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Here we discuss the Heisenberg’s principle of uncertainty using the Schwarz inequality. We 

also discuss the physical meaning of the eigenvalue problem. When the measurement is done for 

the Hermitian operator Â , the state of the system collapses in to one of the eigenstates. This is 

equivalent to the solving of the eigenvalue problem, aaaA ˆ , where a  is the eigenket of 

the operator Â  with the eigenvalue a. This implies that the uncertainty 

   2222 )1̂ˆ(ˆˆ aAAAA   becomes zero when the measurement is 

completed. 
 
_____________________________________________________________________________ 

Karl Hermann Amandus Schwarz (25 January 1843 – 30 November 1921) was a German 
mathematician, known for his work in complex analysis. Schwarz originally studied chemistry in 
Berlin but Kummer and Weierstraß persuaded him to change to Mathematics. Between 1867 and 
1869 he worked in Halle, then in Zürich. From 1875 he worked at Göttingen University, dealing 
with the subjects of function theory, differential geometry and the calculus of variations. His 
works include Bestimmung einer speziellen Minimalfläche, which was crowned by the Berlin 
Academy in 1867 and printed in 1871, and Gesammelte mathematische Abhandlungen (1890). In 
1892 he became a member of the Berlin Academy of Science and a professor at the University of 
Berlin, where his students included Lipót Fejér, Paul Koebe and Ernst Zermelo. He died in 
Berlin. 
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http://en.wikipedia.org/wiki/Hermann_Amandus_Schwarz 
 
1. Theorems 
((Commuting observables)) 

Two observables Â  and B̂  commute if and only if they admit a common basis of 
eigenvectors. 
 
((Simultaneous measurability)) 

The necessary and sufficient condition for two observables Â  and B̂  to be simultaneously 
measured with arbitrary precision is that they commute; 
 

0̂ˆˆˆˆ]ˆ,ˆ[  ABBABA . 

 
2. Schwarz Inequality (proof-1) 

The Schwarz inequality 
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((Proof)) 
We consider  
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0  for any complex number . 
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The best inequality is obtained if  is chosen so as to minimize the left-hand side. By 
differentiation, we get 
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Using this value of , we get the inequality 
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The equality holds if and only if 
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This means that 
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3. Schwartz inequality (proof-2) 

Proof of the Schwartz inequality. 
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We assume that 
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In order to find the minimum value of ),( qpf , we calculate 
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From these equations, we get 
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The substitution of the these values of p and q leads to 
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  .  (Schwartz inequality) 

 
((Note)) 
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((Mathematica)) 
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_______________________________________________________________________ 
4. Physical meaning of eigenvalue problem 

Suppose that AA ˆˆ   (Hermitian operator). For simplicity, we put 
 

  , and  Â . 

 
We use the Schwarz inequality 
 

2
    (Schwarz inequality) 

 
or 
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 . 

 

We assume the normalization condition; 1 . 

First we show that   is real. 

 

   AA ˆˆ*
 

 

fp_, q_ : A11  p   q A12  p   q A21  p 2  q2 A22;

eq1  Dfp, q, p  0

A12  A21  2 A22 p  0

eq2  Dfp, q, q  0

 A12   A21  2 A22 q  0

eq3  Solveeq1, eq2, p, q  Simplify
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, q 

 A12  A21
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f1  fp, q . eq31  FullSimplify
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since AA ˆˆ     and AA ˆˆ  . 

 
Then the above inequality can be rewritten as 
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or 
 

22 ˆˆ  AA  . 

 
We now consider the fluctuation defined by 
 

  0ˆˆˆˆ 22
2

22   AAAAA . (1) 

 

The condition A = 0 (the absence of the fluctuation) corresponds to the case of Eq.(1) with the 
equality. 
 

  0]ˆˆ[
222   AAA . 

 

This implies for the special state in which Â  has a sharp expectation value a that 
 

      01̂ˆˆˆˆˆ 222
22  aAAAAAA , 

 
or 
 

  0)1̂ˆ)(1̂ˆ(1̂ˆ 2
  aAaAaA , 

 
where a is real. Then we get 
 

0)1̂ˆ(  aA , or  aA ˆ . 

 
This corresponds to the eigenvalue problem. The condition for no fluctuation leads to the 
eigenvalue problem. 
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((Note)) 

The only possible result of a measurement of an observable Â  is one of the eigenvalue a of 

the corresponding observable Â ; 
 

aaaA ˆ . 

 
5. The Heisenberg’s principle of uncertainty 

Â  and B̂  are two Hermitian operators with the condition 
 

CiBA ˆ]ˆ,ˆ[  .  

 
Then we have a Heisenberg’s principle of uncertainty: 
 

CBA
2

1
 . 

 
In other words, this principle is a direct consequence of the non-commutability between two 
observables. The proof of this theorem is given as follows. 
 
((Proof)) 

Uncertainty product in a normalized state  . 

 

 22 )1̂ˆ()( AAA  , 

 

 22 )1̂ˆ()( BBB  , 

 
where 
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Let us define 
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1̂ˆˆ AAA  ,  1̂ˆˆ BBB  , 

 

AA ˆˆ   ,  BB ˆˆ   , 
 

  222222 )ˆ()ˆ()(   BABA , 

 
where 
 

 Â ,  B̂ . 

 
Then we get 
 

 AB ˆˆ ,   BB ˆˆ , 

 
We also note that 
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Using the relation 
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Thus we get the inequality 
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Note that  Ĝ  and  Ĉ  are real since Ĝ  and Ĉ  are Hermitian operators, 
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(i) The last inequality holds if and only if 
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(ii) From the definition, 
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From Eqs.(2) and (3), we have 
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and 
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((Note)) 
It is found from the Schwarz inequality that 
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with the value of 0 
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In the above case, we have 
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which means that 0 is a pure imaginary. 
 
6. Gaussian wave packet 
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(Heisenberg’s principle of uncertainty). 
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We now consider the case of  
2
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 px . First we consider the case for the Schwarz 

inequality when the equality holds, 
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The normalized solution is  
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This is a minimum uncertainty wave packet (Gaussian wave packet). This state represents a 
plane wave that is modulated by a Gaussian amplitude function. Since i is imaginary, this 

equation is an eigenfunction of the non-Hermitian operator xpBA ˆˆˆˆ   . 
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APPENDIX 
((Griffiths Problem 4-28)) 
An electron in the spin state is given by 
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(a) Determine the normalization constant A. 

(b) Find the expectation values of xŜ , yŜ , and zŜ . 

(c) Find the uncertainties Sx, Sy, and Sz. 
(d) Confirm that your results are consistent with all three uncertainty principles. 
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((Solution)) 
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We choose A=1/5. 
 
(b) 
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(c) 
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