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Vladimir Aleksandrovich Fock (December 22, 1898 – December 27, 1974) was a 
Soviet physicist, who did foundational work on quantum mechanics and quantum 
electrodynamics. His primary scientific contribution lies in the development of quantum 
physics, although he also contributed significantly to the fields of mechanics, theoretical 
optics, theory of gravitation, physics of continuous media. In 1926 he derived the Klein–
Gordon equation. He gave his name to Fock space, the Fock representation and Fock 
state, and developed the Hartree–Fock method in 1930. He made many subsequent 
scientific contributions, during the rest of his life. Fock developed the electromagnetic 
methods for geophysical exploration in a book The theory of the study of the rocks 
resistance by the carottage method (1933); the methods are called the well logging in 
modern literature. Fock made significant contributions to general relativity theory, 
specifically for the many body problems. 
https://en.wikipedia.org/wiki/Vladimir_Fock 
 

 
 



 
1. Introduction 

What is the definition of the second quantization? In quantum mechanics, the system 
behaves like wave and like particle (duality). The first quantization is that particles 
behave like waves. For example, the wave function of electrons is a solution of the 
Schrödinger equation. Although electromagnetic waves behave like wave, they also 
behave like particle, as known as photon. This idea is known as second quantization; 
waves behave like particles. 

Instead of traditional treatment of a wave function as a solution of the Schrödinger 
equation in the position representation or representation of some dynamical observable, 
we will now find a totally different basis formed by number states (or Fock states). This 
basis turns out to be a convenient and powerful tool to treat the systems of identical 
particles 
 
2. Significance of the second quantization for many particle systems?  

By convention, the original form of quantum mechanics is denoted first quantization, 
while quantum field theory is formulated in the language of second quantization. Second 
quantization greatly simplifies the discussion of many interacting particles. This approach 
merely reformulates the original Schrödinger equation. Nevertheless, it has the advantage 
that in second quantization operators incorporate the statistics, which contrasts with the 
more cumbersome approach of using symmetrized or anti-symmetrized products of 
single-particle wave functions.  
 
The second quantization consists of the following three steps. 
 
(a) One-particle Schrödinger equation 

(first quantization, wave-character). The wave function is the eigenfunction of 
on-particle Hamiltonian. 
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(b) Creation and annihilation operators (CAP’s) 

Commutation relation reflecting the symmetry of wave function (boson and 
fermion). Commutation relation (boson) and anti-commutation relation (fermion). 
Such commutation relations guarantee the symmetry of the wave function. This 
means that we do not have to worry about the symmetry such as the Slater matrix 
for fermions.  

 
(c) Second quantization 



By introducing the operators of creation and annihilation instead of the 
coefficients of the one particle wave function. The new operator for the wave 
function represents the character of particles.  

 




 )(ˆ)(ˆ xax ,    


  )(ˆ)(ˆ xax  

 
The state of many particles is represented by the occupation number state (the 
Fock space) 

 
3. What is the advantage of second quantization? 

From a practical point of view, the resulting equations for systems with many 
particles (the second quantization) are much simpler and more compact than the original 
many-particle Schrödinger equation. Indeed, the original scheme operates with a wave 
function of very many variables (the coordinates of all particles), which obeys a 
differential equation involving all these variables. In the framework of second 
quantization, we reduced this to an equation for an operator of one-single variable. Apart 
from the operator “hats,” it looks very much like the Schrödinger equation for a single 
particle, and is of the same level of complexity 
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From an educational point of view, the advantage is enormous. To reveal it finally, let 
us take the expectation value of  
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and introduce the (deliberately confusing) notation 

 

),(),(ˆ trtr   , 

 

Owing to the linearity of Eq.(1), the equation for the expectation value formally coincides 
with  
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However, let us put this straight: this equation is not for a wave function anymore. It is an 
equation for a classical field. Without noticing, we have thus got all the way from 
particles to fields and have understood that these concepts are just two facets of a single 
underlying concept: that of the quantum field. 
 
4. Properties of the Slater determinant (fermions) 

The slater determinant for the fermion systems is given by the Slater determinant 
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}0...,1....{ 2121   snnn nnnnnn  (conventional form) 

 

with the number of occupation; } ,..., , ,,..., , ,{ 11321 siii nnnnnnn   for one-particle states 

)1( , )2( , )3( ,…, which are different. Obviously, the fermion wave function 

changes sign when one exchanges the order of the occupancy. To prove this property we 
notice that the l.h.s. (left-hand side) of Eq.(1) corresponds to 
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Because of the property of the determinant the sign changes when two columns are 
interchanged. 
 
