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In general, the Born approximation is valid for high energy limit, while the phase shift
analysis is useful in the low energy limit. Here the formula for phase shift can be derived based
on the Born approximation. The phase shift from the Born approximation is compared with that
derived from the phase shift analysis. The advantage of the phase shift from the Born
approximation is free from the consideration of the boundary condition of the wave function. We
only need to evaluate the integral. Note that the Born approximation is valid for large incident
energies and weak scattering potential.

1. Phase shift derived from the Born approximation
We consider the scattering amplitude in the Born approximation when the potential has
spherical symmetry,
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where Q is the scattering vector; Q = k'—k . The scattering amplitude for a central field in the

Born approximation is given by
f®@) = —;—g j drrV (r)sin(Qr), (spherical symmetry)
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When we use the formula given by
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((Born approximation)). This form should be equal to the result derived from the phase shift
expansion,
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where we use
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Thus we have
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The advantage of this method is that we do not have to worry about the boundary condition
which is essential to the phase shift analysis.

(a) The phase shift for the repulsive potential
In Eq.(1), we assume that ¢, is positive and very small. Then we have
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with
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which means that 6, > 0 for the repulsive potential and 6, <0 for the attractive potential

(b) The phase shift for attractive potential
In Eq.(1), we assume that 6, = -7+ ,', with 6,'>0
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sindy'=—24' k[ drrV (n[j (k)
0

which means that

0,'> 0 for the attractive potential (V <0).



2. Another approach for the determination of the scattering amplitude in the Born
approximation
Here we show that
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using a method which is different from the method used above
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Fig. k; ={k,0,0} in the spherical coordinate (z axis). k» ={k, 8,4} in the spherical coordinate.
r={r,0.,4} in the spherical coordinate. @is the angle between k, and r.

We start with the Rayleigh’s expansion formula
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Here we use the addition theorem:
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Using this relation, we have
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The scattering amplitude can be rewritten as
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where
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Note that
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The final form of the scattering amplitude is given by
f® )= —%Z(zl +1)R (cosH)TrzdrV(r)[ ji (k)T
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from the Born approximation. When | = 0 (S-wave), we have
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2. Repulsive square-well potential
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A particle of mass x is scattered from a spherical repulsive potential of radius R, we calculate
the scattering amplitude using the Born approximation.
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For x<<1,

sin(X) — Xcos(X) = X?S +0(x*)

Then in the limit QR << 1,
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We now calculate the phase shift derived from the Born approximation
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For kR <<1, we have
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which is the same as the result derived from the phase shift analysis
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Mixing of repulsive and attractive potential
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a>>cC and V>bi
C

((Mathematica))
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The phase shift is negative at 2kc = 0, become positive around 2kc = 0.3. It decreases with
increasing 6, and becomes again zero around 2kc = 3. After that it becomes negative negative
with further increasing o.

4. Example-1: Phase shift analysis and Born approximation



(a) Determine the differential cross section do/dQ in the Born approximation for scattering
from the potential energy U (r) = % =yo(r —a). Show the explicit dependence of
do/dQ on 6.

(b) Evaluate do/dQ in the low-energy limit. Show that the differential cross section is
isotropic. What is the total cross section?

(c) Show that the validity of the Born approximation is given by ya <<1.

. . . . 24V (1)
Next we consider the spherically symmetric potential energy, U (r) = o =yo(r—a),
where y is a constant and &(r —a) is a Dirac delta function that vanishes everywhere
except on the spherical surface specified by r = a. We consider the differential equation
with | = 0, in this differential equation
w0+ U0~ Dy o, 1)

r

21,2
where E = 5 is the kinetic energy of a particle with mass gz and u(r) = rR(r).

U

(d) Find the form for u(r) for r>a, where the phase shift is assumed to be &.

(e) Find the form for u(r) for r<a, where u(r=0) = 0.

® The function u(r) is continuous at r = a. However the derivative of u(r) with respect to r
is not continuous. Use the boundary condition such that U'(r)|,_,,, —U'(F)|,_,.o= ().
Show that
an(ka + 5,) = k sm(ka)' _ tan(ka) @)

k cos(ka) + y sin(ka) 1+ %tan(ka)

(2) For ka<<1, find the expression for the phase shift 3.

(h) Find the expression of the total cross section.

(1) Show that the total cross section [result (g)] from the partial wave expansion at low
energy agrees with that obtained in (b) from the Born approximation at low energy.

((Solution))

(a)

V(r)=%5(r—a), or U(r) = 75(r —a)



The first order Born approximation:
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where

Q = k'-k ; scattering vector
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Then

The differential cross section is given by

where

“ I

where @is an angle between k* and k (Ewald’s sphere).

(b) Qa<<1
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which is isotropic, where we use the approximation
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Then we have the total cross section
c, =4ry’at.
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The validity of the Born approximation
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For spherical potential, we get
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‘%eika sin(ka)| << 1

or



%|sin(ka)| <<1

Noting that sin(ka) ~ ka for the low energy limit, we have
ra<<l

which is the condition for the validity of the Born approximation.
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Here we derive the above solution directly from solving the differential equation.

u"(r)+[k> —U(r) - '('; Dyur =o, 1)
where
u(r)=rRr(r),
and
2u
U(r)= . V(r)=yo(r—-a).
The boundary condition:

U'(F) [r—aso —U'(N) |y—a.0= ()

Here we assume that | = 0. Then we have the differential equation
u"(r)+[k*>=U()Ju(r)=0

For r>a

u"(r)+ku(r)=0



u=rR(r)= Asin(kr +J,)
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Forr<a

u"(r)+ku(r)=0

u=rR(r) = Bsin(kr)
63} Since U is continuous at r = a,
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For ka<<1, we get
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The total cross section is

2 2
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(1) For ya <<1, we have
o, =4my’at.
S. The phase shift from the Born approximation for the same example

Using the formula for the phase shift derived from the Born approximation
8% ==k [ r*drU (N[ j, (kn)P
0

with  j,(x) = S‘;’X,

(a) calculate the phase shift 5. .

(b) calculate the total cross section for ka<<1.

(@) Suppose that U(r) =y,6(r —a) + y,0(r —b) where b>a. calculate the cross section awt(B)

((Solution))
(a) We now calculate the phase shift derived from the Born approximation

5% = —il—/j derr2V(r)[j0(kr)]2
0

= —k[drr*s(r —a) j,(kn)T
=—’k[ j, (k)
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(b)
For ka<<1,
5® o _ 7/6.2k
0 ~ .
The total cross section is
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which is the same as the result derived from the phase shift analysis
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APPENDIX
Formula for scattering
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f®@)=- 7‘122/(; IdrrV (r)sin(Qr)  (spherical symmetry)
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