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Here we discuss the Heisenberg’s principle of uncertainty using the Schwarz inequality. We
also discuss the physical meaning of the eigenvalue problem. When the measurement is done for

the Hermitian operator A, the state of the system collapses in to one of the eigenstates. This is

equivalent to the solving of the eigenvalue problem, A| a> = a| a> , where |a> is the eigenket of

the operator A with the eigenvalue a. This implies that the uncertainty
(AR = (v |[Ay) ~(y
completed.

All//>2=<(//|(A—ai)2|(//> becomes zero when the measurement 1is

Karl Hermann Amandus Schwarz (25 January 1843 — 30 November 1921) was a German
mathematician, known for his work in complex analysis. Schwarz originally studied chemistry in
Berlin but Kummer and Weierstral3 persuaded him to change to Mathematics. Between 1867 and
1869 he worked in Halle, then in Ziirich. From 1875 he worked at Gottingen University, dealing
with the subjects of function theory, differential geometry and the calculus of variations. His
works include Bestimmung einer speziellen Minimalflache, which was crowned by the Berlin
Academy in 1867 and printed in 1871, and Gesammelte mathematische Abhandlungen (1890). In
1892 he became a member of the Berlin Academy of Science and a professor at the University of
Berlin, where his students included Lipét Fejér, Paul Koebe and Ernst Zermelo. He died in
Berlin.




http://en.wikipedia.org/wiki/Hermann_Amandus_Schwarz

1. Theorems
((Commuting observables))

Two observables A and B commute if and only if they admit a common basis of
eigenvectors.

((Simultaneous measurability))

The necessary and sufficient condition for two observables A and B to be simultaneously
measured with arbitrary precision is that they commute;

A A A A

[A,B]=AB-BA=0.

2. Schwarz Inequality (proof-1)
The Schwarz inequality

2
>

(ala)(B|B)=[a|B)

for any |o) and |5).

((Proof))

We consider
|2)=la)+2]8),
(x|x)=0 for any complex number A.
or
(212)=(a|+ 2 (B)(a)+2|5)20,
or
(ala)+alal )+ A (pla)+ 22 (B|B)20.

The best inequality is obtained if A is chosen so as to minimize the left-hand side. By
differentiation, we get



AL _ (pla) + a(p ) =0,

or

A28 (o) 2 (p18)=0.

Then we have
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Using this value of A, we get the inequality
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(ala)(p|5)2[(alB)

The equality holds if and only if

(ala) Bl ) = (a| ) pla) = ||



This means that

lala) _ (pla),
(o]

B (81B)
3. Schwartz inequality (proof-2)
Proof of the Schwartz inequality.

Jy=—

A11:<0‘|0‘>20’ A12:<“|ﬁ>’ A21:<ﬂ|“>’ A22:<ﬂ|ﬂ>20’
We assume that

A=p+iq, (p,q are real)

A =p-iq.
Then we consider the function given by

f(p,a)=(x|x)
= (al+ 2 {B)(a)+A8)
={ala)+ Z(pla)+ Malp)+ 1 (5 5)
= A, +(P—iq)A, +(p+iqA, +(p’ +a")A,

In order to find the minimum value of f(p,q), we calculate

HPD _p 4 A, +24,p=0,
op
af%‘;;“):—i&ﬁwﬁmzq:o.

From these equations, we get

At A

_iCATA)
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P=p, = 2A2
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H q=q0



or

=1 = iq =
S YN TS

The substitution of the these values of p and q leads to

f(p= poaq:qo):Au_MZO

A,
AA, > AL,
(ala)(B|p)=(a|p)pla)=|a|B) .
((Note))
(Bla)
Ao =—
(B|B)
When

(ala)(B]B)=(a| )B|a),

A, can be expressed by

_ (A12 + A21) _ (_AIZ + A21) —

A

Ay

(Schwartz inequality)

o __{ple)__(ala)
(B1B)  (alB)
((Mathematica))



flp_, q ] :=All +(p +iq) Al2+ (p-i0q) A21 + (p?+ %) A22;

eq1= D[f[ps q]i Pl =0
Al2 + A21+2A22p =0

eq2 =D[f[p, 9], ] =0
i Al2 -1 A21+2A22q =0

eq3 = Solve[{eql, eq2}, {p, q}] // Simplify
A12 + A21 i (-A12 + A21)
Hpo-—0y > a- 3
2 A22 2 A22

fl=F[p, gq] /- eq3[[1]] // FullSimplify
Al2 A21
A22

All -

4. Physical meaning of eigenvalue problem
Suppose that A* = A (Hermitian operator). For simplicity, we put

We use the Schwarz inequality

<l//|l//><(0| ¢>> > KW|¢>‘2 (Schwarz inequality)

or

(wlw)=

We assume the normalization condition; <1// | 1//> =1.

First we show that <1//|¢> is real.

(wlo) =(olw)=WIAy)={y|Aw)=(v|e)



since  (B|={(p|=(w|A" =(y|A and A" = A.

Then the above inequality can be rewritten as

=)=
(v|Aly)=(w|Ay)".

We now consider the fluctuation defined by

2

(AA)2=<A2>—<A> <l//|A2|l//>—<l//|A|l//>220. (1)

The condition AA = 0 (the absence of the fluctuation) corresponds to the case of Eq.(1) with the
equality.

Az

(AAY =y |A|w)—(w|Alw) 1=0.

