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7.1

7.1 Liquid helium makes a transition to a macroscopic quantum fluid, called superfluid
helium, when cooled below a phase-transition temperature T = 2.17K. Calculate
the de Broglie wavelength A = h/p for helium atoms with average energy at this
temperature, and compare it to the size of the atom itself. Use this to predict the
superfluid transition temperature for other noble gases, and explain why none of
them can form superfluids. (You will need to look up some empirical data for these
elements.)

((Solution))
We assume that the kinetic energy is given by

The momentum p is obtained as

p =+3Mk,T
Then the de Broglie wavelength is

___h

h
p 3Mk,T

For He atom, A =8.5729 A. This value of A is much larger than the size of He atom (0.62 A).
In contrast, we make a plot of the de Broglie wavelength for He and Ne as a function of temperature.
For Ne, the de Broglie wavelength is on the same order as the size of Ne atom (
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From this figure, we have 7'= 0.43 K when the de Broglie length for Ne atom is equal to that that
of He gas (8.5729 A) at the critical temperature ;= 2.17 K.

((Mathematica))



Clear["Global *"];
rulel = {kB- 1.3806504 x107*°, NA » 6.02214179x 10%,

c->2.99792x10", 7> 1.054571628 107,

me » 9.10938215 10°%, mp > 1.672621637x 1072,
mn - 1.674927211x10°%*, gqe » 4.8032068x 107,
eV > 1.602176487x10*%, A > 1078,

amu - 1.660538782x 107} ; E1 = % kB T;

pl=+3MLkBT;

MHe = 4.002602 amu; Tl =2.17;

A
AHe = 3 /. {M1 - MHe} //. rulel

12.6287

VT

AHe /. T>T1

8.5729



MNe = 20.1797 amu;
A
ANe = z /. {M1 > MNe} //. rulel;

fl = Plot[{AHe, ANe}, {T, 0, 30},
PlotStyle -» {{Red, Thick}, {Blue, Thick}}];
f2 =
Graphics|
{Text[Style["T(K)", Black, 12, Italic],
{29, 1.5}], Text[Style["He", Black, 12, Italic],
{10, 4.7}], Text[Style["Ne", Black, 12, Italic],
{10, 1.3}],
Text[Style["A(A)", Black, 12, Italic], {2, 8}],
Line[{{2.17, 0}, {2.17, 8}}1}1;
Show[fl, £2]
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7.2

7.2 (a) Nidentical spin :'! particles are subjected to a one-dimensional simple harmonic-
oscillator potential. Ignore any mutual interactions between the particles. What
is the ground-state energy? What is the Fermi energy?

(b) What are the ground-state and Fermi energies if we ignore the mutual interac-
tions and assume N to be very large?

((Solution))
(a)

E,:  Ground state energy
E,: Fermi energy

(1) For even N,
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(b)
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n=0
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7.3

7.3 Itis obvious that two nonidentical spin | particles with no orbital angular momenta
(that is, s-states for both) can form j =0, j = 1, and j = 2. Suppose, however, that
the two particles are identical. What restrictions do we get?

((Solution))
We suppose that two particles (S'= 1) are identical. The particle with S =1 is boson

|'// > 4 orb[tal> Zspm>

|y) is symmetric with respect to interchange of two particles.

1//0,,,,.,“,> is symmetric because these two particles have no orbital angular momentum.

Therefore

;(spm> should be symmetric.
D/ xD,=D,+D, +D,
J=2 (symmetric)

j=2m=2)=
1
72
1
\/g(
1
7

2,-2)=|-1,-1)

L1)

0,1) +[1,0)]

2,1)=

2,0)=

L=1)+|-L1) ++2

0,0))

2,-1)=

0,~1)+|-1,0)]

J=0  (antisymmetric)

|j=Lm=1) =%( 1,0)—|0,1)]
1

1,0) = f( 1L-1)—|-L1))

1-1) = L 0,-1)—|-1,0)]

NG



J=0  (symmetric)

L-1)+|-11) -

|j:0,m:0>:%( 0,0))

Therefore, J =2 and J = 0, which is symmetric with respect to the interchange of two particles,
are allowed.

7.4

7.4 Discuss what would happen to the energy levels of a helium atom if the electron
were a spinless boson. Be as quantitative as you can.

((Solution))

If the electron is a boson, not having spin, the total wave function should be symmetric for the
interchange of two electrons. There are two cases.

(1) Triplet spin states (symmetric, Ortho) and symmetric spatial wave function.