((Example)) 

Obviously, it is necessary to specify for a fermion wave function the order in which 

the single–particle states j  are occupied. For this purpose one must adhere to a strict 

convention: the labelling of single–particle states by indices j = 1, 2…, must be chosen 
once and for all at the beginning of a calculation and these states must be occupied 
always in the order of increasing indices. A proper example is the two particle fermion 
wave function 
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((Fermions)) Energy levels and states 
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5. Co-factor of the Slater determinant 

We now start with the Slater determinant 
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we have 
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or more formally, 
 







 

1
113211132

)(
1

321321

1; ,...,,1,,...,,,1 ,...;,,,...,,)1(
1

; ,....,,...,,, ;,...,,,

i
siiiiii

s
i

i

sin

nnnnnnnnnxxxxxnx
n

nnnnnnnxxxx

i

 
((Expansion formula)) 
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is equal to the number of occupied states up to the i-th. 
 
((Note)) 
 

1 isi  

 

for the conventional case ( 1... 121  innn ; occupied). 

 
6. Creation and annihilation operator (fermions) 

We now define the annihilation operator iâ  by 
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The factors in  guarantee that if the state i  is not occupied, no particle can be newly 

removed in that state. We also define the creation operator 
iâ  by 
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The factors )1( in  guarantee that if the state i  is already occupied, a second particle 

cannot be put into that state. No state can have an occupation number greater than one. 
The commutation rules are now verified to be 
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where 



 

ABBABA ˆˆˆˆ]ˆ,ˆ[  , or ABBABA ˆˆˆˆ}ˆ,ˆ{   

 

is the anti-commutator of Â  and B̂ . These relations can be proved as follows. 
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and 
 

nnnnnnnnnnnnnnnnaa siiisiiiii ; ,....,,,,...,,,; ,....,,,,...,,,]ˆ,ˆ[ 1132111321 
   

 
or 
 

1̂]ˆ,ˆ[ 


ii aa  

 
since 
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and 
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Note that 
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((Note)) 

What is really strange about the definitions is that they are subjective. They explicitly 
depend on the way we have ordered the levels. We usually find it convenient to organize 
the levels in order of increasing energy, but we could also choose decreasing energy or 
any other order. The point is that the signs of the matrix elements of fermionic CAP’s 
(creation and annihilation operators) are subjective indeed. Therefore, the CAP’s do not 
purport to correspond on the choice of the level ordering. Therefore, the products 
correspond to physical quantities (Nazarov and Danon). 
 
7. The number operator (fermions) 

The number operator for the i-th state is defined by 
 

iii aaN ˆˆˆ  . 

 
We note that 
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The total number operator is defined by 
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The number of operators belonging to different states commute, 
 



0ˆˆˆˆ]ˆ,ˆ[  ijjiji NNNNNN  

 
Consequently functions can be found that are simultaneously eigenfunctions of all these 
number operators. It can be shown that 
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and 
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8. Anti-commutation relation for fermion operator: simple case 

((Schiff)) 

Find two matrices â  and â  that satisfy the following equations; 
 

0ˆ2 a , 1̂ˆˆˆˆ   aaaa ,  aaN ˆˆˆ   
 

Show that NN ˆˆ 2  . Obtain explicit expressions for â  and N̂  in a representation in 

which N̂  is diagonal, assuming that it is nondegenerate. Can â  be diagonalized in any 
representation? 
 
((Solution)) 
 



aaN ˆˆˆ  , 0ˆ2 a  
 

1̂ˆˆˆˆ   aaaa  
 
Using these relations, we get 
 

NaaaaaaaaaaaaaaaN ˆˆˆˆˆˆˆˆˆ)ˆˆ1̂(ˆˆˆˆˆˆ 2    

 
We also note that 
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((Proof)) 
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since 0ˆ2 a . 
 
(ii) 
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since 0ˆ2 a . 
 
Eigenket 
 

NNNN ˆ  

 



NNNN ˆˆ 2   

 
leading to the result, 
 

NN 2  
 
or 
 

1N , or 0.  (eigenvalues) 
 
This is satisfied only for 0N  and 1N . Thus these are the eigenvalues of the number 

operator aaN ˆˆˆ  . We see that at most one particle can occupy the state N . These 

particles obey the Fermi-Dirac statistics.  

