FullSimplify
m
12

The energy can be derived as follows.
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A* =m*M? =2HmI? + m’x* = m*k’e’,
or

mx?’

H=E=-
217

(-e)=—— (<0),

with A=mxe, I’ =1?,and H =E.

4. Construction of the diagram by Mathematica

Fig. Simplified version of the diagram. y is the angle between 4 and r. The direction of A is

from the focal point to the perihelion (P).

We consider a point (Ky) of the orbit of the ellipsoid which is expressed by

14



X X
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a? b

2 2
2

where the essentricity ¢1is given by

’ b2
e= 1—¥

where a>b. The co-ordinate of the focal point F is (—ae,0). We also consider a point (H;) on the

circle which is expressed by

X’ +y’=a’.

We assume that the angle ZH,OH, is 8. The co-ordinates of the points K, and H,
OH, = (acos6,asin6), OK, = (acosd,bsin®).

The slope of the tangential line (K¢K4) at the point K, on the ellipsoid is given by

dy

_dg _ bcosé® b _
slope %— pyry acot6?— tang,

déo

where the angle /K ,K K¢ is ¢;

¢= arctan(gcot 0).

—_—

The unit vector along the vector K K, ,

KK, (acosf +ae,bsin O)

u2 = —»K K :\/ 5 N S ’
oK, (acos@+ae)” + (bsinb)

—_

The unit vector along the vector K K, ,
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u, = = (sin¢@,cos @) .

We note that

m:pr:%u3 :m+m:mmz—Aex,
where

A=emx, e, =(10).
Then we have

S, =Mx(u, u,—e, -u,).

The co-ordinate of the point is given by

OK, =0K, + K K, = (acosd,bsinf) + s,u,

((Mathematica))
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k2
b2

Clear["Global #"];a=3; b = 2.4; fl= — + 2- = 1;
a b
2 2 2 b2
f2 =x"+y " ==a";01={0, 0}; el = 1—(;) ;s1=2.5;
s3=2.5;Q1l={-ael, 0}; Q2= {ael, 0}; A0 = el s3;

gl = ContourPlot [Evaluate[fl], {x, -5, 5}, {v, -5, 5},
Frame » None] ;

g2 = Graphics [ {Purple, PointSize[0.01],
Point[{Ql, Ol}], Line[{{-a, 0}, {a, 0}}1}1:

g3 = ContourPlot [Evaluate[f2], {x, -5, 5}, {v, -5, 5},
ContourStyle » {Black, Thin}];

Hl[&1 ] :=

Mcdule[{e, 61, a1, Bl, C1, D1, G1, ul, u2, u3,

b
ex, s2}, 6=2¢61; cbl:ArcTan[; CDt[E]];

ex={1, 0};

ul = {- Cos[¢l] , Sin[¢l] }:
u2 = {Sin[#1l] , Cos[sl] }:
(aCos[&] +ael)

u3={

F

‘\/(aCcs[E] +ael)?+ (bsin[e])?
b Sin[&]

']
r

\/ (aCos[6] +ael)? + (bSin[6])?

Cl={aCos[©], bSin[&]}:
s2 = -AQ (u2.ex) +s3 (u2.u3);

Al =slul +C1;
Bl =s2u2 +C1l;
D1 =s3u3 +C1l;
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Graphics[{Black, Thin, Arrowheads[0.030],
Arrow[{Ql, Cl1l}], Red, Thick, Arrow[{Cl, Al}],
Blue, Arrow[{Cl, B1}], Green, Arrow[{Cl, D1}],

Purple, Arrow[{D1, 51}]}]]; 62 =60 °;

hl = Sshow[gl, g2, g3, H1[82]];
h2 =
Graphics|
{Text[Style["P", Italic, 15, Red, Bold],