This implies for the special state in which A has a sharp expectation value a that
(0 = (&)~ (&) =((A~(A)f ) =((A-aif )=o,

or
<(A—ai)z> ~ (y|(A-ai)(A-al)y) =0,

where a is real. Then we get

(A—ai)|y/>:0, or AI!//>:8.|!//>.

This corresponds to the eigenvalue problem. The condition for no fluctuation leads to the
eigenvalue problem.



((Note))
The only possible result of a measurement of an observable A is one of the eigenvalue a of

the corresponding observable A;

Aa)=ala).

S. The Heisenberg’s principle of uncertainty

A and B are two Hermitian operators with the condition
[AB]=iC.
Then we have a Heisenberg’s principle of uncertainty:

1
AAAB > 5\(0}\ :

In other words, this principle is a direct consequence of the non-commutability between two
observables. The proof of this theorem is given as follows.

((Proof))

Uncertainty product in a normalized state |y/).
(AR = (y [(A=(A)D)’|y),
(AB)* =(y|[(B—(B)D)|w),

where
(A)={v|Ay)

and

B

(®)= v

Let us define

V)



2
’

(AAY (ABY” =y [(3BY | ) (v [(B)[v) = {a| @) 8] B) 2 [(a| B) =[( ] @)

where

A

B)=aBly).

@) = Aw),

Then we get

(Bla)={y|BAy). (B1B)=(w|BBw),
We also note that

o]l o a an AT A n

5B§A:5(5AéB+ﬂ3§A)—E[5A,éB],

Using the relation

A A A

[0A,B]=[A-(A)L,B-(B)i]=[AB]=iC.
we have
anooa 1A
BA=G-=iC,
2
where
G :%(5,&6]_5; +OBAA).

Thus we get the inequality

2
(AA) (AB)* > G C

v) -

16 3iClv) = Gl it



Note that <l//|é|l//> and <l// |é|w> are real since G and C are Hermitian operators,
C =—i[A,B]=—i(AB - BA),
C*=—(AB-BA)"i* =—(BA— AB)i" =i(BA- AB)=C..

Then we have

2
2

C

(AA)'(AB)* > v)

[l +;[wlClvf =

(v[Glw)+ ilw Clw)
or
(a)a8) >l [Clw).

(1) The last inequality holds if and only if

G

{wGlw) =0,
or

<l//|(5Ad§ + $5A)|l//> = 0'

2)
(i)  From the definition,
[6A,8B]=iC,
we get
(vl AB - BAy) =iy Cly) . 3)

From Egs.(2) and (3), we have

(v|ABly) =~ w[Cly)
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and

C

).

By ) = —%(*/f

(v

((Note))
It is found from the Schwarz inequality that

({e|+ 2 (B(a)+ 4|8)=0.
or
(|a>+ lo|ﬂ> =0,

with the value of Ay

(Bla) <a||a>

DI alB)

In the above case, we have

A

C

v)

2 Bla) _ (y|BAy) _ ;(W
TR W iBBy) (| BB)

which means that 4 is a pure imaginary.

6. Gaussian wave packet

1, pon | H
(Ax)Ap) = E‘<l//||7l1| l//>‘ =5

(Heisenberg’s principle of uncertainty).
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We now consider the case of (AX)(Ap)zg. First we consider the case for the Schwarz

inequality when the equality holds,

(Bla) sy W)y

YT BE) BBy 2]

Ay)=-208|y),

o
(b=()Dlw)= 5 s (= (XDl
(o= (B} = 5 (= (4.
(o~ () = 5 s O Do)
or
2 ) =T 0= () + ().

The normalized solution is

1 1 i
(xlw)= WGXP[_W(X —(x))* + 5< p)x].

This is a minimum uncertainty wave packet (Gaussian wave packet). This state represents a
plane wave that is modulated by a Gaussian amplitude function. Since i is imaginary, this

equation is an eigenfunction of the non-Hermitian operator A+ AB = p + A%
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APPENDIX
((Griffiths Problem 4-28))
An electron in the spin state is given by

=)

(a) Determine the normalization constant A.

(b)  Find the expectation values of §X, §y , and éz .

(©) Find the uncertainties AS,, A4Sy, and 4S,.
(d) Confirm that your results are consistent with all three uncertainty principles.

n

2 <§Z>

n

AS,AS, > . AS/AS, > > <§X> ,  AS,AS 2 % <§y>

((Solution))

(a)
(rl2) =1 o |-2sa

We choose A=1/5.

(b)
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(S N3 4Y0 )5
so=tBla=2-3 2] o) 5|
5
3i
(S N 3140 s 12
<SV>_<1 yZ>_2( 5 SJ(i ﬂ = 25h
5
3i
(8 (3 4 T 0y s TR
<Sz>_<;( zZ>—2( 3 5)(0 1 i = 50
5
(c)
Since
2
§x2=§y2=§22=h—i
4
A A . 72 .
(2[8.12) = (218,71 20) = (28| 1) =1
2 _/&2\_ /& 2 h_2
(876 -
or
h
(ASX)_E
2o\ je 2R 24h
(88,7 =(8,7)=($,) ="~ (-5 =0.0196°
AS, =0.147
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(88, =(8,) —<§Z>2 _ %—(—%)2 — 0.23%>

AS, =0.48%

(d)

AS,AS, =0.07h
E|< S, >[=0.07h

2

AS AS, =0.06727
E|< S, >[=0

2

AS,AS, =0.24%°

g\< S, > =0.24n"
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