We need the matrix elements of â  and â .We now consider the eigenvalue problem 
 

NaNNaaN ˆˆˆˆ(   

 
or 
 

NaNNaN ˆ)1(ˆˆ   

 

So Nâ  is the eigenket of N̂  with the eigenvalue )1( N , 

 

1ˆ  NcNa  

 
The constant c is determined as follows, 
 

1ˆ  NcNa , 1ˆ *  NcaN  

 
or 
 

NcNaaN  2
ˆˆ  

 
or 
 

Nc 2
 



 
Thus we have 
 

1ˆ  NNNa  

 
except for a phase factor of modulus unity. We note that 
 

1ˆ  NNNa  

 

since NN 2 . Similarly, we get 
 

NaNNaaN   ˆˆˆˆˆ( . 

 
or 
 

NaNNaN   ˆ)1(ˆˆ( , 

 

So Naˆ  is the eigenket of N̂  with the eigenvalue )1( N , 

 

1'ˆ  NcNa  

 

Since *'1ˆ cNaN  , we get 

 
2
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or 
 

Nc  1'  

 
Then we have 
 

11ˆ  NNNa  

 
We note that 
 



1)1(ˆ  NNNa  

 

since NN  1)1( 2 .  

 

Under the basis of { 0  and 1 }, we get the matrix element of â  and â , 

 

01ˆ a , 00ˆ a , 01ˆ a , 10ˆ a  

 

the matrix representation of â , â , and N̂  is given by 
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N̂  is a diagonal matrix, while â  and â  are not non-diagonal. The state vector is 
expressed by 
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Can â  be diagonalized in any representation? Suppose that we have an eigenstate 

such that 
 

'''ˆ aaaa   

 
Then we have 
 

0'''ˆ 22  aaaa   

 

since 0ˆ2 a . So we have 0'ˆ aa .  

 

Since 1̂ˆˆˆˆ   aaaa  we have 
 

1'''ˆˆˆˆ'   aaaaaaaa ,  

 
or 
 



1'ˆˆ'  aaaa . 

 
However, this result contradicts with the relation  
 

0'ˆ""ˆ''ˆˆ'
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a

aaaaaaaaaa , 

 
since 
 

0"ˆ' aaa .  

 
9. Comparison between two formula for the CAP’s relation 

Two expressions (a) the formula-I and (b) the formula II are compared. 
 
(a) Formula-I (general definition) 
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(b) Formula-II (simple case) 
 

1ˆ  NNNa , 1)1(ˆ  NNNa  

 

with NN 2 . 
 
These expressions for the formula I and formula II are the same as those reported by 
Schiff. 
 
10. Examples for two and three fermions 

The fermions obey the Pauli’s exclusion principle. We consider two fermions 

occupying either the state 0  or state 1 . There are four possible states; 

 

21
000,0  ,

21
101,0  , 

21
010,1  ,

21
111,1  , 

 

We introduce the creation and annihilation operators { 1̂a , 
1â , 2â , 

2â }, such that 

 



0,10,01̂ a , 1,11,0ˆ1 a  

 

00,1ˆ1 a ,  01,1ˆ1 a  

 

00,01̂ a ,  01,01̂ a  

 

0,00,1ˆ1 a ,  1,01,11̂ a  

 

1,00,0ˆ2 a , 01,0ˆ2 a  

 

1,10,1ˆ2 a , 01,1ˆ2 a  

 

00,0ˆ2 a ,  0,01,0ˆ2 a  

 

00,1ˆ2 a ,  0,11,1ˆ2 a  

 
We consider the interchange of particles. 
 

0,11,1ˆ2 a  

 

1,00,0ˆ0,1ˆˆ 212   aaa  

 

1,0ˆ0,0ˆˆ1,1ˆˆˆˆ 1212121
  aaaaaaa  

 



 
 

There are many different ways to create the state 1,1  from the state 0,0  using creation 

and annihilation operators: 
12 ˆˆ aa (gray arrows), 

21 ˆˆ aa  (dotted arrows), and 


221121 ˆˆˆˆˆˆ aaaaaa  (black arrows). 