{0.8, 2.6}],
Text[Style["pxL", Italic, Blue, 15, Bold],
{1.6, 3.1}], Text[Style["mx", Italic, Green, 15],
{2.4, 2.45}], Text[Style["A", Italic, Purple, 15],
{2.55, 3.25}], Text[Style["F", Italic, 15],
{-ael, -0.25}],
Text[Style["e", Italic, 12], {0.5, 0.4}],
Text[Style["¢", Italie, 12], {0.3, 2.3}],
Text[Style["w/2", Italiec, 10], {1.2, 2.4}],
Text[Style["O", Italic, 12], {0, -0.2}],
Text[Style["H,", Italic, 12], {aCeos[62], -0.3}],
Text[Style["H,", Italic, 12],
{aCos[82], asSin[62] +0.2}],
Text[Style["K;", Italic, 12],
{aCos[©62], bSsSin[e2] -0.3}],
Text[Style["K;", Italic, 12],
{aCos[€2] +2.2, bS8in[62]}],
Text[Style["K,", Italic, 12],
{aCos[82] +2.3, bSin[62] +1.3}],
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Text[Style["K;", Italic, 12],
{aCos[©2] + 0.4, bSin[62] +1.4}],
Text[Style["K,", Italic, 12],
{aCos[B2] -2.4, bSin[62] +1.2}],
Text[Style["Ks", Italic, 12],
{aCos[©2] -2.3, bSin[62] +0}]11}]:
h3 =
Graphics|
{Line[{{aCos[©2], 0}, {aCos[82], aSin[62]}}].,
Line[{0l1l, {aCos[©2], aSin[©2]}}],
Line[{{aCos[62], bSin[62]} + {-2, 0},
{aCos[62], bSin[62]} + {2, 0}}]1}];xr2=1;

r3

b
0.3; ¢2 = McTan[E Cct[EZ]];

h4

ParametricPlot]|
{r2Cos[®] + aCos[©2], r28in[&e] + bSin[62]},
{6, m-¢2, m}, PlotStyle » {Purple, Thick}]:
h5 = ParametricPlot[{0.5Cos[&e] , 0.581in[&]},
{e, 0, 82}, PlotStyle » {Purple, Thick}];
hé = ParametricPlot|
{r3Cos[®] + aCos[©2], r3Sin[®e] + bSin[62]},
{6, wm/2-¢2, w-¢2}, PlotStyle » {Purple, Thick}]:
Hl = {aCos[©62], 0}; H2 = {aCos[862], aSin[e2]};
h7 = Graphics [ {Purple, PointSize[0.015],
Point[{H1, H2}]}]:
Show[hl, h2, h3, h4, h5, hé, h7, PlotRange -» All]
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5 Invariance of H under the rotation
Suppose that the Hamiltonian (with the spherical symmetry) is given by

~ 1 Ze?
H=—p*-
2mp

A

r

in our system, we consider the infinitesimal rotation
') =R@)w).

If H is invariant under the rotation,

or
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(W|R"(@HR@)|y) = (w|Rly).

or
R*(&)HR(¢)=H,
or
HR(&) = R(e)H,
or

[R(2),H]=0.
Since ﬁ(a) =1- %(in)g , we obtain the following commutation relations.
[H,Ln]=0.
Since n is any unit vector ,
[H.L1=0, [H.L,1=0, [H.L1=0.

and

Hereafter, We use the notation such that
<r|I:| |W> =Hy(r).
(rlLly) = Ly (r)

where H and L are differential operators.

5. Runge-Lenz vector in quantum mechanics
Here we introduce a Runge-Lenz vector which in quantum mechanics is defined by
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2
M=—2 i Lo —Lxp).
r 2m

This operator is Hermitian since (px L)" = —(L x p) Note that r [=(X, Y, )] is the position vector,

L is the orbital angular momentum,
L=rxp.

M commutes with the Hamiltonian H (the proof is given using Mathematica)
[H.M;]=0,

where H is the Coulomb Hamiltonian

Ho L , 28
2m r

We also have
[H,M ]=[H,M,IM, + M,[H,M,]=0

The commutation relations between the angular momentum L and linear momentum p are given
by

[Li, pj1=ihey .
which leads to the expression

Lxp+pxL=2inp.
Then we have

Ze? 1 iz

M =- r+—(pxL)y——p.
e (pxL)=—p

We note that
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L-M=M-L=0.
(the proof is given using the Matheamtica). We also note that

r-(pxL)=I, (pxLy-r=0L +2ihp-r,

(px L) = p°L*.

We find that
M> =Zze4+%H(L2 +1%).

The %* term arises from the non-commutativity of quantum operators. These equations can be
easily proved using the Mathematica (see below in detail).
We know that the angular momentum operators satisfy the commutation relations,

[L,L;]=lingL,.
We also get

[M,L;]=ihgy M,
and

2ih
[M;,M;]= _ngijLk .

