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Vladimir Aleksandrovich Fock (December 22, 1898 — December 27, 1974) was a
Soviet physicist, who did foundational work on quantum mechanics and quantum
electrodynamics. His primary scientific contribution lies in the development of quantum
physics, although he also contributed significantly to the fields of mechanics, theoretical
optics, theory of gravitation, physics of continuous media. In 1926 he derived the Klein—
Gordon equation. He gave his name to Fock space, the Fock representation and Fock
state, and developed the Hartree—Fock method in 1930. He made many subsequent
scientific contributions, during the rest of his life. Fock developed the electromagnetic
methods for geophysical exploration in a book The theory of the study of the rocks
resistance by the carottage method (1933); the methods are called the well logging in
modern literature. Fock made significant contributions to general relativity theory,
specifically for the many body problems.
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1. Introduction

What is the definition of the second quantization? In quantum mechanics, the system
behaves like wave and like particle (duality). The first quantization is that particles
behave like waves. For example, the wave function of electrons is a solution of the
Schrodinger equation. Although electromagnetic waves behave like wave, they also
behave like particle, as known as photon. This idea is known as second quantization;
waves behave like particles.

Instead of traditional treatment of a wave function as a solution of the Schrodinger
equation in the position representation or representation of some dynamical observable,
we will now find a totally different basis formed by number states (or Fock states). This
basis turns out to be a convenient and powerful tool to treat the systems of identical
particles

2. Significance of the second quantization for many particle systems?

By convention, the original form of quantum mechanics is denoted first quantization,
while quantum field theory is formulated in the language of second quantization. Second
quantization greatly simplifies the discussion of many interacting particles. This approach
merely reformulates the original Schrodinger equation. Nevertheless, it has the advantage
that in second quantization operators incorporate the statistics, which contrasts with the
more cumbersome approach of using symmetrized or anti-symmetrized products of
single-particle wave functions.

The second quantization consists of the following three steps.

(a) One-particle Schrodinger equation
(first quantization, wave-character). The wave function is the eigenfunction of
on-particle Hamiltonian.
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(b) Creation and annihilation operators (CAP’s)
Commutation relation reflecting the symmetry of wave function (boson and
fermion). Commutation relation (boson) and anti-commutation relation (fermion).
Such commutation relations guarantee the symmetry of the wave function. This
means that we do not have to worry about the symmetry such as the Slater matrix
for fermions.

(c) Second quantization



By introducing the operators of creation and annihilation instead of the
coefficients of the one particle wave function. The new operator for the wave
function represents the character of particles.
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The state of many particles is represented by the occupation number state (the
Fock space)

3. What is the advantage of second quantization?

From a practical point of view, the resulting equations for systems with many
particles (the second quantization) are much simpler and more compact than the original
many-particle Schrodinger equation. Indeed, the original scheme operates with a wave
function of very many variables (the coordinates of all particles), which obeys a
differential equation involving all these variables. In the framework of second
quantization, we reduced this to an equation for an operator of one-single variable. Apart
from the operator “hats,” it looks very much like the Schrédinger equation for a single
particle, and is of the same level of complexity
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From an educational point of view, the advantage is enormous. To reveal it finally, let
us take the expectation value of
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and introduce the (deliberately confusing) notation
((r.o)=p(r.p,

Owing to the linearity of Eq.(1), the equation for the expectation value formally coincides
with
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However, let us put this straight: this equation is not for a wave function anymore. It is an
equation for a classical field. Without noticing, we have thus got all the way from
particles to fields and have understood that these concepts are just two facets of a single
underlying concept: that of the quantum field.

4. Properties of the Slater determinant (fermions)
The slater determinant for the fermion systems is given by the Slater determinant
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Because of the property of the determinant the sign changes when two columns are
interchanged.

((Example))
Obviously, it is necessary to specify for a fermion wave function the order in which

the single—particle states ‘/Ij> are occupied. For this purpose one must adhere to a strict
convention: the labelling of single—particle states by indices j = 1, 2..., must be chosen
once and for all at the beginning of a calculation and these states must be occupied

always in the order of increasing indices. A proper example is the two particle fermion
wave function
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5. Co-factor of the Slater determinant
We now start with the Slater determinant
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((Expansion formula))

where
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is equal to the number of occupied states up to the i-th.