 
11. Quantum field operator for fermion 

We define the quantum field operator by 
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These satisfy the following anti-commutation relations 
 

)'( 1̂)]'(ˆ ),(ˆ[ xxxx 
   

 

0)]'(ˆ ),(ˆ[)]'(ˆ ),(ˆ[  


 xxxx   

 



The first rule can be proved as follows. 
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((Note)) 

Physical meaning of 0)(ˆ x  (R.A. Jishi) 

 

)(ˆ x  is defined as the operator that create a particle at the position x. 
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or 
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where 
 

)(0ˆ i
ia   

 
12. Second quantization based on the quantum field operator 
(a) The expansion formula I of Slater determinant 
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(b) Annihilation operator 
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(c) Quantum field operator 
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(d) Second quantization: 
From the above equations we can calculate 
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In other words, we have 
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By induction, we have 
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where A denotes the anti-symmetrizing operator. The Fox state can be expressed by 
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where we use the closure relation 1̂ ;,...,,, ;,...,,,... 3213211  nxxxxnxxxxdxdx nnn . We 

will show that 
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satisfies the Schrödinger equation of many-particle system. So the method of second 
quantization is an appropriate method for discussing the many-body problem. 
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In general (lemma), we have  
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where the sum is to be taken over all permutations nP  of the co-ordinates nxxx ,...,, 21 , 

)sgn( nP  is the sign of the permutation. For bosons, 1)sgn( nP . For fermions, 1)sgn( nP  

if the permutation is even and 1)sgn( nP  if it is odd (Merzbacher, Quantum 

Mechanics). 
 
14. One-particle state and two-particle state using the quantum field operator 

The occupation operator is defined by 
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So the definition of the operator N̂  is appropriate. 
The commutation relations (but not the anti-commutation relation) are given by 
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Thus we get 
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15. Representation of operators 

We consider the matrix representation of the operator F̂  
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which can be simplified since the integration yields the number operator N̂ . The 
integration over x1 yields  
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The order of )'(ˆ)(ˆ)(ˆ)'(ˆ xxxx    is of importance since it implies that there is no self-

interaction [i.e., there is not form such as ),( ii xxV ]. This form guarantees the hermiticity 

of the operator F in the Fock space. 
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16. Simultaneous eigenket of Ĥ  and N̂  
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which corresponds to the antisymmetric wave function for fermions, where 
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In general case 
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where the index F denotes the fermion. )sgn(P  is equal to 1 for even permutation and is 

equal to -1 for odd permutation. 
 

17. Commutation relation: )(ˆ)](ˆ ,ˆ[ 0 ii xHxH     

We use the notation  
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Using this relation, 
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19. Conclusion 

The second quantization is very useful method for the many-particle (boson and 
fermion). We do not have to solve the Schrödinger equation for many-particle systems 
directly. Instead of that, we need to solve the Schrödinger equation for one-particle 
systems. The quantum field operator can be obtained from the one-particle solution with 
the creation and annihilation operators (CAP’s) depending on the nature of particles, 
boson or fermion. The quantum state for the many particle system can be uniquely 
determined by the combinations of quantum field operators which is acted on the Fox 
state (vacuum state).  
 
((One-particle state)) 
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where 10 HHH   is the Hamiltonian of the many particle system. The many-body 

problem in quantum mechanics is equivalent to the quantum field theory above described. 
Using the quantum field operator, the Hamiltonian is given by 
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APPENDIX  Second quantization 
 
Sin-itiro Tomonaga (Nobe Prize Laureate, 1965, with Julian Schwinger and Richard 
Feynman), from the book titled as The Theory of Spin (University of Chicago, 1997).  
 
In the above book by Prof. Tomonaga, I found his surprising comment (of Prof. 
Tomonaga) when he had the first encounter with two papers concerning on the second 
quantization. 
 

“A little bit later, I met with Yukawa (Prof. Hideki Yukawa, Nobel Laureate, 
prediction of meson, 1949) in the library (Kyoto University), where he opened on a table 
the issues of Zeitschrift für Physik in which the Jordan-Klein paper and the Jordan-
Wigner paper were published and informed me that there was this surprising work that, if 
  in the three-dimensional space is quantized by the canonical commutation relation or 

anticommutation relation, then we could obtain exactly the same conclusion as when we 
took the symmetric or antisymmetric wave function using   in configuration space. 

Thus I also read those papers right away and found that the murky problem of three 
dimensional wave versus multidimensional wave had been completely and elegantly 
answered.” 
 
P. Jordan and O. Klein, Z. Phys. 45, 752 (1927). 
P. Jordan and E.P. Wigner, Z. Phys. 47, 631 (1928). 