Ground state: |1s) [1s).,

Excited state: |1s>1|2s>2 +| 2s>1|1s>2

(2) Singlet spin state (antisymmetric, Para) and antisymmetric spatial wave functions.

Excited state: |1s>1|2s> 5 —|2s>1|1s> 5

Then we have the matrix of ¥ under the basis of {|1s, 2s>, 2s, 1s>} as

~ (J K 1 0 0 1 - .
V= =J +K =J1+ Ko,
& 5 o)

where

J= <1s, 2S|I}|1S, 2s>



K= <1s, 2s|1}| 2s, 1s>
The eigenvalue problem:

V|+x> =(Ji+K&x)|+x> =(J +K)|+x)

where
|[+x)= %[ Is, 25)+|2s,1s)] (symmetric orbital state;)
with the eigenvalue J + K
V|-x)=(J1+K6,)|-x)=(J —K)+x)
where
|- x) = %[ Is, 2s) —|2s, 1s)] (antisymmetric orbital state)

with the eigenvalue J — K

((Energy diagram))
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7.5 Three spin 0 particles are situated at the corners of an equilateral triangle (see the
accompanying figure). Let us define the z-axis to go through the center and in the
direction normal to the plane of the triangle. The whole system is free to rotate
about the z-axis. Using statistics considerations, obtain restrictions on the magnetic
quantum numbers corresponding to J..

((Solution))

) =[J.m)
ly') = eXp(—éjﬁ) v)
= exp(—émh 0)| 1//>
= exp(—im 0)| 1//>
When 6 = 2z
3
') =[7.m)

because of the symmetric wave function (boson).



So we have

m=3n (n: integer)

7.6

7.6 Consider three weakly interacting, identical spin 1 particles.

(a) Suppose the space part of the state vector is known to be symmetrical under
interchange of any pair. Using notation |+)|0)|+) for particle 1 in m; = +1,
particle 2 in m; = 0, particle 3 in m; = +1, and so on, construct the normalized
spin states in the following three cases:

(i) All three of them in |+).
(ii) Two of them in |+), one in |0).
(iii) All three in different spin states.
What is the total spin in each case?
(b) Attempt to do the same problem when the space part is antisymmetrical under
interchange of any pair.
((Solution))
Since the particle has a spin 1,

1//> is symmetric (boson)

|!//> = ‘l//xpace> lspin>

(a)

Suppose that ‘y/ww> is assumed to be symmetric. Then ‘ ;(spm> should be symmetric.

(D, xD,)xD, =(D, +D,+ D,)x D,
:(Dz ><D1)+(D1 ><D1)+(D0XD1)

(i)  All three of them in |+) = |m, =1)

(i)  Two of them in |+) =|m, =1). and one in |0) =|m, =0)

N

16) =%[|0>|+>|+>+|+>|0>I+>+|+>|+>|0>]



(ii1))  All three in different spin states

|7)= %[I O+ =) +[+0) =) +[+1=10)
+HO)) +[=10)+) + [ +)0)]

A

() J|a)=30Ha), J’le) =121| @)
leading to j =3 and m = 3.

i) J[g)=20p).  Jp)=120p)
leading to j =3 and m = 2.

7)=00y), J*(y) =8l ) +Jon’|0)o)lo)

m=0but |) is not an eigenstate of J>

(i) J,

(b) Suppose that ;(Spm> should be

1//WC€> is assumed to be antisymmetric. Then

antisymmetric. All states should be different.

For (i) and (ii), it is impossible to construct the spin states.

For (iii)
1|+>1 |0>1 |_>1
[6) =72+, 10), |,
|+>3 |0>3 |_>3




leading to j = 0 and m = 0.

1.7

7.7 Show that, for an operator a that, with its adjoint, obeys the anticommutation rela-
tion {@,a’} =aa’ +a'a = 1, the operator N = a'a has eigenstates with the eigen-
values 0 and 1.

((Solution))

A

D>
D>
T
-
Il
—

The commutation relation:  {
aa* =1-N

We assume that

A

Nlnp) =n|n)

|n7) is the eigenket of N' with the eigenvalue 7. Since

A

N

(n

n)=(nla*dn)=n(n|n) =(ala)=0
where

) =|a)

Thus we have 77 > 0. We note that
N'|n) =aaa'ln)=a’ (- Nn)=(1-mi'[n)

which means that &+| 77> is the eigenket of N with the eigenvalue (1—7). Thus we have



1-7>0. The eigenvalue 7 is between 0 and 1.