((Note))
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for the conventional case (n, =n, =...=n,_; =1; occupied).
6. Creation and annihilation operator (fermions)

We now define the annihilation operator &, by
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The factors n; guarantee that if the state |l,> is not occupied, no particle can be newly

removed in that state. We also define the creation operator 4" by
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The factors (1—-n;) guarantee that if the state |ﬂ,,> is already occupied, a second particle

cannot be put into that state. No state can have an occupation number greater than one.
The commutation rules are now verified to be

where
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[A,BA]+:AB+BA, or {A,B} = AB+BA
is the anti-commutator of A and B . These relations can be proved as follows.
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What is really strange about the definitions is that they are subjective. They explicitly
depend on the way we have ordered the levels. We usually find it convenient to organize
the levels in order of increasing energy, but we could also choose decreasing energy or
any other order. The point is that the signs of the matrix elements of fermionic CAP’s
(creation and annihilation operators) are subjective indeed. Therefore, the CAP’s do not
purport to correspond on the choice of the level ordering. Therefore, the products
correspond to physical quantities (Nazarov and Danon).

7. The number operator (fermions)
The number operator for the i-th state is defined by
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The total number operator is defined by
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The number of operators belonging to different states commute,
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Consequently functions can be found that are simultaneously eigenfunctions of all these
number operators. It can be shown that
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8. Anti-commutation relation for fermion operator: simple case
((Schiff))
Find two matrices & and 4" that satisfy the following equations;
4’ =0, aa" +aa=1, N=4aa

Show that N> =N . Obtain explicit expressions for & and N in a representation in

which N is diagonal, assuming that it is nondegenerate. Can & be diagonalized in any
representation?

((Solution))



Using these relations, we get

A~

N2=4'aa*a=a'(1-a‘a)a=4

We also note that

[N,a]=-4, [N,a" ]=4".
((Proof))
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(ii)
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= a‘aa’
=a'(-a'a+1)
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Eigenket
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leading to the result,
N*=N
or
N =1, or0. (eigenvalues)

This is satisfied only for N =0 and N =1. Thus these are the eigenvalues of the number
operator N =4"4. We see that at most one particle can occupy the state |N> These

particles obey the Fermi-Dirac statistics.
We need the matrix elements of & and 4" .We now consider the eigenvalue problem
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Thus we have
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N)=(1-N)[N+1)
since (I-N)>=1-N.

Under the basis of {|0> and |1> }, we get the matrix element of & and 4",

the matrix representation of &, 4", and N is given by

P I (B NS (N (I E

N is a diagonal matrix, while & and 4" are not non-diagonal. The state vector is
expressed by

ol ol

Can & be diagonalized in any representation? Suppose that we have an eigenstate
such that
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Since &'+ 484" =1 we have
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However, this result contradicts with the relation
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9. Comparison between two formula for the CAP’s relation
Two expressions (a) the formula-I and (b) the formula II are compared.

) =0.

(a) Formula-I  (general definition)
&[N, n,,ng,.Ln LN e ) = (D0 Ly, ng,eLn L0 —1n n,)

ol lifpoeeees

MMy, N M M s N ) = (D)% (L= )N, N, N+ 10, )

(b) Formula-IT (simple case)

a

N)=N|N-1), &

N)=(1-N)[N +1)

with N?=N.

These expressions for the formula I and formula II are the same as those reported by
Schiff.

10. Examples for two and three fermions
The fermions obey the Pauli’s exclusion principle. We consider two fermions

occupying either the state |0> or state |l> There are four possible states;

0.0)=|0), ®[0),.

0.1)=[0), ®1),,

10)=[1), ®]0),.

LD =(1), ®[1),,

We introduce the creation and annihilation operators {&,, 4,", &,, &," }, such that
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We consider the interchange of particles.
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particles in level 2

0 1 2

particles in level 1

There are many different ways to create the state

1,1> from the state

0,0> using creation

+

and annihilation operators: &,'4" (gray arrows), 44, (dotted arrows), and

4,8,4,74,"4,"4," (black arrows).

11. Quantum field operator for fermion
We define the quantum field operator by
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These satisfy the following anti-commutation relations
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The first rule can be proved as follows.
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((Note))
Physical meaning of 4" (x)|0) (R.A. Jishi)

W' (X) is defined as the operator that create a particle at the position X.
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12. Second quantization based on the quantum field operator
(a) The expansion formula I of Slater determinant
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(b) Annihilation operator
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(c) Quantum field operator
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(d) Second quantization:
From the above equations we can calculate
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By induction, we have
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where A denotes the anti-symmetrizing operator. The Fox state can be expressed by
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where we use the closure relation Idx1---_[dxn|X1>X2>X3>---aXn; n><x1,X2,X3,...,X

will show that
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satisfies the Schrodinger equation of many-particle system. So the method of second
quantization is an appropriate method for discussing the many-body problem.

