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Ernest Rutherford, 1st Baron Rutherford of Nelson OM, FRS (30 August 1871 – 19 October 
1937) was a New Zealand-born British chemist and physicist who became known as the father of 
nuclear physics. In early work he discovered the concept of radioactive half life, proved that 
radioactivity involved the transmutation of one chemical element to another, and also 
differentiated and named alpha and beta radiation. This work was done at McGill University in 
Canada. It is the basis for the Nobel Prize in Chemistry he was awarded in 1908 "for his 
investigations into the disintegration of the elements, and the chemistry of radioactive 
substances". 
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CONTENT 
 
1. Introduction 
2. Historical Background (Longair) 
3. Nomenclature and feature of the hyperbola orbit 
4. Property of hyperbola 
5. Rutherford scattering experiment 

6. Illustration of the Rutherford scattering experiment (H.E. White) 

7. Mechanical model for Rutherford scattering by White 
8. Linear momentum for the elastic scattering 
9. Newton’s second law for rotation: torque and angular momentum 
10. Approach from conservation law of angular momentum and energy (Tomonaga) 
11. The Kepler's First Law for the repulsive interaction 



 

2 
 

12. Differential cross section: 
d

d
 (classical case) 

13. Quantum mechanics (scattering due to the Yukawa potential) 
14. Schematic diagram for the Rutherford scattering 
15. The use of Mathematica for drawing the hyperbola 
16. Experimental results 
17. Rough evaluation for the size of nucleus 
18. Summary: From Rutherford scattering to Bohr model of hydrogen atom 
 
 
1. Introduction 

One of us (M.S.) had an opportunity to teach Phys.323 (Modern Physics) in Fall 2011 
and 2012 at the Binghamton University. Rutherford scattering is one of the most 
experiments in the quantum mechanics. During this class, I prepared the lecture note on 
the Rutherford scattering. We read a lot of textbooks on this matter, including the 
textbooks of modern physics and quantum mechanics. We read a book written by Segre 
(x-ray to quark). There is one figure (as shown below) of Rutherford scattering which 
was published by Rutherford (1911). We realize that the definition of the scattering angle 

() is different from that used for the conventional x-ray and neutron scattering, except 

for  in the scattering (the quantum mechanics) and 2 in the x-ray and neutron scattering 
(condensed matter physics). Using this angle, Segre shows that the differential cross 
section is given by 
 

)
2

(sin

1

4 



d

d
, (1) 

 
in spite of the difference of the definition of  the scattering angle. We realize that even for a great 
scientist such as Segre, they had such an careless mistake for such as Rutherford scattering which 
is so well-known and so well-discussed in the modern physics textbooks.  

Here we start with the nomenclature of hyperbola orbit. Using Mathematica, we examine the 
features of the hyperbola, which are closely related to the essential points of the Rutherford 
scattering. There have been so many books on the Rutherford scattering. In particular, We the 
quantum mechanics textbook by Tomonaga (geometrical discussion) and the book by Longair 
(historical background) are very useful for our understanding the physics. We also make use of 
the Mathematica to discuss the geoemetry of hyperbola orbit. 
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Fig.1 Original figure for the Rutherford scattering (Rutherford, 1911). Consider the 

passage of a positive electrified particle close to the center of an atom. Supposing 
that the velocity of the particle is not appreciably changed by its passage through 
the atom, the path of the particle under the influence of a repulsive force varying 
inversely as the square of the distance will be a hyperbola with the center of the 
atom S as the external focus. The particle to enter the atom in the direction PO, 
and that the direction of motion on escaping the atom is OP'. OP and OP' make 
equal angles with the line SA, where A is the apse of the hyperbola. p = SN = 
perpendicular distance from center on direction of initial motion of particle. The 

scattering angle  is related to the angle SON  as  2 . So that   is 

not the scattering angle in the conventional Rutherford scattering. 
 
2. Historical Background (Longair) 

M. Longair, Quantum Concepts in Physics (Cambridge, 2013). 
 

The discovery of the nuclear structure of atoms resulted from a series of experiments carried 
out by Rutherford and his colleagues, Hans Geiger and Ernest Marsden, in the period 1909–1912. 
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Rutherford had been impressed by the fact that α-particles could pass through thin films rather 
easily, suggesting that much of the volume of atoms is empty space, although there was clear 
evidence for small-angle scattering. Rutherford persuaded Marsden, who was still an 
undergraduate, to investigate whether or not α-particles were deflected through large angles on 
being fired at a thin gold foil target. To Rutherford’s astonishment, a few particles were deflected 
by more than 90◦, and a very small number almost returned along the direction of incidence.  