The L;’s generate rotations and define a closed algebra. But Li.s and M;’s do not form a closed
algebra since the last relation involves the Hamiltonian. However, we consider the case of
specific bound states. In this case, the vector space is truncated only those that are eigenstates of
H, with eigenvalue E<O0. In this case we replace H with —E, and the algebra is closed.

We define a new vector N such that

m
N - (—E)I/ZM .

where H — —E with E <0. In this case we have the closed algebra,
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[L,L;]=lingL,,

[N;,L;]=ingyN,, or [Li,N;]=iney N,
and

[N, N;]=lngL,,

M., L’]#0.
In the present notation, we have

[L,H]=0, [L*H]=L[L,H]+[L,HIL=0
and

[N,H]=0, [N#,H]=N,[N,,H]+[N,HIN=0

8. Dynamic Symmetry operation
We consider the symmetry operation generated by the operators L and NV, which corresponds
to the rotation in four spatial dimensions. We introduce (X;,X,,X;,X,) and (p,, p,, P;, pP,). Note

that X4 and p4 are fictitious and cannot be identified with dynamical variables.
L =L =L,=Xp,—X%p,,
L, = Ly =L, =Xp, —XP;s,
L=L =L,=Xp,—X%p,,
N, =L, =XpP,— %P,
N,=L,,=Xp,—X,P,,
N, =L, =Xp, = XP;.

This algebra is isomorphic (equivalent) to that of rotations in four dimensions [or the SO(4)
group].
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9. New operators |, and K,

We define two sets of new generators as

=GN, K =N,

2
and
L =1+K,.
Then we get
[, 1 ]=liheyl,, IxI=inl
[Ki, K;]=lihg; K, K x K =ihK
[l;,K;]=0.
since

1
[1,1,] :Z[Ll +N,,L,+N,]

:i{“—pL2]+[L1=N2]+[N17L2]+[N1,N2]}

= i(ihg +iAN, + AN, +iAL,)

1
=|h5(L3+N3)
=inl,
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1
[KpKz] :Z[Ll - Npl—z_Nz]

:%{[Lpl—z]_“—l’Nz]_[N17L2]+[N1,N2]}

:%(ihL3 —iAN, —iaN, +ixL,)
1

= mE('—s —-N;)

= inK,
1

[II’KZ] =Z[|—1 + Nl,Lz_Nz]

=%{[LI,LZJ—[LI,Nz]+[N1,L2]—[NI,N2]}

_ %(ihg AN, + AN, — L)

=0

We have two Casimir operators I° and K° or any combination of them; for example
2 SR 2
I'=K =—(L"+N")
4
since

12:%(L2+N2+L-N+N-L):%(L2+N2)

where
L-N=(Myep m-o, N-L=(-yepy.p—o
2E 2E
with
m i
N=(Myey
( 2E)

We also have the commutation relations
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[Izalk]zoa [KZ,KK]ZO
[K2’|k]:(), [IzaKk]:O

10. Eigenvalue of Hamiltonian
We also have the following commutation relations

[l;,,H]=[K;,H]=0.
and
(17, H]=[K,H]=0

since
1 1
[Ii’H]:E[Li—i_Ni’H]:O’ [KiaH]ZE[Li_NiaH]:O

So that these operators are also conserved. In this basis the algebra becomes equivalent to that of
two decoupled algebras of angular momenta. The eigenvalues of the operators I and K> will
have the eigenvalues,

P, Rhii+1), K n’k(k+1).
where i and K are either integer or half integers. We note that
C=I'+K’ =%(L2 +N?),
C'=I"-K’=LN=0.
The second relation implies that
i(i+1)=k(k+1),

or
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=Kk
Correspondingly, the allowed values of C are

C:  2mk(k+1),

m=-2EN =zze“—3E(L2+h2),
m m
or
2.4
Nz=—m§Ee (PR,
or
2.4 2
Lz any=—M28 0 opkk+,
2 4E 2
or
mZ2e* i’ h?
- =—[4k(k +1) +1]= —(2k +1)*,
AE 2[ (k+1)+1] 2( )
mZ*e* mzZ %e*
E=- =— . (energy level of hydrogen atom).
T A yerog )
where
n=2k +1.