13.  Expressions of <X1,X2,...,Xn Xl',Xz',...,Xn'>

In general, we have
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In general (lemma), we have
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where the sum is to be taken over all permutations P, of the co-ordinates X, X,,..., X,
sgn(P,) is the sign of the permutation. For bosons, sgn(P,) =1. For fermions, sgn(P,) =1
if the permutation is even and sgn(P,)=-1 if it is odd (Merzbacher, Quantum

Mechanics).

14. One-particle state and two-particle state using the quantum field operator
The occupation operator is defined by
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N = Zék+é| J‘dx<¢k 1 X)(X|d)
Zék+é| "
= Zék+ék
=>'N,
”
and

l\A||nl=nz Nyyeees Ny N5 >

39° |5 9n57n>

—anlnp UNSLRRN L)

= N|n1,n2,n3,...,ni,..., ng;n)

So the definition of the operator N is appropriate.
The commutation relations (but not the anti-commutation relation) are given by
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So (/}+(X)|0> is the eigenket of N with the eigenvalue 1. It is the one-particle state.
Similarly
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is the n-particle ket state. In other words,
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is the n-particle bra state.

15.  Representation of operators

We consider the matrix representation of the operator F

(X)X e Xy [P X Xy X ) = (X = X, NS (Ky = Xy ). (X, =X, YF (X5 Xy ypens X))
Using the basis,
A 1 At At A .
A|X1,X2,....;n>:ﬁl// (X" (Xy).... (Xn)|0>F (fermions)

Ny, = J‘dx1 ..... jdxnjdxl' ..... jdxn'<n1',n2',...

(%' Xy e xn'|lf|xl,xz,,...,xn><xl,x2,,...,xn In,n,....)

X%y s X, )

X0 X X DF (X Xy ey X )X X Xy [, 1,.00)

29900y Ny

el OO (K)o (X))

:Hj'dx1 ..... jdxn<nl',n2',...
F (X0 X000 X, )(0

OO ()t (%) s M)

vanishing component only on the no-particle state |0> . Note that



(0, e 7 (O (K)ot T OO F (X X X W (KO (X)o7 (X )| M5 D)
=300y e T X (Xt T OO F (X X e X[ KK ) (K K e
kv

(00, 7 (X (K)o T (XD F (X, X005 X, )| 0)(0
N, e X (X et ()] O)F (X, Xy 00 X, )(O

geee

(a) Suppose that F(X;,X,,,...,X,) is given by the form

F (X5 Xysseen X, ) = Z f(x)
i=1

Then we get

(n';n,',...

which can be simplified since the integration yields the number operator N . The
integration over X; yields

[ () =N
Using this, we have the integrant after the integration over X;,

OO X )t (0) FOING (). ()|, )
:Idx2 ..... jdxn<n1',n2',...|1/}+(xn)y}+(xn_1)...1/}+(x2)f(xn)l/}(xz) ..... v (x,)|n.n,,...)

the number operator

[ACSTZCS TR

o)



Using this, we get

) % )T 06) FOONG ). (X))

X)W X)) £ OGP OG- 47 (X))

=2(n/,n,",...

n,N,,...)

since Nt/}(x3) ..... l/?(xn)nl,nz,...> is the two-particle state. After integrating over the

variables Xi, X2, ..., Xn-1, W€ get

(=D dx ("0, e 7 ) F O (X))
which leads to
A 1< s N
(n',n,",..[F|np,n,,.0) :Hz<nl',n2',....[dxll// (x) FOOw(x)|np,n,....)
i=1
=<n1',n2',...jdxy}+(x)f(x)y}(x) n,n,....

or
F = [dxyp " (00 F 00y (x)

(b) Suppose that F is given by the form

1
F (X Xyees Xg) = DV (X, X;) ZEZV(X“XJ)
i<j i)
i#]

The matrix element:

1

(n,n,..[F|n,n,...) =m<nl',nz',... ;jdxijdsz/}*(xi)z/}*(xj)V(xi,xj)zﬁ(xj)z/}(xi) NNy,
=(n',n,",... %jdx'jdxvr(x')w(x)V(x, X W ()Y (XN, 1, )

