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((4-1))

4.1 Calculate the three lowesi energy levels, together with their degeneracies, for the
following systems (assume equal-mass distinguishable particles).

(a) Three noninteracting spin ~ particles in a box of length L.
g Spin 5 pa

(b) Four noninteracting spin é particles in a box of length L.

((Solution))
The energy is given by

2 2 2
E(n.,n,,n)=E\n +n +n")

I/ o
where E| =2—(Z)2, and n,n ,n, are positive integers.
m

We consider the Pauli principle.
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(a) 3 noninteracting spin 1/2 particles

Ground state: £E= 12 Ey
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Energy =3E¢+ 3E9+6 Eo= 12 Ey
degeneracy go = 2C2 x 6C1 = 6.

First excited state (1): £ =15 Ey
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Energy =3E¢ + 6Ey +6 Eo= 15 Ey
degeneracy go = 2C1 x 6C2 = 15 x 2 = 30 states

First excited state (2):E = 15 Ey
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Energy =3E¢+ 3E9+9 Eo= 15 Eo
degeneracy go = 2C2 x 6C1 = 1 x 6 = 6 states

Second excited state: £ =17 Ey
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Energy =3E¢+ 3Ep+11 Eo= 17 Eo
degeneracy go = 2C2 x 6C1 = 1 x 6 = 6 states

(b) Four noninteracting spin 1/2 particles

Ground state: £ = 18 Ey
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Energy = 3Eo+ 3Ep +6 Eo + 6 Eo= 18 Eo
degeneracy go = 2C2 x ¢C2 = 1 x 15 = 15 states

First excited state (1): £ =21 Ey
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degeneracy go = 2C1 x 6C3 = 40 states

First excited state (2): £ =21 Ey
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Energy =3 Eo +3E9+6 Eo + 9 Eo= 21 Ey
degeneracy go = 2C2 x 6C1 x 6C1 = 36 states

Second excited state: £ =23 Ej
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degeneracy go = 2C2 x 6Ci1 x 6C1 = 36 states



((4-2))

4.2 Let 74 denote the translation operator (displacement vector d); let D (fi,¢) denote
the rotation operator (fi and ¢ are the axis and angle of rotation, respectively); and
let w denote the parity operator. Which, if any, of the following pairs commute?
Why?

(a) 73 and Ty (d and d’ in different directions).

(b) D(i,¢) and D(i',¢") (fi and i’ in different directions).
(¢) 73 and .

(d) D(h,¢)and x.

((Solution))

(a)

fd|r>=|r+d>, fd,|r>=|r+d'>
7.7, r>=fd r+d'>=|r+d+d'>

F=T,

r+d>=|r+d+d'>

T,T,=T,T,

(b) . .
R(n,¢) = exp(—éj : n¢j , R(n,¢) = exp(—%j : n’¢’j
R, ¢"\r) =|R,(#)r)
R(m,)R(n',¢"|r) =|R, (AR, (#)r)
Similarly
R, ¢ R(m,p)r) =|R, ()R, (H)r)
In general



R, (DR, (#) =R, ($)R,(¢) (geometrically),

then

R(n,$)R(n',§"|r) # R(n',¢" R(n, $)
(c)

T.4r)=T\]-r)=|-r+d)

AT |r)=Alr+d)=|-r-d)
Therefore
(d)

Since [#,J]=0

R(n,p) = exp(—%j-n¢}

#R(n, )7 = ﬁexp[—%j : n¢j7%
= exp(—iﬁjﬁ : n¢j
h
ia
=exp| ——Jn
p[ - ¢j
= R(n.9)
Then l%(n,qﬁ) is commutable with 7.
((Another method))
1%7%|r> = f?|—r> = |—‘.Rr>

7%1§|r> = #|Rr) =|-Rr)






((4-3))
4.3 A quantum-mechanical state W is known to be a simultaneous eigenstate of two
Hermitian operators A and B that anticommute:

AB+ BA=0.

What can you say about the eigenvalues of A and B for state W? Illustrate your
point using the parity operator (which can be chosen to satisfy 7 =n ! =7 ) and
the momentum operator.

