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What is the wave packet? 

In physics, a wave packet is a short "burst" or "envelope" of localized wave action 
that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an 
infinite set of component sinusoidal waves of different wavenumbers, with phases and 
amplitudes such that they interfere constructively only over a small region of space, and 
destructively elsewhere. Each component wave function, and hence the wave packet, are 
solutions of a wave equation. Depending on the wave equation, the wave packet's profile 
may remain constant (no dispersion) or it may change (dispersion) while propagating. 
http://en.wikipedia.org/wiki/Wave_packet 
 
1. Schrödinger equation (separation variable) 

The state function for a system develops in time according to the equation 
 

)(ˆ)( tHt
t

i  



 . 

 

where Ĥ  is the time-dependent Hamiltonian. The time dependent Schrödinger equation 
for the wavefunction )(tr  is given by 
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We assume that 
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where E is constant, independent of t and r. Thus we get 
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Then we have 
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where {n(r)} (n = 1, 2, 3,…..): discrete set of eigenfunctions 
 
2. One dimensional case 
The Hamiltonian of the free particle is given by 
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The Schrödinger equation: 
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where )(xk  satisfies the second order differential equation, 
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((Plane wave solution)): 
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where A is constant. The phase velocity is defined as 
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The group velocity is defined by 
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which is different from the phase velocity. Note that 
22
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probable to find the particle anywhere along the x axis. The state function that better 
represents a classical (localized) particle is a wave packet. 
 
3. Gaussian wave packet 
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Fig. Gaussian wave packet propagating along the +x axis. 
 

We now consider the Gaussian wave packet. 
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The superposition of f over k leads to 
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Normalization: 
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Thus we have 
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The final form of 1

*
1 ff  is given by 
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which has the same form as the Gaussian distribution 
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where the standard deviation  is given by 
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((Note)) The final form of the normalized wave function is given as 
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((Mathematica)) 
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4. Physical meaning of the equation for the wave packet 
 
The position of center: 
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The velocity of center: 
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The spreading of the wave packet: 
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The amplitude of 
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The evolution of the wave packet is not confined to a simple displacement at a velocity v0. 
The wave packet also undergoes a deformation. The amplitude A decreases with 
increasing t, while the width x  increases with increasing time. Note that the peak 
position moves at the constant velocity along the +x direction. 
 
The Heisenberg’s principle of uncertainty: 
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Fig. Propagation of Gaussian wave packet. Plot of 
2

),( tx  as a function of x. The 

time t is changed as a parameter; t = 0 - 1 with t = 0.05. m = 1. 1 . k0 = 2. k 
= 7. x0 = 0. 

 
_______________________________________________________________________ 
((Mathematica)) QM wavepacket 
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Evolution of Gaussian Wave packet Gaussian 

Clear"Global`";

P 



k2 xx0 k0 t —

m
2

1t2 k4 —2

m2

 k 1

k4 
t2 —2

m2

;

rule1  m  1, —  1, k0  2, k  7, x0  0;

seq1  P . rule1;

p1  LogPlotEvaluateTableseq1, t, 0, 1, 0.05, x, 0, 5,

PlotStyle  TableThick, Hue0.05 i, i, 1, 20,

PlotRange  0, 5, 0.05, 4, AxesLabel  "x", "x,t 2"
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Avex1  Integratex P, x, , ,

Assumptions  Re m2 k2

m2  t2 k4 —2
  0 

m x0  k0 t —

m k 1
k4  t2 —2

m2
m2 k2

m2t2 k4 —2
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