7.8

7.8 Suppose the electron were a Spiﬂ-% particle obeying Fermi-Dirac statistics. Write

the configuration of a hypothetical Ne (Z = 10) atom made up of such “electrons”
[that is, the analog of (15)%(2s5)*(2p)®]. Show that the configuration is highly de-
generate. What is the ground state (the lowest term) of the hypothetical Ne atom in
spectroscopic notation (*5+!L ;, where S, L, and J stand for the total spin, the total
orbital angular momentum, and the total angular momentum, respectively) when
exchange splitting and spin-orbit splitting are taken into account?

((Solution))
Ne atom Z = 10
(1)
First we consider a spin 1/2 particle obeying Fermi-Dirac statistics.
s=12(T,4)
multiplicity due to spin: 2s+1=2
(Is)

[=0 QH1=1)

s=1/2 (2s+1=2) 1x2=2 (1s)?
(25)

[=0 QH1=1)

s=1/2 (2s+1=2) 1x2=2 (1s)?
(2p)

=1 (211 =13)

s=1/2 (2s+1=2) 3x2=6 (2p)°

Therefore, the ground state configuration is (1s)*(2s)*(2p)°.

(i)

Next we assume that an electron is a spin 3/2 particle, obeying the Fermi-Dirac ststistics.

(1s)
1=0 QH1=1)



s=312 (25+1 = 4) 1x4=4 (1s)*

(2s)
=0 (211 =1)
s=1/2 (2s+1 =4) 1x4=4 (1s)*
(2p)
I=1 (2+1 = 3)
s=3/2 (2s+1 = 4) 3x4=12 2p)"?

Therefore, the ground state configuration is
(1)*(2s)* (2p)*

This configuration is highly degenerate because only two electrons are occupied in the twelve
states.

G, =66 degeneracy

This electron (s = 3/2) obey a FD statistics.

|l// > =\ orbital> l//spin>

is antisymmetric under the exchange of particles.

g//m.,,l.m,>: symmetric, ‘l//xmn> : antisymmetric

V’ormm1>3 antisymmetric, ‘l//xmn> : symmetric

Here we consider the two particles with / = 1 and s = 3/2.
((Orbital degeneracy))

D xD =D, +D, +D,
with

D,: (L =2); symmetric



D;: (L = 1);anti symmetric
D,: (L =0); symmetric

((Spin degeneracy))

D,,xD,,,=D,+D,+D, +D,

D,: (S =3); symmetric
D,: (S =2) anti symmetric
D: (S=1) symmetric
D,: (S =0); symmetric

(iii))  Total angular momentum
We now consider the combination of L and S.

For L =2 (symmetric) and S = 2 (antisymmetric)

D,xD,=D,+D,;+D,+D, +D, ,leading to
J=4,3,2,1,and 0

28+1=5 5 5 5 5
D,,, "Dy, "Dy, "Dy, "D,

For L = 2 (symmetric) and S = 0 (antisymmetric)

D, x D, = D,, leading to
J=2 ('D,)

For L =1 (antisymmetric) and S = 3 (symmetric)

J=4,3,2  (P,'R,’P)

For L =1 (symmetric), S = 1 (symmetric)

J=2,1,0 CP,’P,°P)



For L = 0 (symmetric), S = 2 (antisymmetric

J=2 ’S,).

For L =0 (symmetric), S=0

J=0 ('S,).
Next we consider the lowest state for the exchange splitting and orbit-spin interaction.
For the exchange splitting, the energy is low for the wave functions having the antisymmetric:
antisymmetric spatial part, leading to L = 1.
For the spin-orbit coupling,

2L-S=J> -1 -S> =w[J(J+1)= L(L+1)—S(S +1)]

The energy is lower for small J and large S.
A possibility is that L =1, =3, and J = 2.

Then we have P, (minimum energy)

((Note))

(2p)°

L=1. s=3/2.
((Space symmetry))

D, xD,=D,+D, +D,

(a) D, (L = 2; symmetric), D, (L = 0; symmetric),



m=2,1,0,0, -1, and -2

(b) D, (anti-symmetric); L =1

where

1(m=1) 2(m=0) 3(m=-1)

((Spin-symmetry))
D,,xD,,=D;+D,+D +D,

with

3 1 1 3
1(m=-) 2(m=-) 3(m=--) 4(m=--)
2 2 2 2

((Symmetric state))



m=3,2,1,0,1,0,-1,-1,2,-3  (S=3and 1)

((Anti-symmetric state))

m=2,1,0,0, -1, -2 (S=2and 0)

7.9

7.9 Two identical spin 3 fermions move in one dimension under the influence of the
infinite-wall potential V =oo forx <0,x > L,and V=0forO<x < L.

