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Here we discuss how to apply the second quantization method on several many body
systems.

1. The Hamiltonian in terms of field operator

The true power of field operators is that they can provide a complete and closed
description of a dynamical system of identical particles without invoking any wave
functions or the Schrédinger equation. Since the dynamics of a quantum system is
determined by its Hamiltonian, our next step is to get the Hamiltonian in terms of field
operators. Let us start with a system of non-interacting particles. The many-particle

Hamiltonian is just the sum over all one-particle Hamiltonians. In the Schrodinger wave
field, we have

(w % B> +V (P)]y) = [[drdr,(|r )y % p* VOO )n|v)
= .[_|'drldr2<z//|r»[-%vrz2 +V OIS =1)(n|w)
= _h_z 2oy ®
_.[dr1<‘//|r1>[ ZmVr1 +V (rl)]<r1|V/>

= [dry (- V2 VOO ()

Using the quantum field operator, the Hamiltonian is given by

HO = | drw*(r)[—%vz VO

This Hamiltonian can also be expressed in terms of the creation and annihilation
operators
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Next we consider the interaction between particles. Using the field operator,
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Fig. Two particles with wave vectors k and k’ can interact and thereby exchange
momentum q. After this interaction the particles have wave vectors k +q and

k'—q . The amplitude of the process is proportional to the Fourier component

V?(q) of the interaction potential.

2. Expression of operators in terms of quantum field operator
(a) Density operator
Schrédinger wave field:

P =y (w(X)
The density operator (second quantization)
PX) =y (X) P (X)

where 7(X) is a quantum field operator. The expectation value of density operator for the

state given by
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(b) Position operator
The position operator is defined by
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The expectation value <d)|)?| (D> is obtained as
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(©) Potential energy
The average potential energy is given by
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The expectation value <CD Nop|d)> is
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(d) Kinetic energy
Schrédinger wave field;
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(e) Coulomb interaction
The Schrédinger field operator is given by
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Thus we get
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§9) Calculation of the interaction V for charged bosons
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Here we use
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The last integral corresponds to the Laplace transform of sin(qy) . Finally we get
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3. The interaction between two fermions with spin 1/2

(Sakurai and Napolitano)
The interaction between two fermions with spin 1/2 can be expressed by
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Using the quantum field operator for fermion with spin 1/2
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the interaction can be rewritten as
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where A indicates the electron spin. The diagrammatic representation of H
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is given by



The total Hamiltonian is
H=H,+H,(@=0+H,(q=0)
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The diagrammatic representation in the momentum space is shown below.
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Fig. Diagrammatic representation of the momentum-space matrix element for

lj'im(q;to)- k1:k3+q- k4:kz+q- q=k1—k3=k4—k2

4. Evaluation of I—AIim (q=0)
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5. Reformulation of I-Alim(q #0)
The l:lint(q =0) term vanishes in the limit of V — 0. The I-Alim(q # (0)term can be

redefined as
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or

kz =p—-q



Then the total Hamiltonian is expressed by
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where the notation Z' indicates that the terms with g =0 are to be omitted. Here we

assume that the screening parameter ¢ =0.

6. Quantum box (fermions)

We consider a quantum box with the volume V = L* (cube with side L). The quantum
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state is defined by |k) with K, =2T”nx, ky ===y » and k, ===n, (M ny, n, are

integers). The wave function is given by
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The quantum field operator is defined by
p(r) =Y ——e*a, (1
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Note that the annihilation and creation operators are defined by
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At t=0, we have
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7 Free electron Fermi gas model in metal
We consider the properties of a Fermi gas of non-interacting spin 1/2 fermions in their

ground state. The ground state |CDO> is characterized by all the momentum states being filled up

to the Fermi momentum p. . Then we have
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(a) The Fermi momentum: P
The Fermi momentum is determined by the condition that the total number of particles is
given by
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where n is the number density and kr is the wave number ( p. = 7K. ).

(b) Average density
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where o is the spin variable, and
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Then we have
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Thus the density in the gas is uniform.
(¢) One-particle density matrix
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(d) Pair correlation function

The Pauli exclusion principle is the quantum mechanical principle that states that two or
more identical fermions (particles with half-integer spin) cannot occupy the same quantum state
within a quantum system simultaneously.

Suppose that there is one fermion at the point r. We calculate the relative probability of
finding another particle at I'. One way to formulate these problem is to remove (mathematically)
a particle (with spin o) at the point r from the system, leaving behind (N-1) particles in the state
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and ask for the density distribution of particles (with spin o) in this new state. This density is
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9. Expectation value of I—A|0
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The first-order energy shift
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The states p,o, and k,o, must be inside the Fermi sea. Similarly, k +q,0, and p—q,0, must

also be inside the Fermi sea. There are two possibilities.
k+0,0,=k,0,, p-q,0,=p,0, (the first pairing)

or
p-q,0,=Kk,0o, kK+q,0,=p,0, (the second pairing)

The first pairing is forbidden because the term q =0 is excluded from the sum. Then the matrix

becomes
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It is convenient to change variables fromk to P =k + %q in order to get the symmetric form;
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((Note)) Mathematics: volume of the overlap of two spheres

R

Let two spheres with the same radius R be located along the x-axis centered at (0,0,0) and
(d,0,0), respectively. The equations of the two spheres are

X +y +2°=R’, (1)



(x—d)y’+y*+2* =R’ ()
Combining Egs.(1) and (2) gives
(x—d)>*=x*=0

or

The intersection of the spheres is therefore a curve lying in a plane parallel to the ¥ z-plane at
X= % Plugging this back into Eq.(1) gives
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which is a circle with radius 1/Rz _dT . The volume of the 3D lens common to the two spheres

can be found by adding the two spherical caps. The volume is
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as function of I, . This function has a minimum (=-0.0949887) at r, =4.82337.
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as a function of I, =i. Minimum value (=-0.0949887) at r, =4.82337.
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