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Here we discuss the second quantization for boson, which is similar to that for fermion.
The wavefunction should be symmetric under the exchange of position of two particles.

1. Fock space representation (boson)
The symmetric wave function for the bosons is given by
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where P is the permutation operator which interchanges the label of X’s and the
summation runs over all n! permutation of the n labels. Note that

n= Zni
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n,n,, n3,...,ni,..;n> is the Fock state with

n, particles in the state |ﬂ1>

n, particles in the state |ﬂ2>

((The expansion formula))
The expansion formula is given by Schweber as
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((Example)) Boson systems



Energy levels and states for bosons
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2. Creation and annihilation operator for bosons

We now introduce the annihilation operator Bi for boson, which is defined as
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The creation operator 6i+ is defined by
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where

For i > j, we have
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which leads to the commutation relation

Combining two relations, we have
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using the Krnocker delta. Similarly we have



3. Quantum field operator for bosons (I)
We introduce the field operators for boson which are defined by
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where <X|ﬂk>:¢k(x) is the eigenfunction of the single particle. These field operators

satisfy the commutation relations
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4. Second quantization for boson
Using the quantum field operator and the annihilation operator, the expansion formula
can be rewritten as
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By induction we have
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where S denotes the anti-symmetrizing operator.

In general case, we have
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where the index B denotes the boson.
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((Example)) We consider the simple case.
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5. Hamiltonian
The Hamiltonian can be expressed by
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b, b, is the number operator. The eigenket of H, is given by
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Field operator:
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Commutation relation:
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6. Proof of the expression ih%t/?(x,t) =H,(X)w(x,1)

We show the relation of ih%t/?(x,t) =H,(X)w(x,1)

((Proof))
We start with
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7. Heisenberg’s equation of motion
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or
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8. The commutation relation of quantum field operator
When we discuss the quantum mechanics of n-particle system, instead of using the
Schrodinger equation for the n particle system, we use the field operator 7 (X,t).
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ot

.0 N A

|haW(Xat):[W(Xat)sHo]’

2 (60 =1 (60,
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We note that the condition
N=>n,
i

is not included in these expressions,
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10. One-particle Hamiltonian H , in the Schrodinger equation

Schrodinger equation:
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Number operator:
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Using the relation
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On the other hand,
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Then we find that ¥ (X, X,,..., X;t) satisfies the Schrodinger equation for n-particle

system;
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11. Interaction Hamiltonian between two particles in the Schrodinger equation
The interaction Hamiltonian is given by
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We now consider the Schrodinger equation for the state vector

‘ (t)> Idx ..... Idx|xl,x2, ,xn><x1,x2, WX

The n-particle state W™ (x,, X ;t) can be represented by the function

za:nn

PO (1)) = — (0]

WO (X5 Xy ey X5 1) = < Xy 5ees Xy o

‘P(n)(t)>

We consider

Ho| ™ (1) = m[dx ..... jdx‘P(”)(xl,xz, DX OF G () (X ) (%)]0)

—_[dx ..... jdx H o] X5 Xy ,xn><x1,x2, WX (t)>




1 A+ A+ A+
XX X0 = O () 04))

| PPN -
<xl,x2,...,xn|—ﬁ<0|y/(xl)y/(x2)...y/ (X,)
First we consider the following term

(X, Xyeres Xy ) = W(X)ﬁW(Xn)W(Xn1)---'/7+(X1)|0>

= {7 (0.7 (X)]+ ¥ )W OO (X)) (%))]0)
= (X=X )W (Xp)-- 47" (%)|0)

57 (X)W OO (X, y)-40 " (%)]0)

= S(X= X)W (X))--47" (%)|0)

57 (XA 0.0 (X D]+ (% W (0.7 (%)]0)
= (X=X W (X)o7 (%)|0) + (X=X W (X W (Xop)--47 7 (%)] 0) +.

Il
.M:

1l
—_

1 ~ ~ ~ A
5(X_Xi)w X)) (X DY (X)) (X1)|0>

Il
.M:

I
—_

S(X =X Xi> Xgees Xiiy X pees Xy )

- 5i-

Similarly we have
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Using this we get the matrix element
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We finally find out that W™ (X, X,.,..., X, ;t) satisfy the Schrodinger equation given by
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for the system with the Hamiltonian with H = H,+ I:Il.

12. Summary

The second quantization is very useful method for the many-particle (boson and
fermion). We do not have to solve the Schrédinger equation for many-particle systems
directly. Instead of that, we need to solve the Schrodinger equation for one-particle
systems. The quantum field operator can be obtained from the on-particle solution with
the creation and annihilation operators (CAP’s) depending on the nature of particles,

boson or fermion. The quantum state for the many particle system can be uniquely
determined by the combinations of quantum field operators which is acted on the Fox

state (vacuum state).

((One-particle state))



w(r) is the wave-function for on-particle state
w(X)= Zbk@ xX), wX= Zbk*¢k*(X) (first quantization)
K K

where ¢, (X) is the one-particle Schrodinger solution and b, is coefficients.

((Quantum field operator))

The quantum field operator is

w(X)= Zﬁk@ xX), v x)= Zﬁk+¢k*(x) (second quantization)

where Bk and 6k+ are the annihilation and creation operators;
b8, 1=15.,..  [B.bI=[b b, 1=0 for bosons
The quantum state of the many-particle can be expressed by the Fock state
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¥ (X,,X,,..., X, ;t) satisfies the Schrodinger equation for the n-particle system

ih%\}l(n)(xl’xz’m,xn;t) = H\{l(”)(Xl,Xz,...,Xn;t)



where H =H,+ H, is the Hamiltonian of the many particle system. The many-body

problem in quantum mechanics is equivalent to the quantum field theory above described.
Using the quantum field operator, the Hamiltonian is given by

i = e (01297 +V (01 ()
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H, = % [ [ dey ()9 (XIU (x = XY (< (x).
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