Rutherford realized that it required a very considerable force to send the α-particle back 
along its track. In 1911 he hit upon the idea that, if all the positive charge were concentrated in a 
compact nucleus, the scattering could be attributed to the repulsive electrostatic force between 
the incoming α-particle and the positive nucleus. Rutherford was no theorist, but he used his 
knowledge of central orbits in inverse-square law fields of force to work out the properties of 
what became known as Rutherford scattering (Rutherford, 1911). The orbit of the α-particle is a 

hyperbola, the angle of deflection  being 
 

2
cot

2 0


K

b  , (2) 

 

where b is the impact parameter, 0K  is the kinetic energy of the α-particle, 22 eZq , and Z 

the nuclear charge. The eccentricity of the hyperbola is given by 
 

2
sin

1
e , (3) 

 

where 
02K

a


  and 
2

cos 


aeb  . The hyperbola orbit can be expressed as 
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x
. (4) 

 
where 
 

22 baae  . (5) 

 
It is straightforward to work out the probability that the α-particle is scattered through an 

angle . The differential cross section is given by 
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
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This famous 
2

csc4   law derived by Rutherford, was found to explain precisely the observed 

distribution of scattering angles of the α-particles (Geiger and Marsden, 1913). Rutherford had, 
however, achieved much more. The fact that the scattering law was obeyed so precisely, even for 
large angles of scattering, meant that the inverse-square law of electrostatic repulsion held good 
to very small distances indeed. They found that the nucleus had to have size less than about 10-14 
m, very much less than the sizes of atoms, which are typically about 10-10 m. 
 
3. Nomenclature and feature of the hyperbola orbit 

An alpha particle considered as a massive point charge, incident on the nucleus, is repelled 
according to a Coulomb’s law, and, as Newton had already calculated, it follows a hyperbolic 
orbit, with the nucleus, with the nucleus as one of the focal points of the hyperbola. It seems that 
Rutherford had learned this as a student in New Zealand. Before we discuss the physics of 
Rutherford scattering, we discuss the properties of the hyperbola orbit. 
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Fig.2(a) Nomenclature of the hyperbola. 
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Fig.2(b) Detail in the geometry of hyperbola 
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l semi-latus rectum 
 

The hyperbola consists of the two red curves. The asymptotes of the hyperbola are denoted 
by the lines K1K1’ and L1L1’. They intersect at the center of the hyperbola, O. The two focal 
points are labeled F1 (atom with Zqe) and F2, and the line joining them is the transverse axis. The 
line through the center, perpendicular to the transverse axis is the conjugate axis. The two lines 
parallel to the conjugate axis (thus, perpendicular to the transverse axis) are the two directrices, 
M1M1’and M2M2’. The eccentricity e equals the ratio of the distances from a point P on the 
hyperbola to one focus and its corresponding directrix line. The two vertices (B1 and B2) are 
located on the transverse axis at ±a relative to the center. θ is the angle formed by each 
asymptote with the transverse axis. The length F2N2’ (l) is called the semi-latus rectum, 
 

)1( 2
2

 ea
a

b
l . 

 
4. Property of hyperbola 
 

 
 

Fig.3 (a) Definition of hyperbpora.  arr 221  . 
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from the definition of hyperbola, and 
 

lr 2 . 

 
Then we get 
 

  2222
2

2
1 44)2(2 aallalarr  . 

 

Applying the Pythagorean theorem to the triangle '221 NFF  with the right angle 122 ' FFN , we 

have 
 

2222
1 4 ealr  . 

