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Here we discuss how to apply the second quantization method on several many body 

systems. 
 
1. The Hamiltonian in terms of field operator 

The true power of field operators is that they can provide a complete and closed 
description of a dynamical system of identical particles without invoking any wave 
functions or the Schrödinger equation. Since the dynamics of a quantum system is 
determined by its Hamiltonian, our next step is to get the Hamiltonian in terms of field 
operators. Let us start with a system of non-interacting particles. The many-particle 
Hamiltonian is just the sum over all one-particle Hamiltonians. In the Schrödinger wave 
field, we have 
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Using the quantum field operator, the Hamiltonian is given by 
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This Hamiltonian can also be expressed in terms of the creation and annihilation 
operators 
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where k  is the energy of the one-particle state )(rk . 
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Next we consider the interaction between particles. Using the field operator, 
 

















qkk
kkqkqkq

rrrrrrrrr

',
''

)2(

1221
)2(

2121
)2(

ˆˆˆˆ)(
2

1

)(ˆ)(ˆ)()(ˆ)(ˆ
2

1ˆ

bbbbV
V

VdddH 
 

 
where 
 

 
k

rk
kr ieb

V
ˆ1

)(̂ ,    
k

rk
kr ieb

V
ˆ1

)(̂  

 



 
 
Fig. Two particles with wave vectors k and k’ can interact and thereby exchange 

momentum q. After this interaction the particles have wave vectors qk   and 

qk ' . The amplitude of the process is proportional to the Fourier component 

)()2( qV  of the interaction potential. 

 
2. Expression of operators in terms of quantum field operator 
(a) Density operator 

Schrödinger wave field: 
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The density operator (second quantization) 
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where )(ˆ x  is a quantum field operator. The expectation value of density operator for the 

state given by 
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(b) Position operator 

The position operator is defined by 
 

  )()(ˆ xxxdxx   

 

The expectation value  x̂  is obtained as 
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(c) Potential energy 
The average potential energy is given by 
 

 )()()(* xxVxdx   

 
The corresponding operator is 
 

  )(ˆ)()(ˆ xxVxdxVop   

 

The expectation value  opV̂  is 
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(d) Kinetic energy 

Schrödinger wave field; 
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The corresponding operator; 
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  (Schrödinger equation) 

 
(e) Coulomb interaction 

The Schrödinger field operator is given by 
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The expectation 
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Thus we get 
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(f) Calculation of the interaction V for charged bosons 
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Here we use 
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We use the new variables, "rx  , "' rry   and 31 kkq   Then we get 
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The last integral corresponds to the Laplace transform of )sin(qy . Finally we get 
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3. The interaction between two fermions with spin 1/2 
(Sakurai and Napolitano) 

The interaction between two fermions with spin 1/2 can be expressed by 
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Using the quantum field operator for fermion with spin 1/2 
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the interaction can be rewritten as 
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where   indicates the electron spin. The diagrammatic representation of intĤ  is given by 



 
The total Hamiltonian is 
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The diagrammatic representation in the momentum space is shown below. 
 

 
 
Fig. Diagrammatic representation of the momentum-space matrix element for 

)0(ˆ
int qH . qkk  31 . qkk  24 . 2431 kkkkq   

 

4. Evaluation of )0(ˆ
int qH  
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In the above expression, we redefine kk 3 , and pk 4 . Then the term of intĤ  for 

which 0q  become 
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5. Reformulation of )0(ˆ
int qH  

The )0(ˆ
int qH  term vanishes in the limit of V . The )0(ˆ

int qH term can be 

redefined as 
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Then the total Hamiltonian is expressed by 
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where the notation  '  indicates that the terms with 0q  are to be omitted. Here we 

assume that the screening parameter 0 . 

 
6. Quantum box (fermions) 

We consider a quantum box with the volume 3LV   (cube with side L). The quantum 

state is defined by k  with xx n
L

k
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integers). The wave function is given by 
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The quantum field operator is defined by 
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Note that the annihilation and creation operators are defined by 
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The commutation relation: 
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At t =0, we have 
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((The interaction Hamiltonian)) 
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((Momentum operator)) 
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7. Free electron Fermi gas model in metal 

We consider the properties of a Fermi gas of non-interacting spin 1/2 fermions in their 

ground state. The ground state 0  is characterized by all the momentum states being filled up 

to the Fermi momentum Fp . Then we have 
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(a) The Fermi momentum: Fp  

The Fermi momentum is determined by the condition that the total number of particles is 
given by 
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where n is the number density and kF is the wave number ( FF kp  ). 