Since L=1+ K with i=Kk,
I=i+ki+k-1,..... , |- K],
or

=2k, 2k-1,........ , 0.
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or

(1

)

3)

4

)

(6)

(7)

®)

[M,,L*]#0

r(pxL)=1L",

p(pxL)=0

(pxL)-p=2inp’

[H,M;]=0

(pxL)-r=L +2ih(p-r)

M -7%* =£H(L2+h2)
m

[L,.L,]=inAL,,

[M,.L,]=iaM,,

29

[M,.L,]=i7M,



©)

[MPMJ=4EEHQ
m

[MWMJ:4zﬁHg
m

((Mathematica))
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Clear["Global "];

ux={1, 0, 0};uy={0,1,0};uz={0,0, 1}; r={X,Yy, Z};
R=Vx2+y?+22;

L:=-1 aACross[r, Grad[#, {X, VY, z}]1] &// Simplify;

P:=-1 & Grad[#, {X, VY, 2}] &; LX :=ux.L[#] &; Ly :=uy.L[#] &;
Lz :=uz.L[#] &; PX 2= ux.P[#] &; Py 2= uy.P[#] &;

Pz z=uz.P[#] &; PSQ = (Px[Px[#]] + PY[Py[#]] + Pz[Pz[#]]) &;
LSQ = (LX[Lx[#]] +Ly[Ly[#]] + Lz[Lz[#]]) &;

1 in Z1lel?

Mx = | — (Py[Lz[#]] - Pz[Ly[#]]) - — Px[#] - X#| &
m m R
1 ihn Z1el?

My = | — (Pz[Lx[#]] - Px[Lz[#]]) - — Py[#] - y #| &;
m m R
1 ih Z1el?

Mz = [ — (PX[Ly[#]] - Py[Lx[#]]) - — Pz[#] - 2 z 7| &;
m m

M1 = (ux Mx[#] +uy My[#] +uz Mz[#]) &;
Proof
MxLx+ MyLy+MzLz=0

MX[LX[¥[X, Yy, z1]] + MY[LY[¥[X, Yy, z]]1] + Mz[Lz[¢[X, y, z]1] //
FullSimplify

0]

Proof
LxMx+ Ly My + LzMz=0

LX[MX[¥[X, Yy, z]11] + LY [MYy[¥[X, Yy, z]1]1] + Lz[Mz[¢[X, ¥y, z]]] //
Ful 1Simplify

0

Proof

[M;,L2]%0
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MX[LSQ¥[X, V, z]1] - LSQIMX[¥[x, y, z]1] // Simplify

1,2 _e12mx21zj/[x, Yy, z] el’mxzz1y®%Y x,y, z] .
m \/x2+y2+22 \/x2+y2+z2
2 0,1,0)
xﬁwooz[x,y,z]—el mxyZly [x,y,z]+
\/x2+y2+z2
2 2 (1,0,0)
x 72y O20 [y 7] 4 1°my”Z1y (X, ¥, Z] |

\/x2+y2+z2

e1?mz2z1 4100 1x, vy, z
U (X, Y ]—hwloo[x,y,z]—

\/x2+y2+z2
3zn?y O (x,y, z] + X2 P2y 0? (x,y, 2] +
yzﬁzwl“ (X, y,z] -3yn*ytt0x,y, z] -
2yzﬁ y Y x,y, 2] e xP Rty 20 X, y, 2] 4
z° n w“o (X, Yy, z] -2xn?y@00 (x,y, z] -
2xzn? %% x,y, z] —2xyr?y®tY x,y, z] +

(3,0,0) (3,0,0)

y* 0y (X, Y, z] +Z° A%y (X, Y, Z]

Proof
x (P xLyx+y (PxLy +z (PxL), =L?
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X (Py[Lz[¥[X, Yy, z]]] -Pz[Ly[¥[X, ¥, Z]]1]) +
y (PZ[LX[¥[X, Y, z]]1] - PX[Lz[¥[X, Yy, z]]1]) +
z (PX[LY[¥[X, ¥y, z]]] - PY[LX[¥[X, ¥, Z]1]) -
LX[LX[¥[X, Yy, z]1]1] - LY[LY[¥[X, ¥, z]]] -
Lz[Lz[¢¥[x, Y, z]]1] // FullSimplify

Proof

(P xLyx+ (PxLyy+ (PxL),z=L%+2in(PxxtPyy+Pz2)