 
From these two equations, we get 
 

22222 444 ealaall  , 
 
or 
 

)1( 2  eal . 

 
l is called the semi-latus rectum, 
 
(b) Equation of hyperbola with r1 

We apply the cosine law for the triangle 12PFF  such that 
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leading to the result 
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Rutherford scattering is the scattering of -particle (light-particle with charge 2qe>0) by a 

nucleus (heavy particle with charge Zqe). The mass of nucleus is much larger than that of the -
particle. Thus the nucleus remains unmoved before and after collision. There is a repulsive 

Coulomb interaction between the nucleus and the  particle, leading to the hyperbolic orbit of 

the -particle. The potential energy of the interaction (repulsive) is given by 
 

rr

Zq
U e 


22

, (in cgs units) 

 

where 22 eZq . Here we use the charge eq  (>0) instead of e since we use e as the eccentricity 

of hyperbola. The boundary conditions can be specified by the kinetic energy 0K and the angular 

momentum L of the -particles, or by the initial velocity v0 and impact parameter b, 
 

2
00 2

1
mvK  , and bmvL 0 , 

 

where m is the mass of the -particle. 
 

((Note))  particle is He nucleus consisting of two protons and two neutrons (He2+) 
 

6. Illustration of the Rutherford scattering experiment (H.E. White) 

H.E. White, Introduction to Atomic and Nuclear Physics (D. Van Nostrand 

Company, Inc., Princeton, NJ, 1964). 
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Fig.5 Schematic diagram of a particles being scattered by the atomic nuclei in a thin 

metallic film (White, 1962) 

 

A schematic diagram of the scattering experiments is given in Fig.5. High-speed a particles 
from the radioactive element radon, confined to a narrow beam by a hole in a lead block were 

made to strike a very thin gold foil F, while most of the a particles go straight through the foil as 

if there were nothing, some of them collide with atoms of the foil and bounce off at some angle. 

The latter phenomenon is known as Rutherford scattering. The observations and measurements 
made in the experiment consisted of counting the number of particles scattered off at different 

angles. of particles scattered off at different angle . This was done by the scintillation method of 

observation. Each a particle striking the fluorescent screen S produces a tiny flash of light, called 

a scintillation, and is observed as such by the microscope M. With the microscope fixed in one 
position the number of scintillation observed with a period of several minutes was counted; then 

the microscope was turned to another angle, and the number was again counted for an equal 

period of time.  

In the schematic diagram of Fig.6, a particles as shown passing through a foil three atomic 
layers thick. Although the nuclear atom was not known at the time the experiments were 

performed, each atom is drawn in Fig.6 with the positively charged nucleus at the center and 

surrounded by a number of electrons. Since most of the film is free space, the majority of the  

particles go through with little or no deflection as indicated by ray-1. Other ’s like ray-2 
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passing relatively close to an atom nucleus are deflected at an angle of a few degrees. 

Occasionally, however, an almost head-on collision occurs as shown by ray-4 and the incoming 

 particle is turned back toward the source. As an a particle approaches an atom, as represented 

by ray-6, it is repelled by the heavy positively charged nucleus and deflected in such a way as to 

make it follow a curved path.  

 

  

Fig.6 Diagram of the deflection of an  particle by a nucleus: Rutherford scattering 

(White 1962). 
 

 

7. Mechanical model for Rutherford scattering by White 

H.E. White, Introduction to Atomic and Nuclear Physics (D. Van Norstrand, 1964). 
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Fig.7 Mechanical model of an atomic nucleus for demonstrating Rutherford scattering 
(H.E. White, 1964). 

 

Here is an interesting mechanical model for demonstrating Rutherford scattering. Such a 

model is illustrated in Fig.7, where the circular peak at the right represents the nucleus 
of an 

atom and has a form generated by rotating curve of the repulsive potent rrV   vs)(  about its 

vertical axis at r = 0. Marbles, representing  particles, roll down a chute and along a practically 
level plane, where they approach the potential hill. Approaching the hill at various angles, the 
marbles roll up to a certain height and then off to one side or the other, The path they follow, if 
watched from the above, are hyperbolic in shape. Approaching the hill in a head-on collision, the 

ball rolls up to a certain point, stops, then roll back again. Thus the potential energy of  particle 
close to the nucleus is analogous to the potential energy of a marble on the hillside, and the 
electrostatic force of repulsion is analogous to the component of the downward pull of gravity. 
 