((Solution))
A|®) = a|D)
Bj®) = o)

From anticommutation relation
(AB + BA)|®) = (aff + fa)|®@) = 2af| D) =0.
Then ¢ =0 or f=0.

We have the relation between 7 and p.

A+ pi=0
plp)=r|p)

(7#p+ p#)| p')y =7p'| p))+ PA| P)
p(7| p)) =-p'(#| )

Therefore 7%| p'> is the eigenket of p with eigenvalue — p'. Only the state | p'> with

p' =0 is a simultaneous eigenfunction of the parity operator 7 and the momentum p .



((4-4))
44 A spin % particle is bound to a fixed center by a spherically symmetrical potential.

(a) Write down the spin-angular function y;;‘ f2m=1/2

j=1/2.m=1/2. Y
(b) Express (g+x) 'gtf:,[:f =112 1 terms of some other LA

(c) Show that your result in (b) is understandable in view of the transforma-
tion properties of the operator S-x under rotations and under space inversion

(parity).
((Solution))

The spin angular function in two component form is defined as follows.

i /l+m+1/2 _ [[-m+1/2
Jj=1+1/2,m — Ym 1/2 9, + Ym+1/2 9,
I 2 +1 i 0,9)x. 2+l ! 0,9) -

j=l1-1/2,m _ _ l_m +1/2}/lm—1/2(0,¢)l+ + MZ”‘L+I/2(0,¢)X7

y
i 2+1 2+ 1

where y, is a two-component spinor (spinor wave function)

(o2 P=(})-2

Yo°<9,¢>J

v =Y (0.4 1, { 0

where

Y2(0.9) =ﬁ

(6 F)Yy/Vam=12 _ z  x-) Y (6,9) _ zY)(6,9)
1=0 x+iy z 0 (x+ iy)YOo X))

Here we note that

zY(0,4) = rcos——= = rﬁYlo(ﬁ, ?)



(x+ )Y, (0,4) = re'’ sin 0L = —%rYll(é’, ?)

W

Then we have

(&.f)ifligl/z,m=l/2 _

r
_3(—@?(&@ S

%'(0.9) J_ -

where

vz __ 1 o 20 _ 1 X9
Yl=1 - \/5 Yl (9’¢)Z+ +\/ng (0,¢)Z, \/5(_ \/EYII(@,¢)J

when m =1/2
j=1/2,m=1/2 1 0 2 1
Yl.=1 =- EYI (0’¢)Z+ + EYI (09¢)Z—
1o
_\/;Yl 0,9)
2

1 (—Yl%e,qﬁ)j
V3\V2x' (0.4

((Note))

Y (0.) =+ |- sine®, Yl°(e,¢>=1ﬁcose,
2\ 2« 2\ 7
VO.h =7 |5 sinde ™

(b)

Parity operator:

Since 7 X7 =-X, 7



lw')=(6-F)

v)
A"y =76 -F)2 ' Aly)=—(6 - F)Aly) =—A(6 - Flly) =-Ay')

where ﬁ|w> = ﬂ|w> . Thus the parity of |W'> is different from that of |W> In fact,

A

Al,m) =(-1)

l,m>.

When / = 1. the wave function has the odd parity. When / = 0, the wave function has the
even parity.

Rotation operator

Since S-F isa pseudo scalar operator, it is invariant under the rotation. From the Wigner
—Eckart theorem,

<av; j', mv|f;(fo=0)

a; jom) =(j.k =0;m,q=0]j,k=0;j,m)=0

unless
m'=m and j'=j

In fact, the value of m and j does not change before and after the operation S-F.