(Py[Lz[x¥[X, Yy, z]]1] -PZ[Ly[X¥[X, y, Z]]]) +

(PZ[LX[y ¥ [x
(PX[Ly[z ¥ [x

LX[LX[¥[X, Y,

21 hAPX[XY[X
21ihAPz[zy[X

Proof
Px(P x L)y + Py (P x L)y +
P.(PxL)=0

> Ys 2111 -PX[Lz[y ¥[X, Yy, Z]]1]) +

» ¥, 2111 -PY[LX[z ¥ [X, ¥, z]1]) -

z]11] -Ly[LY[¥[X, ¥, z]1]1] -Lz[Lz[¥[X, ¥, z]]] -
» Y, 211 -218PYy[yy¥I[x,y, z]] -

, V¥, 211 // FullSimplify

Pz (P x L), =0
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Px[Py[Lz[¥[X, Yy, z]1]1] - PX[Pz[Ly[¥[X, Yy, z]]]] +
Py[Pz[LX[¥[X, Yy, z]]1] - Py[PX[Lz[¥[X, Yy, z]]]] +
PZ[PX[Ly[¥[X, Y, z]1]1] - PZ[PY[LX[¥[X, Yy, Z]11] //

FullSimplify

0

Proof
(P x L)y Px+ (PxLyPy+ (PxL), Pz=2i#% (PX* + Py? + PZ)

(PxL).P.=2inP?

Py[Lz[PX[¥[X, Y, z]1]1]] - Pz[LY[PX[¥[X, ¥, z]]1]] +
Pz[LX[PY[¥[X, Yy, z]1]1]] - PX[LZ[PY[¥[X, ¥, z]]1]] +
PxX[LY[Pz[¥[X, Yy, z]1]1]] - Py[LX[Pz[¥[X, ¥y, z]]]] -
2ih (PX[PX[¥[X, Yy, z]]1] + PY[PY[¥[X, Yy, z]]] +

Pz[Pz[¥[X, VY, z]1]]1) // FullSimplify
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Proof
(P x LY2 =P?L?

K1 =Py[Lz[Py [LZ[¢[X, Y, Z]]1]1]1] -Py[Lz[Pz [Ly[¢[X
Pz[ Ly[PY[ Lz[¥[X, Y, z]]111]1 + PZ[Ly[Pz[Ly[¥[X

PZ[LX[PZ[LX[¥[X, Yy, z]1]1]] - PZ[LX[Px [Lz[¥[X,

PX[ Lz[Pz[LX[¢¥[X, ¥V, 2z]1]1]11] + PX[LZ[PX [Lz[¢[X

PX[Ly [PX[Ly[¥[X, ¥y, z]11]] - PX[Ly [Py [LX[¥[X,

Py[ LX[PX[LY[¥[X, Y, z]1111] + Py[LX[Py [LX[¥[X
FullSimplify;

K2 = PSQ[LSQ[¥[X, ¥V, z]11] // Simplify;
K1-K2//Simplify
0

Definition of Hamiltonian

H= - (P2 + Py? +P2) - 22€2
2m r
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» Y. Z]1111 -
- Y, Z]1111] +
Y, z]1111 -
» Y. Z]1111] +
Y, z]11111 -
- Y, 21111177



7] &

T PSQ[#] Z1el”
T l2m R

Proof [H, Mx]=0, [H, My]=0, [H, My]=0,

HL[MX[¢¥[X, VYV, 2]1]] - MX[HL1[¥[X, ¥V, z]]1] // FullSimplify
0

HL[MY [¥[X, Yy, z]]] - My[H1[¥[X, y, z]]] // FullSimplify
0]

Proof Mx* + My? + Mz* - 22 &* = 2 H (L + 1)
MSQL = MX[MX[¥[X, ¥, 111 + My [My [¥[X, y, z]]] +
Mz[Mz[¥[X, YV, z]1] - Z1%2el® y[x, Vv, z] // Simplify;

2
eql = — (HLILSQ¥ [X, ¥, 2111 + A? HI[Y [X, ¥, 2]1);

MSQ1 - eql // FullSimplify
0
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Proof

[Lx, Ly] =i %Lz
[Mx, Ly] =i # Mz,
[My, LZ] =i 7 MX,

LX[Ly[¥[X, Yy, z]]] - LY[LX[¥[X, Yy, z]]1] -dalz[y[X, y, z]] //
Simplify
0

MX[LY[¥[X, Yy, zZ]]1] - LY[MX[¥[X, Yy, z]]1] -aaMz[y[X, y, z]] //
Simplify
0

My[Lz[¥[X, Y, z]]] -Lz[My[¥[X, Y, z]]1] -2 A MX[¥[X, Yy, z]] //
Simplify
0

Proof

[Mx, My] =- i %" Hlz,
My, Mz] =- i %ﬁ H Lx,

MX[My [¥[X, Yy, z]]1] - My [MX[¢[X, y, z]]1] +
2
i cn Hi[Lz[¥[X, Y, z]11] // Simplify
m
0