8. Linear momentum for the elastic scattering 
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Fig.8 The hyperbolic Rutherford trajectory. The angular momentum is conserved before 

and after the scattering. The angular momentum: bmvL 0 . For the elastic 

scattering, b is kept constant, where b is the impact parameter. The angle between 
the initial and the final asymptote of the hyperbola, is related to the impact 
parameter b. 
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Fig.9 Ewald's sphere for the Rutherford scattering. 
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From the Ewald's sphere, we have 
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9. Newton’s second law for rotation: torque and angular momentum 

The torque is given by 
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dt

dL
Frτ  , 

 

where  is the torque, r is the position vector of the -particle with charge 2qe (>0) and F is the 

repulsive Coulomb force (the central force) between the -particle and the nucleus with charge 

Zqe. The direction of the Coulomb force is parallel to that of r. In other words, the torque  is 
zero. The angular momentum L is conserved. 
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where b is the impact parameter.  
 
((The impulse-momentum theorem)) 
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Since Q is parallel to the unit vector ̂ , we get 
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and 
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Using the relation 
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where 22 eZq , 
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Then we get 
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2
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0
2

0


Kmv

b  , 

 
and 
 

02K
a


 , 

 

where 0K  is the kinetic energy of the bombarding -particle, 

 

2
00 2

1
mvK  . 

 
10. Approach from conservation law of angular momentum and energy (Tomonaga) 

S. Tomonaga, Quantum Mechanics I: Old Quantum Theory (North Holland, 1962). This 
book was written in Japanese. The English translation of this book was made by 
Masatoshi Koshiba. Both Prof. Tomonaga and Prof. Koshiba got Nobel Prize in 1965 
(renormalization) and 1987 (observation of neutrino at Kamiokande, Japan), respectively. 
Here we present a brief summary of the Rutherford scattering based on the Tomonaga’s 
explanation. 
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Suppose an  particle with a positive charge 2qe is passing by the positive charge eZq  

concentrated in the center of the atom. The particle then moves on a hyperbola with F1 as the 
outer focus. We take the x-axis through the focal point F1 (the line L1-M-F1) and parallel to the 

line, N2-O-N2’, along which the  particle is approaching the atom from the left. The hyperbola 
then has this line, N2-O-N2’, as one of its asymptotes. If we denote the other asymptote by L1-O-
L1’, this gives the direction at infinity after the scattering. The scattering angle is accordingly 

given by the angle  '' 21 ONL . 

The distance from the x-axis of the  particle at infinity when it is approaching the atom, i.e., 
the distance between the line N2-O-N2’ and the x-axis is denoted by b. This distance b is a 

measure of how close the  particle comes to the atom and is an important quantity in this kind 
of calculation. Hence this distance b is b=given the name of impact parameter. When b is very 

large, the  particle will pass the atom at a great distance and accordingly suffer hardly any 

deflection. When, on the contrary, b is zero, the  particle will make a head-on collision with the 
atom and suffer the maximum deflection which, from symmetry considerations, amounts to 180°. 
The scattering angle   is in general a function of b, the form of which we can determine in the 
following manner. 

Let the velocities of the  particle at infinity and at the point of closes approach to the atom, 
i.e., at the point P, be denoted by v0 and u, respectively. Then conservation of angular momentum 
gives the relation, 
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Fig.10 Feature of the hyperbola. P is a point on the hyperbola orbit. aPFPF 221  . 

Since 21' PFFP  , the points P, N2, P’, and N2’ are on the circle of radius a 

centered at the point O. aNNFN 2'2211  . bOM  . bNF 212  . 
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where minr  is the length of the line 1PF . On the other hand, the conservation of energy is 

expressed by 
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From Eqs.(1) and (2), we get 
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where 
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Introducing the angle   by 
 

 F1ON2’
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  , 

 
we get 
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csc1 bROF  . 

 
Let the normal to the x axis from the other focus F2 be F2N1. Then from the known feature of a 
hyperbola, 
 

PFPFaFN 2111 2  ,  (definition of the hyperbola). 

 

or using the length b and the angle  
2

, we get  
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Using this value of minr , we have 
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Then we get the relation 
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Note that a depends on the kinetic energy K0.  
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11. The Kepler's First Law for the repulsive interaction 
We consider the central field problem for the repulsive interaction between the nucleus ( eZq ) 

and the particle ( eq2 ). 

 
 
Fig.11 Diagram of the deflection of an a particle by a nucleus: Rutherford scattering. 

Repulsive force between the  particle (2qe) on the hyperbola orbit and the atoms 
(Zqe) at the focal point F1. Two asymptotes: K1K1’ and L1L1’. 

 
The Lagrangian of the system is given by 
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where 
 

22 eZq . 