((Mathematica))



Clear["Global +"];
rulel = {x->rcCos[¢] Sin[&],

y - rSin[e] Sin[¢], z->rCos[6]};
SphericalHarmonicY [0, 0, 6, ¢]

1
2

z SphericalHarmonicY[Q, @, 6, ¢] /.
rulel // Simplify

rCos[O]
2 «Y/I

(Xx+1y) SphericalHarmonicY|[O, 0O,
©, ¢] /. rulel // FullSimplify

e “rsSin[o]

2 A/t



Table|[

{m, SphericalHarmonicY[1l, m, 6, ¢]},
{ITI, 1: _11 _1}]

11, —% el? % Sin[e]},
{ra, % \V% ch[e]},



((4-5))

4.5 Because of weak (neutral-current) interactions, there is a parity-violating potential
between the atomic electron and the nucleus as follows:

V =AP®)S-p+8-psPx)],

where S and p are the spin and momentum operators of the electron, and the nu-
cleus is assumed to be situated at the origin. As a result, the ground state of an alkali
atom, usually characterized by |n,l,j,m), actually contains very tiny contributions
from other eigenstates as follows:

L, jom) = In b jamy+ D Copjrmen ' m').

n't' j'm'

On the basis of symmetry considerations alone, what can you say about (n’, ', j',m"),
which give rise to nonvanishing contributions? Suppose the radial wave functions
and the energy levels are all known. Indicate how you may calculate C,yjr,,+. Do
we get further restrictions on (»n',’, j',m")?

((Solution))
From the perturbation theory,

3 <n',l',j',m'|V n,l,j,m>
”v,lv,jvmv - '
En.l,j,m - En'.l',j',m
Parity operator:
Since
At Ao~ A At A oA A
T Pt ==P,>s T OTT=0,
we have

(8- p)i==8-p,
') =(S p)lw),
Ay’ =#(S-p)2 ' Aw) =—(S- P)Aw) =-AS - ply) =-Av")

Thus the parity of |l//'> is different from that of |1//>



In fact, 7

n,l,j,m> = (-1

|n.l'.j,m> occurs only when /’- / = odd number.

nl, j,m>. The transition between |n.l. j,m> and

Rotation operator
Since S - p 1s a pseudo scalar operator, it is invariant under the rotation. From the Wigner
—Eckart theorem,
<n’,l’j’,m'|fq(f§0)|n.l,j,m> = <j,k =0;m,q=0|j,k= 0;j',m'> =0
unless
m'=m and j'=j
In fact, the value of m and j does not change before and after the operation §-f) .

Since the perturbation potential is described by a Dirac Delta function, it is necessary for
that transition that R (¥ =0)#0 and R ,'(r=0)#0;/=1and”=0or/=0and I’ = 1.

In conclusion:

We have nonzero-matrix elements only for
(1=0,j'=1/2,m'=%1/2V|l =1, =1/2,m =+1/2) # 0
and

(1=0,j=1/2,m==%1/2|I'=1,'=1/2,m'=£1/2) # 0




((4-6))

4.6 Consider a symmetric rectangular double-well potential:

oo for |x| > a+b;
V=410 fora <|x| <a+b;
Vo=0 forl|x|<a.

Assuming that Vp is very high compared to the quantized energies of low-lying

states, obtain an approximate expression for the energy splitting between the two
lowest-lying states.

((Solution))

K]

Y

-(a+h) -3

When potential is an even function, the wave function should have even parity or odd
parity.

[#,H]=0

7 is the parity operator.

H is the Hamiltonian.

~2

2m



A2
A=A 2 v ())a
2m

= L Gpay +v (i)
2m
1, .
=L (pY V(D)
2m
_ L PP +V(R)
2m

since V' (—x)=V(x)

Then we have a simultaneous eigenket:

A

Hl//>=E|l//>, and

Since £ =1,

2wy =24ly) = 2ly)=ly)

Thus we have 1 =+1.

or
Aly)=4w)
(xlly) = (x|y)

Since 7]x) =|x), or (x|#" = (x| = (~ x|
(- xlw) = £(xlw)

or
y(—x) =ty (x)

We need to solve the Schrédinger equation.