 
(b) Average density 
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where   is the spin variable, and 
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Thus the density in the gas is uniform. 
 
(c) One-particle density matrix 
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Converting the sum to an integral. we get 
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(d) Pair correlation function 

The Pauli exclusion principle is the quantum mechanical principle that states that two or 
more identical fermions (particles with half-integer spin) cannot occupy the same quantum state 
within a quantum system simultaneously. 

Suppose that there is one fermion at the point r. We calculate the relative probability of 

finding another particle at 'r . One way to formulate these problem is to remove (mathematically) 

a particle (with spin ) at the point r from the system, leaving behind (N-1) particles in the state 
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and ask for the density distribution of particles (with spin ' ) in this new state. This density is 
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9. Expectation value of 0Ĥ  
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The first-order energy shift 
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The states 2,p  and 1,k  must be inside the Fermi sea. Similarly, 1,qk   and 2,qp   must 

also be inside the Fermi sea. There are two possibilities. 
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The first pairing is forbidden because the term 0q  is excluded from the sum. Then the matrix 

becomes 
 

 

 

 

 























kq
pqk

kq
kqkpqk

kq
kkqkqkpqk

kq
kqkkqkpqk

qk
'

2,,

2

'
0,,02,,

2

'
0,,,,02,,

2

'
0,,,,02,,

2
)1(

)()(
4

'
2

ˆˆ
4

'
2

ˆˆˆˆ
4

'
2

ˆˆˆˆ
4

'
2

21

1121

111121

111121





















kkk
qV

e

nn
qV

e

aaaa
qV

e

aaaa
qV

e
E

FF

 

 
or 
 

26

22
)1( )()(

2
)2(

4

2 q

kkk
dd

V

V

e
E FF 

  



 qk

qk  

 



It is convenient to change variables from k to qkP
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  in order to get the symmetric form; 
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((Note)) Mathematics: volume of the overlap of two spheres 
 

 
 

Let two spheres with the same radius R be located along the x-axis centered at (0,0,0) and 
(d,0,0), respectively. The equations of the two spheres are 
 

2222 Rzyx  , (1) 



 
2222)( Rzydx   (2) 

 
Combining Eqs.(1) and (2) gives 
 

0)( 22  xdx  

 
or 
 

2

d
x   

 
The intersection of the spheres is therefore a curve lying in a plane parallel to the -plane at 

2

d
x  . Plugging this back into Eq.(1) gives 

 

4

2
222 d

Rzy   

 

which is a circle with radius 
4

2
2 d

R  . The volume of the 3D lens common to the two spheres 

can be found by adding the two spherical caps. The volume is 
 

)
2

1

2

3
1(

3

4

]
3

1
[2

)(2

)(2

33

2/
32

2/

22

2/

222





















R

xxR

dxxR

dxxRV

R
d

R

d

R

d

 

 

with 
R

d

2
  

 
______________________________________________________________________________ 
 



 

sB

F

FF

F

r
N

a

e

r

Ne

k
Ve

xxdxkk
Ve

xxxkdqq
q

Ve
E

916331.0

2

)
4

9
(

2

3

2

9

16

)2(

4

 )
2

1

2

3
1()2(

3

4
4

)2(

4

)1()
2

1

2

3
1(

3

4
4

1

)2(

4

2

3/1

0

2

4

6

23

1

0

33

6

2

332
26

2
)1(





























 

 
or 
 

sB r
N

a

e
E

916331.0

2

2
)1(   

 
where 
 

NrV 3
03

4
 ,  

2

3

3
FVk

N  ,  
2

2

me
aB


  (Bohr radius) 

 

B
s a

r
r 0 , 

0

3/1 1
)

4

9
(

r
kF


 . 

 
So the total energy is 
 

)
916331.0

099.2
1

(
2 2

2
)1()0(

ssB rra

Ne
EEE   

 

with 
Ba

e

2

2

13.6057 eV. We make a plot of 

 

ss

B

rr
a

Ne
E 916331.0

2099.2
1

2

22   

 



as function of sr . This function has a minimum (=-0.0949887) at sr 4.82337. 

 
Li:  rs = 3.22 
Na: rs = 3.86 
K rs = 4.87 
Rb rs = 5.18 
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r 0 . Minimum value (=-0.0949887) at sr 4.82337. 
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