So that



E - % Jax'[ axi () OV (x, X ()9 (x)

The order of " (X" (X)w(X)w(X') is of importance since it implies that there is no self-

interaction [i.e., there is not form such as V (X, X.) ]. This form guarantees the hermiticity

of the operator F in the Fock space.
Then the Hamiltonian in the Fock space is given by

H=H,+H,
with

i, = [k 01—V +V 01700
2u

F, = e[ (<" 0V (X W 003 ()

16. Simultaneous eigenket of H and N
Since

we have a simultaneous eigenket;

‘P(”)(t)> =[n,ny,....t)
H[P ™ (1)) = ih%\\y“ﬂ(t)} :

N|w® (1)) = N[¥ (1))

Note that



where
lI’(n)(xp Xy 5eer X3 1) = <X1’ Xyrees X | M nz""t>
:<X13X2=""Xn \P(n)(t)>
:ﬁwlt/?(xl)v?(xz) ----- 7 (%,)| ¥ (D)
((Note))
ﬁ@ 5 OO ().t ()| (1))

:ﬁjdxlv ..... IdX”'\P(n)(Xl"XZV""?Xn';t)<0

OO (K eead X (6,7 (X, )t (%,)]O)

We need to calculate

(O X () -we et (X (%, W (%, )-8 ()] )

For example, we consider the simple case (for fermions)

1 R . 1
T3 O OOp ) == {0

zﬁ(xnmxz)% [ [, "2 (3,9 06 (%] 0)

_ %jdxl'jdxz"l’(z)(xl',xz')<0

W OO (%) (%, W (%,)]0)
= %Idxl'jdxz'\}’m(xl")(2')[5()(2 —%,)8(X = X,") =5 (X, — % NS(X = X,")]

1
= E[T(Z)(Xl 5 Xz) - lP(Z)(Xza Xl)]

which corresponds to the antisymmetric wave function for fermions, where



00) = o 000 00 5 )o).

and

(07 )7 O ) (% W (%,1)]0) = (O (X A ()07 (%, D], =97 (%, W ()37 (%, )] 0)
= (0 (X)) {8 (X, =X, ) =" (%, W (X)) 17" (%, )] 0)
= 506 =X, )0 () (%,)]0) = (07 (X )7 (%, W (X )y * (%,)]|0)
= 5% =% )ORY ()17 ()], —w" (X" W (x)}{0)
=07 O )7 (D7 ()24 ()] =9 (%, W (X,)|0)
= 5(X, =%, )8(X —X,") = 5%, =X WO (x 7 " (x,")]0)
= 5(X, = %)X = %,") =50, = X WOR Y (X)W (GN]. =97 (%, W (%)}{0)
=0(X, = X,")0(X, = X,") =0 (X, = X,")O(X, = X,")

In general case

' ' ' 1 ' ' '
(X X e X [ X %y e X ) = 8 HZSgn(P)c?(Xl —X)I(X,'"=X,)...0(X,'=X.)
{P}
(fermion)

where the index F denotes the fermion. sgn(P) is equal to 1 for even permutation and is

equal to -1 for odd permutation.

17.  Commutation relation: [H , 7 (X)]=H " (x)

We use the notation
[A,B]= AB-BA
for the commutation relation. We show that
[Ho " ()]=H " (x)

((Proof))



[Ho " (x)]= [gekﬂk,gék,*qﬁk,*(xi )]
= ;emkv*(xi)mk,ak,*]
= kz’k;gkgﬁk,*(xi)ak*ak,k,
- gemﬁk*(xoa;

H(X, )‘/}+(Xi) = Hi(xi)z ak+¢k*(xi)
k

= ;ekczﬁk*(xi)ék.*
where
H 00O (%) = s (%)
[N,&. 1=8.8, ., [N,,4.]= 85,

((Note)) The proof of the following commutation relations are given before.
[N,4]=-4, [N,a" ]=4".
((Proof-1))

[Nk’é‘k'+] = ék+é‘ké‘k'+ _é‘k'+é‘k+é‘k
= ak+(_ék'+ak + 5k,k')_é'k'+é‘k+é‘k
=-4,4.,4 -4,4 4 +4, 5
=-4".8," 1.4 +4 5,

A+
=8, Oy

((Proof-2))