—;—d—zl/’(x) +V (x)y(x) = Ey(x)
m dx

lw)

Aly)



e, PP =22V, E)
or

(kb)? = i—TEbZ =, (pb) = i—’?(rfoﬁ —Eb)=v, ¢
and

v =20
or

(kb)* +(pb)* =v,’,

(a) The wave function with even parity
v, (x) = Asin[k(x—a—b)]
w ;(x) = Beosh(px)

W, (x) =—Asin[k(x+a +D)]

W) _ ke cos[k(x—a—b)]
dx

M = Bpsinh(px)
X

((Boundary condition))

Atx=a, y(x) and % are continuous.
X

— Asin(kb) — Bcosh(pa) =0
Ak cos(kb) = Bpsinh(ap)
We define the matrix M,

MX=0



where

v (— sin(kb) — cgsh(pa) j ’ ¥ (Aj
kcos(kb) — psinh(pa)

detM=0, leads to
k cos(kb)cosh(pa) + psin(kb)sinh(pa) =0

or
kb coth( pb%) + pbtan(kb) =0

for the even parity
In summary

(kb)* +(pb) =v,’,
kb coth( b %) + pbtan(kb) =0

For simplicity we use
X=kb, Y= pb,

@
X2+ =v>, (1)

X coth(Y%) +Ytan(X)=0. )

(b)  The wave function with odd parity

v, (x) = Asin[k(x —a —b)]

y; (x) = Bsinh(px)

W, (x) =—Asin[k(x +a +D)]

) gk cos[k(x—a—b)]
dx



vy () = Bp cosh(px)
dx

% — —Akcos[k(x +a+b)]
X

((Boundary condition))

are continuous.

Atx=a, y(x) and ay(x)
dx

— Asin(kb) — Bsinh(pa) =0

Ak cos(bk)— Bpcosh(ap) =0
We define the matrix M,

MX=0

where

vl sin(kb)  —sinh(pa)
B kcos(kb) — pcosh(pa) )’

detM=0 leads to

k cos(kb)sinh(pa) + psin(kb)cosh(pa) =0

or
kb tanh( pb %) + phtan(kb) =0

for the odd parity

In summary

(kb)* +(pb) =v,’,
kb tanh( pb %) + phtan(kb) =0

For simplicity we use

o

B

|



X=ka, Y= pa,
(1D
X +7=v,

X tanh(Y%) +Y tan(X) = 0. 3)

Case-1
In the limit of v —o (Vo = o), X = nr for both the symmetric and antisymmetric wave
functions. Therefore the energy level is degenerate.

2 2
X? =(kb)* = 2—TEb2 =g=(nz), or E =h—[ﬂj with n = £1, 42, +3,
h 2m\ b
Case-2
In the limit of w, the value of X for the symmetrical wave function is a little lower than
that for the antisymmetrical wave function. The solution of X = 0 is not included because
the wavefunction becomes zero.

LY
a



10+

/

0 2 4 6 8 10
Fig. Solutions with the even parity (red) and with the odd parity (green). The green
circle with x* + y* =v,’



((4-7))
4.7 (a) Let y¥/(x,7) be the wave function of a spinless particle corresponding to a plane

wave in three dimensions. Show that ¥*(x,—1) is the wave function for the
plane wave with the momentum direction reversed.

(b) Let x (i) be the two-component eigenspinor of o - i with eigenvalue +1. Using
the explicit form of x (i) (in terms of the polar and azimuthal angles g and y

that characterize fi), verify that —io2 x *(fi) is the two-component eigenspinor
with the spin direction reversed.

((Solution))
(a)

(b)
| > e cosg > e sing
+ > - n .
’ e sinﬁ ¢ cosﬁ
2 2
0=-i6,K
©) +>n = —i@l&[eii% cos£|+> sm 'B| >
==i6, [P cosE]4)+e “in L)

Since &,|+)=i-), &,-) =i+,

y



COS

By-e

“sinfl4) =),



((4-8))

4.8 (a) Assuming that the Hamiltonian is invariant under time reversal, prove that the
wave function for a spinless nondegenerate system atany given instant of time
can always be chosen to be real.

- (b) The wave function for a plane-wave state at # = 0 is given by a complex func-
tion ¢/P*/" . Why does this not violate time-reversal invariance?

((Solution))

(a)

FI(:)|n> = OH n> = En(:)

n)

(:)|n> is the eigenket of H with E,.

Since |n> is not degenerate

Since

(b)



E,=FE ,=> | p'> and |— p'> are the eigenket of H with the same energy. But | p'> and
|— p'> are different states.