 
The Lagrange equation is obtained as 
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leading to the equations of motion as 
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We note that l is called the semi-latus rectum,  
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12. Differential cross section: 
d

d
 (classical case) 

Let us consider all those particles that approach the target with impact parameters between b 
and b +db. These are incident on the annulus (the shaded ring shape). This annulus has cross 
sectional area  
 

bdbd  2 . 
 

These same particles emerge between angles  and  + d in a solid angle given by 
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The differential cross section 
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 is defined as follows.  
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Fig.12(a)
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Fig.12(b) 
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This is the celebrated Rutherford scattering formula. It gives the differential cross section for 

scattering of  particle ( eq2 ), with kinetic energy 0K , off a fixed target of charge ( eZq ) 

 
((Mathematica)) 
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13. Quantum mechanics (scattering due to the Yukawa potential 

The Yukawa potential is given by 
 

re
r

V
rV  0

 
)( 


 , 
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Here we use m  for the reduced mass in order to avoid the confusion of the co-efficient  for the 

Yukawa potential with the reduced mass.  
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where m is the mass of a particle and M is the mass of atom; mM   
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Since  
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so, in the first Born approximation, 
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Note that as 0 , the Yukawa potential is reduced to the Coulomb potential, provided the 

ratio /0V  is fixed. 
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which is the Rutherford scattering cross section (that can be obtained classically). 

The total cross section can be obtained as follows. 
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The total cross section is 
 













0 2
2

2
2

2
0

2

)
42

(sin

sin

16
sin2

k

d

K
d

d

d
. 

 



 

35 
 

The change of variable 
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14. Schematic diagram for the Rutherford scattering 
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Fig.13 Schematic diagram for the Rutherford scattering. b is the impact parameter and  

is the scattering angle. The hyperbolic orbit near the target (at the point F2) is 

simplified by a straight line. aeOF 1 . The point A is the intersection of the 

initial and final asymptotes of the hyperbola. 
2

cot


ab  . Geometry for the 

Rutherford scattering. 
2

cos


aeb  .  is the scattering angle. 

 
As shown in the above figure, the impact parameter b is given by 
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The impact parameter b is also expressed by 
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where l is called the semi-latus rectum, 
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In general, a particle with impact parameters smaller than a particular value of b will have 
scattering angles larger than the corresponding value of b will have scattering angles larger than 

the corresponding value of . The area b2 is called the cross section for scattering with angles 

greater than . 
 
((Note)) 

Here we discuss how to draw the diagram for the simplified Rutherford scattering. 

In Fig.13, the length aBF 2  is given. The scattering angle is changed as a parameter. The 

impact parameter b is 
2

cot


ab  . The length 2OF  is ae . The point O is expressed by 
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where 2/)(   .  

 
So we make a plot of the above diagram when the scattering angle   is changed as a parameter 
with the value of a kept fixed. The diagram consists of the initial and the final asymptotes of the 
hyperbola. For simplicity, the hyperbola is replaced by the two asymptotes. The point O is the 
intersection of two asymptotes. Because of the angular momentum conservation, the impact 
parameter b remains unchanged for both initial and final asymptotes. 

The eccentricity  of the hyperbola is 
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So we have 
 

eae

a 1

2
sin 


. 

 

 
Fig.14(a) Schematic diagram for the Rutherford scattering where  is varied as a parameter. 

The relation between the impact parameter b and the scattering angle . As b 

increases, the angle  decreases (smaller angle). 
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Fig.14(b) The  particles with impact parameters between b and b + db are scattered into 

the angular range between  and  + d. 
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Fig.14(c) Rutherford scattering of  particles. The hyperbolic orbit near the target (at the 

point O) is simplified by a straight line. ROA  . The point denoted by OA  is 
shown in the figure. The value of a  (related to the kinetic energy of the particle) 
is kept constant. 

 
15. The use of Mathematica for drawing the hyperbola 
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Fig.15 a = 0.5 (fixed). b is changed as a parameter ( 51.0  b  with .1.0b ). F1 is 

the focal point (scatterer). The center of circle is at the point F2.The detector is 
on the circle. 

 
((Mathematica)) 

F2
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16. Experimental results 

If the gold foil were 1 micrometer thick, then using the diameter of the gold atom from the 
periodic table suggests that the foil is about 2800 atoms thick. 
 