Using this relation,
[Ho " (x)]=H " (x)
we can calculate the following term

Hot7 " 0% 0687 ()] 0) = {[H 637" (X)]4+ 57 (%) H o147 06 )57 (%) 0)
= {H ()% (x)+5" (x)H ¥ " ()57 (x,)] 0)
=H (X 57" (%) (%) (%,)|0)

7" O)OH g (6)97 ()] 0)

The second term of this equation can be rewritten as

7 OH 8 ()0 (%)]0) = 17" (X)ATH 17 (%,)]+9* (%) H Ji7* (x,)[0)
=7 () {H (%) 7 (%) +177 (%, )H 1177 (%,)] 0)
=7 (X )H (X)W (%47 (%,)[0)

7 (X)W () H 5" (1,)]0)

Again the second term of this equation is

VOO () H 17 06)]0) =57 8 () ATH 87" ()] 4+ (%) H 1] 0)
=7 (X)W (%) H ()77 (%,)] 0)
5 () (%) (x)H |0)
=" (X)W (%) H ()77 (%,)] 0)

since H O|O> =0. Thus we have



Hoi7 " (60 () (%)]0) =H (x5 (% )7 (%, )7 (%,)]0)
9 OOH 009 ()9 (%] 0)
OO0 () H ()5 (%,)]0)

3
= Z H (X, )‘/;+(X1)'/}+(X2 )‘/}+(X3)|0>
i=1
In general we have
H o™ 000 0687 (6] 0) = 2 H o000 0 (%) (%] 0)
i=1
where
/R
Hoy(X) =——-—Vi" +V(X).
2m
Schrédinger equation for n-particle system,;
e,
|hay/(xl,x2,...,xn;t) =H_ w(X,X,,... X 5t),
where

Hon = iHO(Xi)

18. Application of H , operator on Schrédinger equation

Schrodinger equation

H®(t)) = ih§|‘1’(t)>, N|¥ (1)) = N|¥(t))



|h—|‘P(t) _fdx ..... [ dx,in— ‘P(”)(xl,xz, X3 DU (X)W (X)o7 (%)) 0).

Number operator:

N[ (1)) = jdx ..... jdx PO (X, Xy X DN (X W (X)o7 (%)] O).

Note that ¥ (X )" (X, )-- ¥ (X, )| 0> is the n-particle state.
Here we show that
2 0 \ym (n)
|h§‘1’ (X5 Xy X3 1) = H 7 (X, Xy e, X5 1)

((Simple case))
The Hamiltonian H is defined by

H=H,+H,
with
n -
H, = [dxy* (0L, V7 +V (Ol ()
and
h2
H,(X) = —V2+V(X)
2p
and

H,| ¥ (t) = jdx [ o, P2 (%, %5 H o " 06,07 (x)]0).

Using the relation



[H oy (x)]=H 7" (x) =" (x)H = Hy (x )9 (x,)

we have

H oW ()8 ()0 (x)]0) = {[H 87" (X)) (% )H o147 (%, )47 " (%,)]0)
=[H, ()57 (%) 57" (%) H 7" (%577 (%) 0)
=H (X" 067 ()57 (%,)] 0)
+7 " () H o7 (%977 (%)[0)

with

7 O)H 8 ()77 (%)]0) = 17 (%) {[H 07" ()14 8 (%,)H g} (x)[0)
=17 (X)[H (%) (%) +57 (%)H 7 (%)) 0)
=" () H ()9 (%9 (%)]0)

P O ()H 9 (%)]0)

W ()W (%) H 07 ()] 0) = 47 (X)W (%) {[H 177 (X149 (X )H }{0)
=7 (X)W (%) H (X9 (%) 0)
+ )T Q)W (%)H [0)

= l/9+(X3)l/}+(X2)H O(Xl)l/;+(xl)|0>

since H 0|0> =0. Thus we have

H oy ()0 065 ()] 0) = D H ()8 06 (0)97 (%)[0)
In general we have
Hoy " ()W (X))o ()]0) = D H (00 (XY (%) (%)]0)

where



H (x)_—;—zv +V (%)

For n particle system, we have

4 n 1 n ~+ A+
HO‘\P( )(t)>:ﬁjdxl...jdxn‘P‘ DXy Xgeees X s OH G (% )oend* (, )9* (%,)[0)