(-plp)=0
(6p) =|-p)

=> <r| p’> is not a real but a complex number.



((4-9))
4.9 Let ¢(p’) be the momentum-space wave function for state |o)—that is, ¢(p’) =
(p'|a). Is the momentum-space wave function for the time-reversed state 6 |«) given

by ¢(p'), by ¢(—p’), by ¢*(p'), or by ¢*(—p’)? Justify your answer.
((Solution))
Since (:)|—p’> =|p’>

(Pa)=(pla)

!

@)=(p'le)

(-p
or

!

@)=(-pla)

(p



4.10
4.10 (a) What is the time-reversed state corresponding to D(R)|j,m)?
(b) Using the properties of time reversal and rotations, prove

(j)*(R) 1 )"'—"'Iﬂ(j) (R).

m m —m',—m

(¢) Prove8|j,m) = 2’"|j, —m).

((Solution))

We use the following definition.

(j.m'[R| j,m) =D (R)

(a)
0JO" =—J
5,07 =—J_, 5J O =-J, 9J,67 =-J,
9J,07 =0(J, +iJ )0 =~(J, ~iJ ) =—J_
0] 0" =0(J, —iJ )0 =—(J, +iJ ) =—J
or
J.O=-0J,, J6=-6J, J6=-6J,
Since
jz(:)] m> —@J j,m > >
© j,m> is the eigenket of jz with the eigenvalue (-m); © j,m> oc j,—m>. We also have
5.6 m) =6 | jm) = )
.61 m) =60 jm) = )




A

Suppose that , @) /, m> =i

2m

j,—m> , then we have the

A

J,

Ji=m) =hy(j+m)(j —m+1)|j,~m+1)

A

J

J—m —l>

Jomm)=hJ(j —m)(j+m+1)

@)=

2m

Note that |§> o)

j,—m> , 7 m> , satisfying the normalization condition.

jom) =i

(b)

Rin.g) = exp[—%(i )]

OR(.$)O "' = exp[—%é)(ijé)l) ]
:exp[_g(@i@»(@j@».n]
= exp[—%j -n]

= R(n.9)
or
since ©i®~' =—il, and ®JO"' =—J . Then we get
OR(n,¢) = R(n,$)®

We note that

A A

OR| j,m)=RO| j,m)=i""R

j’_m>

We calculate the matrix element

A A

RO

j ’_m>
=D}, (R)

Jom) =" (j,—m'|R

(j—m'

and



m'|OR : "><j,m" R| j,m)
= 2 (el m") j.m" m)’
=20 ] ) (R
= 20 o |Rjm)

=i (j,m'[R] j,m)
2mD(/) (R)

m.,m

Jom)=(j—m'€

(=

y

From these two equations, we have

2mD(J) (R) 2mD(J) (R)

—m,—m m,m

or
! “(R) = 2 DY), (R)=(-1)""DY_ (R)
()
©%j.m) = 01| j~m)
:(_l.)ZmC:) ]a_m>
= (=)™ (i)*"| j,m)
_ (_I)Zm ja m>




4.11
4.11 Suppose a spinless particle is bound to a fixed center by a potential V (x) so asym-
metrical that no energy level is degenerate. Using time-reversal invariance, prove

(L) =0

for any energy eigenstate. (This is known as quenching of orbital angular momen-
tum.) If the wave function of such a nondegenerate eigenstate is expanded as

YD Em@Y[0,0),

! m

what kind of phase restrictions do we obtain on Fj,, (r)?

((Solution))
Since H is invariant under time reversal,

OHO'=H, or OH = HO®

When

¢n> is an eigenstate of H with the energy eigenvalue E ,

FHO)g,) = OH|g,) = E,0

4,)

Thus (:)| ¢n> is also the eigenstate of H with the energy eigenvalue E, . Suppose that ¢n> is the

non-degenerate state. Then we have

4,)=0lg,)

The average of the orbital angular momentum is evaluated using the formula,

(6,1L¢,)=(4,[6L67|g,) =~(4,|E]4,) = (4, E)9,)
since
6i6" =i
Then we have
(4,1L)¢,)=0 (quenching of the orbital angular momentum).




