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In general, the Born approximation is valid for high energy limit, while the phase shift 

analysis is useful in the low energy limit. Here the formula for phase shift can be derived based 
on the Born approximation. The phase shift from the Born approximation is compared with that 
derived from the phase shift analysis. The advantage of the phase shift from the Born 
approximation is free from the consideration of the boundary condition of the wave function. We 
only need to evaluate the integral. Note that the Born approximation is valid for large incident 
energies and weak scattering potential. 
 
1. Phase shift derived from the Born approximation 

We consider the scattering amplitude in the Born approximation when the potential has 
spherical symmetry,  
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where Q is the scattering vector; kkQ  ' . The scattering amplitude for a central field in the 

Born approximation is given by 
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When we use the formula given by 
 

 
l

ll Pkrjl
Qr

Qr
)(cos)]()[12(

)sin( 2  , 

 
where 
 

2
sin2


kQ  . 

 
Then we have 
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((Born approximation)). This form should be equal to the result derived from the phase shift 
expansion,  
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We note that 
 





 






















0

2
'

2
2

0

',

0

22
2

0 0

'

0

22
2'

0

)1(

)]()[(
4

12

2
)12()]()[(

2

)(cos)(cos)(cos)12()]()[(
2

)(cos)(cos)(

krjrVdrr

l
lkrjrVdrr

dPPlkrjrVdrrdPf

l

l

ll
l

l
llll

B














 

 
and 
 

 

 

k

e

lk

e
l

dPP
k

e
ldPf

l
i

l

lll
i

ll
l

l
i

l
B

l

l

l

)sin(
2

12

2
]

)sin(
[12

)(cos)(cos)(cos]
)sin(

[12)(cos)(cos)(

'

0

',

'

00
'

0

)2(

' 





























 

 
where we use 
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Thus we have 
 







0

22
2

)]()[(
2

)sin( krjrVdrrke ll
i l



 . (1) 

 
The advantage of this method is that we do not have to worry about the boundary condition 
which is essential to the phase shift analysis.  
 
(a) The phase shift for the repulsive potential 

In Eq.(1), we assume that l  is positive and very small. Then we have 
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with 
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which means that 0l  for the repulsive potential and 0l  for the attractive potential  

 
(b) The phase shift for attractive potential 

In Eq.(1), we assume that 'll   , with 0'l  
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Thus we get 
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which means that 
 

0'l  for the attractive potential ( 0V ). 

 



2. Another approach for the determination of the scattering amplitude in the Born 
approximation 

Here we show that 
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using a method which is different from the method used above 
 



 
 
Fig. k1 ={k,0,0} in the spherical coordinate (z axis). k2 = },,{ k  in the spherical coordinate. 

},,{ rrr r  in the spherical coordinate.  is the angle between k2 and r.  

 
We start with the Rayleigh’s expansion formula 
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Then we get 
 

















',
''

'

0'
''

'

0

)(cos)(cos)()()()1'2)(12(

)(cos)())(1'2()(cos)()12(21

ll
lrlll

ll

l
ll

l

l
rll

lii

PPkrjkrjiill

PkrjilPkrjilee



rkrk

 

 
Here we use the addition theorem: 
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Using this relation, we have 
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The scattering amplitude can be rewritten as 
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The final form of the scattering amplitude is given by 
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from the Born approximation. When l = 0 (S-wave), we have 
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2. Repulsive square-well potential 
 



 
 
 

A particle of mass  is scattered from a spherical repulsive potential of radius R, we calculate 
the scattering amplitude using the Born approximation. 
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Noting that 
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For x<<1,  
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Then in the limit 1QR , 
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We now calculate the phase shift derived from the Born approximation 
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For 1kR , we have 
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The total cross section is 
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which is the same as the result derived from the phase shift analysis 
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3. Mixing of repulsive and attractive potential 
 

 
 

V0

V1

c a
r



]
2

)2sin(

2

)2sin(
)()[(

]
2

)2sin(

2

)2sin(
)()([

)(sin)(sin[
2

)(sin
)(

2

010102

0101002

2
0

0

2
12

0
22

2
2

2

)(
0

ka

ka
aV

kc

kc
VVccVbV

k

ka

ka
aV

kc

kc
VVcVVcaV

k

krdrVkrdrV
k

rk

kr
rVdrrk

a

c

c

B






























 

 
where acb  . For simplicity, we assume that 
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((Mathematica)) 
a = 4, c = 0.5, b = 3.5, V0 = 1, and V1 = 15 V0; 
 

 
 
The phase shift is negative at 2kc = 0, become positive around 2kc = 0.3. It decreases with 
increasing , and becomes again zero around 2kc = 3. After that it becomes negative negative 
with further increasing . 
 
4. Example-1: Phase shift analysis and Born approximation 
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(a) Determine the differential cross section dd /  in the Born approximation for scattering 

from the potential energy )(
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2
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. Show the explicit dependence of 

dd /  on . 
(b) Evaluate dd /  in the low-energy limit. Show that the differential cross section is 

isotropic. What is the total cross section? 
(c) Show that the validity of the Born approximation is given by 1a . 

 

Next we consider the spherically symmetric potential energy, )(
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where  is a constant and )( ar   is a Dirac delta function that vanishes everywhere 

except on the spherical surface specified by r = a. We consider the differential equation 
with l = 0, in this differential equation 
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  is the kinetic energy of a particle with mass  and )()( rrRru  . 

(d) Find the form for u(r) for r>a, where the phase shift is assumed to be 0. 
(e) Find the form for u(r) for r<a, where u(r=0) = 0. 
(f) The function u(r) is continuous at r = a. However the derivative of u(r) with respect to r 

is not continuous. Use the boundary condition such that )(|)('|)(' 00 aururu arar   . 

Show that 
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(g) For ka<<1, find the expression for the phase shift 0. 
(h) Find the expression of the total cross section. 
(i) Show that the total cross section [result (g)] from the partial wave expansion at low 

energy agrees with that obtained in (b) from the Born approximation at low energy. 
 
______________________________________________________________________________ 
((Solution)) 
(a) 
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The first order Born approximation: 
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kkQ  ' ; scattering vector 
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The differential cross section is given by 
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where  is an angle between k’ and k (Ewald’s sphere). 
 
(b) 1Qa  
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which is isotropic, where we use the approximation 
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Then we have the total cross section 
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(c) 

The validity of the Born approximation 
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For spherical potential, we get 
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Noting that kaka )sin( for the low energy limit, we have 
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which is the condition for the validity of the Born approximation. 
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(d) 
 

Here we derive the above solution directly from solving the differential equation. 
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The boundary condition: 
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Here we assume that l = 0. Then we have the differential equation 
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(f) Since u is continuous at r = a, 
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From Eqs.(1) and (2), we have 
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For ka<<1, we get 
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(h) 
 
The total cross section is 
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(i) For 1a , we have 
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5. The phase shift from the Born approximation for the same example  
Using the formula for the phase shift derived from the Born approximation  
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(a) calculate the phase shift )(
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(b) calculate the total cross section for ka<<1. 

(c) Suppose that )()()( brarrU ba    where b>a. calculate the cross section )(B
tot  

 
((Solution)) 
(a) We now calculate the phase shift derived from the Born approximation 
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For 1ka , 
 

kaB 2)(
0   . 

 
The total cross section is 
 

4222
2

2)(
02

)(
0

2
2 4)(

4
][

4
sin

4
aka

kkk
BB

tot   , 

 
which is the same as the result derived from the phase shift analysis 
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APPENDIX 
Formula for scattering 
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