My [Mz[¢[X, Yy, Z]]1] - Mz[My[¥[X, ¥y, z]]] +
2
i cn HL[LX[¥[x, Y, z]]1] // Simplify
m
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APPENDIX Kepler’s law

For convenience, we use the following diagram for the ellipse orbit.

A.1  The angular momentum
In general case

38



Since the gravitational force is directed toward the origin (so called central field),

where

x=mMG.

In other words,

or

The angular momentum is defined as
L=rxp=rx(mv)=m(re,)x(v.e +Vye,)=mrvee, =L.e,,
or
L, =mv,r,

%:%(rxp):%(rxmv)=rXF=0,
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since F is a central force (#//F), L, IS @ constant of motion.
I =mrv,=mr’4.

The velocity v, is given by

A.2  Physical meaning
What is the physical meaning of the constant angular momentum? We now consider the
dA/dt, where dA is the partial area of the ellipse.

dr
rde

-
1,
dA=—r"dé
2
OA_ 1280 _1ag 1 const
dad 2 d 2 2m

since | =mr?@ = const . The period T is given by

. 2mp,. 2m . 2m .,
T —Jdt —TJ‘dA—Tﬂab —Tﬂa

1-¢?

since dt = 2deA.

A.3. The effective potential
The total energy is a sum of the kinetic energy and the potential energy
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or

1 12 12

E=—m(r’+ RS =
2

——=—mF’+ -—, 1
mzrz) r 2 amr® r (1

The energy is dependent only on r (actually one dimensional problem).

I? . .
Uy = s >.  (effective potential)
r2mr

The effective potential energy U, has a local minimum

mx*
TR

min __
Ueff -

at

P p,

mx 2

min

Since E = constant, we have an equation of motion

|2

e K X
— =M +—=f—-—
d r mr

Y S

=M +——-—>)f=0
r- mr

L S S ivalent 1D probl
mf +F_mr3 =0. (equivalent 1D problem)

Plot of the effective potential as a function of r
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Fig.  The effective potential vs r with | =0.1 — 0.5

A.4  Perihelion and aphelion
When 1 =0 for the perihelion (nearest from the Sun) and the aphelion (farthest from Sun) r;
and r, are the roots of Eq.(1).

|2

=0
E 2mE

There are the relations between r; and r».

=" omE ~ 2me]

where the total energy is given by
K
[E|=—. (E<0, bound state)
2a

and
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rr=a(l-e)
r,=a(l+e)

From this we have

r, I 1” 2a [P
2 a22m|E| 2ma’ ¥  mxa

1—-e*=
or

Po is the semi latus rectum,

|2
—a(l-e*)=—
Po ( )

A.5 Kepler’s Third Law

2 3/2
T2 e M | £ 2ma
| | mxa

N
or
T2 4z’m’a’  4z’ma’
mx K
or
3
a_ « _GmM,, GM,
b
T> 47°’m  4z°m 47’
or
4r*
T?= a’
GMsun
or

[T (year)” =[a(AU)T'.

43



A.6  Derivation of the Kepler's First Law
We start with

mir=mrg® - —
"
mr20 =1 = cons tant

Here we have
Idt =mr°dé.
Note that r depends only on 6.

d doo 1 d

dt  dt 060 mr’de

d d | d I d
at'at’ e a0 mr a0’

or
| d 1 1k
mr>d@ mr’dé m’r* mr*’

We defineu as u :l,
r

ddr__d 1 du
r’dd dor de’
Then we have
P d, du P x
m’r’dg  do m*® mr*’
or
du  _mx
do? |2
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The solution of this equation is given by
u =—=¥(l+clcos9),

where A is constant, I, =a(l-e)for #=0,and r, =a(l+e) for ==

1 mx
F:I—z(l-f‘cl),

1

1 mx
r—=|—2(l—C1),

2

or

|2

' Ta(l-e?)
Then we have
r— Po
l+ecos@’

with

2

I
=a(l—-e*)=—.
Py =al—el) =——
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