1 n ~ 4 ~
=—|J.dxl...J'dxn‘P( (X5 Xy penns n,t)ZH (O (X))ot (%) (X,)]0)

ﬁ\

Zn:jdx jdx PO (X, X s X3 D Ho OO (% )7 (X)) (%,)|0)

ijdx jdx PO (X, Xy, X 5[~ —v VO (X)eee ™ (%) (%)]0)

5l 5
- T

Il
—_

_[dx J.dx [— v 2V OTE ™ (X Xy ooy X O (X )oen (X)) ()] 0)

by partial integral with respect to variable X, such that

[ ™ (x, . ,n,t)[——v FV OO (%)

WV O 0, X O )

Finally we get

HO|\P(t)>=LZn: dx,... dxnzn:HO(xi)‘P(”)(xl,xz, S X D ()7 ()7 (%))|0)
Jni :

On the other hand,
0 n ~ 4 A+
|h—|‘P(t)> Wjdx ..... J'dx Ih&tT()(Xl’XZ’ DX O OO (%) (%)]0):

Then we find that W™ (X, X,,...,X,;t) satisfies the Schrédinger equation for n-particle
system;



ih%‘l‘(”)(xl,xz,---,xn;t) — Hon\P(n)(Xl,Xz,...,Xn;t) 5
where
n
Hon = z Ho(xi) .
i=1

19. Conclusion

The second quantization is very useful method for the many-particle (boson and
fermion). We do not have to solve the Schrodinger equation for many-particle systems
directly. Instead of that, we need to solve the Schrodinger equation for one-particle
systems. The quantum field operator can be obtained from the one-particle solution with
the creation and annihilation operators (CAP’s) depending on the nature of particles,
boson or fermion. The quantum state for the many particle system can be uniquely
determined by the combinations of quantum field operators which is acted on the Fox
state (vacuum state).

((One-particle state))

w (r) is the wave-function for on-particle state (first quantization)
v =2ah®, ¥ 0=234 X
k k

where @, (X) is the one-particle Schrodinger solution and a, is co-efficients.

((Quantum state))

The quantum field operator is
P00 =284, ¥ (0=2a 4 (X
where ¢, and €, are the annihilation and creation operators;
[4.8.'1, =16,  [4.8.], =[4,4,'1, =0  for fermions

The quantum state of the many-particle can be expressed by the Fock state



‘\P(”)(t)> =[n,n,,ny,...n;..)
= Idxl...fdxn|xl,xz,x3,...,xn; (X0 Xy, Xgeves X3 N[N, N5 )

= .. [ A (%0 X,50)

Xis Xy s X peves X3 1)
with

PO (X, X X3 ) = Xy Xy Xy vy X3 N[N, N, My, )

O (1))

P (X, X,,..., X ;1) satisfies the Schrodinger equation for the n-particle system
o (n) 2 (n) .
|ha\P (X5 Xy ey X5 1) = HPV (X, X, .0, X 5 1)

where H =H,+ H, is the Hamiltonian of the many particle system. The many-body

problem in quantum mechanics is equivalent to the quantum field theory above described.
Using the quantum field operator, the Hamiltonian is given by

H, = [y (022 +V (001 (0
2pu

H, = % [l [ dxs (o (x)U (x = X (K ().
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APPENDIX Second quantization

Sin-itiro Tomonaga (Nobe Prize Laureate, 1965, with Julian Schwinger and Richard
Feynman), from the book titled as The Theory of Spin (University of Chicago, 1997).

In the above book by Prof. Tomonaga, I found his surprising comment (of Prof.
Tomonaga) when he had the first encounter with two papers concerning on the second
quantization.

“A little bit later, I met with Yukawa (Prof. Hideki Yukawa, Nobel Laureate,
prediction of meson, 1949) in the library (Kyoto University), where he opened on a table
the issues of Zeitschrift fiir Physik in which the Jordan-Klein paper and the Jordan-
Wigner paper were published and informed me that there was this surprising work that, if
v in the three-dimensional space is quantized by the canonical commutation relation or
anticommutation relation, then we could obtain exactly the same conclusion as when we
took the symmetric or antisymmetric wave function using y in configuration space.
Thus I also read those papers right away and found that the murky problem of three
dimensional wave versus multidimensional wave had been completely and elegantly
answered.”

P. Jordan and O. Klein, Z. Phys. 45, 752 (1927).
P. Jordan and E.P. Wigner, Z. Phys. 47, 631 (1928).