Density of Au 
 

 = 19.30 g/cm3. 
 
Atomic mass of Au; 
 

Mg = 196.96654 g/mol. 
 
The number of Au atoms per cm3; 
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where NA is the Avogadro number. Then we get the number of target nuclei in the volume At 
(cm3) as 
 

ntANs  . 
 

 
 
Fig.16 The total number of nuclei of foil atoms in the area covered by the beam is ntA, 

where n is the number of foil atoms per unit volume, A is the area of the beam, 
and t is the thickness of the foil. 
[P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.8)] 

 

If  (= b2) is the cross section for each nucleus, ntA  is the total area exposed by the target 

nuclei. The fraction of incident particles scattered by an angle of  or greater is 
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The number of  particles which can be compared with measurements, is defined by 
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where r is the distance between the target and the detector, I0 is the intensity of incident  

particles, n is the number density of the target, and the solid angle sc  is defined by 

 

2r

Asc
sc  . 

 
((Experimental results)) 
 

 
 
Fig.17 (a) Geiger and Marsden’s data for  scattering from thin gold and silver foils. The 

graph is a log-log plot to show the data over several orders of magnitude. Note 
that scattering angle increases downward along the vertical axis. (b) Geiger and 
Marsden also measured the dependence of N  on t predicted by 
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
  for foils made from a wide range 

of elements, this being an equally critical test. Results for four of the elements 
used are shown. Z = 79 for Au. Z = 47 for Ag, Z = 29 for Cu and Z = 13 for Al. 
P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.9). 
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Fig.18 Original data presented by by H. Geiger and E. Marsden [Pjil. Mag. 24, 604, 

1913] 
 

Using the value of N( = ), we have 
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Fig.19 Plot of 
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17. Rough evaluation for the size of nucleus 

We use the energy conservation law, we have 
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or 
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We note that r0 is related to a as 
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1
ra  . 

 

Note that when r0 = 2a,  particle undergoes a head-on collision, during which the velocity of 

the  particle becomes zero. 
 

 
 
Fig.20 Rutherford scattering. a = 0.05 (fixed). b is changed as a parameter between b = 

0.01 and 0.15, ( 01.0b ). The circle  centered at F2 has a radius ar 20  .  

F2
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((Example)) Z = 79 for Au. K = 7.7 MeV. 
 

r0 = 2.955 x 10-14 m = 29.5474 fermi 
 
In conclusion, most of the mass and all of the positive charge of an atom, +Zqe, are concentrated 
in a minute volume of the atom with a diameter of about 10-14 m. 
 

1 fermi = 10-15 m 
 
18. Summary: From Rutherford scattering to Bohr model of hydrogen atom 

M. Longair, Quantum Concepts in Physics (Cambridge, 2013). 
 

Rutherford attended the First Solvay Conference in 1911, but made no mention of his 
remarkable experiments, which led directly to his nuclear model of the atom. Remarkably, this 
key result for understanding the nature of atoms made little impact upon the physics community 
at the time and it was not until 1914 that Rutherford was thoroughly convinced of the necessity 
of adopting his nuclear model of the atom. Before that time, however, Niels Bohr, the first 
theorist to apply successfully quantum concepts to the structure of atoms. Niels Bohr spent four 
months with Rutherford in Manchester. Bohr was immediately struck by the significance of 
Rutherford’s model of the nuclear structure of the atom and began to devote all his energies to 
understanding atomic structure on that basis. In the summer of 1912, Bohr wrote an unpublished 
memorandum for Rutherford, in which he made his first attempt at quantizing the energy levels 
of the electrons in atoms (Bohr, 1912).  

In 1913 Niels Bohr proposed a model of the hydrogen atom that combined the work of 
Planck, Einstein, and Rutherford and was remarkably successful in predicting the observed 
spectrum of hydrogen. The Rutherford model assigned charge and mass to the nucleus but was 
silent regarding the distribution of the charge and mass of the electrons. Bohr made the 
assumption that the electron in the hydrogen atom moved in an orbit about the positive nucleus, 
bound by the electrostatic attraction of the nucleus. Classical mechanics allows circular or 
elliptical orbits in this system, just as in the case of the planets orbiting the Sun. For simplicity, 
Bohr chose to consider circular orbits. Such a model is mechanically stable 
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