Suppose that the wavefunction of the non-degenerate state is given by

(r

8,)=> F,("Y"(0.¢) 1)

I,m

and

(r

A

C) 8,) =X F, (M 0.0] =D F, ("L 0,4)  (2)

Im I,m

4,)=(F

7)=(r

where (:)|r> = |7> = |r> In the present case, Egs.(1) and (2) are equal except for the phase factor;

since

S F, (D)"Y " (0,8) =D F, L, (r)(=D)"Y,"(0.8)

1,m I,m
Thus we have

F,(r)=e“(-1)"F,_, ()



4.12
4.12 The Hamiltonian for a spin 1 system is given by

H = AS?+ B(S:—S2).

Solve this problem exactly to find the normalized energy eigenstates and eigen-
values. (A spin-dependent Hamiltonian of this kind actually appears in crystal
physics.) Is this Hamiltonian invariant under time reversal? How do the normal-
ized eigenstates you obtained transform under time reversal?

((Solution))
We note that [f] , (:)] =0

The Hamiltonian is given by

A 0 B
H=m0 0 0
B 0 4
AL = 1[4+ B1,-1)] (1)
H 1,0> =0 ( l,0> is the eigenstate of H with the eigenvalue 0)
H|L-1) = [ B]L1) + 4 1,-1)] (2)
In the subspace of { 1,l> and 1,—l> }, the Hamiltonian can be written as

- (A4 B
Hvub:h
‘ B 4
(1 0y (01
= Ah + Bh
0 1 1 0

=n*(Al+Bé,)

H,,|tx)=1(41+B6,)

tx)=h*(4+B)tx)

sub

with



|+x) =% 3 (eigenvalue: (4+ B)h*)
|—x) _ L ! j (eigenvalue: (4— B)h*)
V2 -1

In summary we have three states

|¢1> = |1,0> (energy eigenvalue, 0)
|¢2> = %ﬂ 1,1> + | 1,—l>] (energy eigenvalue: (A + B)hz)
14,) = %H L1)—[1,-1)] (energy eigenvalue: (4— B)h’)

The time reversal states:

Q|¢,) = 6]1,0) =|L,0)
®| ) = %@ﬂl,l} +1,-1)] = %[(—1)|1,—1> +(=D7L)]=¢,)
Ql¢,) = %@ﬂl,l) —[|1L,-1)]= %[(—1)|1,—1> ~(=D7L1)]=|¢,)

((Mathematica))



Clear["Global *"]; j=1;

yal
IJx[j_, n_, m] : E\/(j—m) (j+ m+ 1) KroneckerDelta[n, m+ 1] +

h
E'\/(j+m) (j-m+ 1) KroneckerDelta[n, m-1];

h
Jylj_, n_, m] := -3 i V(j-m) (j+ m+1) KroneckerDelta[n, m+ 1] +
h
EiV(j+m) (j-m+ 1) KroneckerDelta[n, m-1];
Jz[j_ , n_, m_] := h mKroneckerDelta[n, m];

Jx=Table[Jx[j, n, m]l {nl jl _jl _1}1 {ml jl _jl _1}];
JY Table[Jy[J, n, m]l {nl jl _jl _1}1 {ml jl _jl _1}];
Jz Table[Jz[j, n, m]l {nl jl _jl _1}1 {ml jl _jl _1}];

Jx // MatrixForm

h
0 77 0
_h 0 _n
N2 N2
h
0 75 0

1h
0 Z 0
ihn 0 _in
V2 V2
o i& 0



Jz // MatrixForm

h 0 O
0 0 O
0 0 -h

Hl1 = A1Jz.Jz + Bl (Jx.Jx - Jy.Jy) // Simplify

{{m1n%, o, B10%}, {0, 0, 0}, {B1A?, 0, A1R"}}

H1l // MatrixForm

Al h® 0 B1h?
0 0 0
B1A? 0 Alh’
Eigensystem[H1]

{{o, (n1-B1)n*, (A1+B1)n%}, {{0, 1, O}, {-1, 0, 1}, {1, O, 1}}}
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