(a) Write the ground-state wave function and the ground-state energy when the
two particles are constrained to a triplet spin state (ortho state).

(b) Repeat (a) when they are in a singlet spin state (para state).

(c) Let us now suppose that the two particles interact mutually via a very short-
range attractive potential that can be approximated by

V==a80(x;—x3) (A>0).

Assuming that perturbation theory is valid even with such a singular potential,
discuss semiquantitatively what happens to the energy levels obtained in (a)
and (b).

((Solution))



V(x)

K d?
- =F
Y w(x)=Ey(x)
with
Fe hk?
2m
d? )
WV/(X)"‘]C y(x)=0
with

w(0)=w(L)=0

Then we have

v, (x) = %sin(%)

with




s 0= (7 )

n=1,2,3,..

Since S = 1/2 (fermion),

;(Spm> is antisymmetric under the exchange of pairs.

W) = e

(a)

;(Spm> is symmetric (spin triplet). Wspace> is antisymmetric. The ground state:

)= Nl

with
2 . s 2 . 2m,
<x1|l>:\/;s1n(ﬂx7 , <x1|2>:\/;s1n( 7? )
E= T gy S
ol )~
:Z[sm(—)sm( "2 ) — sin( L‘)sin(%)]
(b)

l//space> is symmetric. The ground state:

;(Spm> is antisymmetric (spin singlet).

Ground state:

y ) =[1)1)

with



h22 22

>+1%) =
2L2( )= ml?

E=

<x1,x2 ‘l//:[)::i":> = <x1 |1><x2 |1>
= %sm(T) sm( 2)
(c)

AE = < ground state|l}| ground state>

For the case (a), the wave function of ground state is antisymmetric. This means that two
particles are not located in the same site. Therefore,

AE =0,

because of V' =—-46(x, —x,).

For the case (b), the wave function of the ground state is symmetric, indicating that two particles
are located on the same place. Therefore the energy is lowered due to an attractive potential.

AEz—l.[dxl.[dxz[%j sin® (&L 1)sm (—)5()c1 -X,)

40 . 4, TIX
7z .([ dx, s1n4(71)

__4Ar3L
L’ 8
32
2L
((Note))
L rmxqs
LSln[T] dx
3L

8




7.10

7.10 Prove the relations (7.6.11), and then carry through the calculation to derive
(7.6.17).

((From Pearson)) by J.J. Sakurai and Jim Napolitano

10. To prove the orthogonality relations (7.6.11), start with the definitions

. 1 /. A (-
€+ = q:ﬁ (e{:) - o zef) ) so we have

~ % ~ 1 ~ L b | ! 1 A o b
€\ - ik = [_/\ﬁ (e{:) - )\'zeg:))] . [—/\ 7 (egl)( + Xm(i)l)()]

::%ﬂﬁt@hﬂﬁféﬁ—A$tﬂham9@ﬂ]
AN

= S EI+0-0£ AN

= 0 iA£N

~ % . 1 - -a(2 ' 1 - 1:~(2
€\ X €1y = [—/\E (e{cl) — )aef()))] X [—/\ ﬁ (e;‘,{ + A 105;)1)()]

% ) o p c ’ ’ B
= — [e{(” X C(i]})‘ i ‘I,\'eil) X ei—’-l)( . ‘l/\ef) X Ogt]l)( n /\)\'QE‘] 5 e(ll)(]

2
AN . .

= 5 @iamiak+@

=~ 4k FA=X

— 0 ifA£N



The first result (7.6.11a) serves to collapse the two sums over A and )\’ into one, when
calculating |E|?> = E*-E from (7.6.14), and the integral (7.6.15) collapses the two sums over
k and k' into one, leading to (7.6.16). The expression for the magnetic field is

] o g B % Alertksdy s &
B(x,t) = V x Ax,1) = - ) wi [Asae rtkN) _ AL | flant—kn)] o o oY
2

which is very similar to (7.6.14), differing by the presence of k x éx. instead of éx.. But

s | P r— 1 iy . ”

k x ek + = — F ﬁ [k X e{(]) + ik % ef)] =—F 75 [e](:) F zes)] = €k +
so that the calculation of |B|? = B* - B carries through directly as for the electric field. The
cross terms, however, have opposite sign, and therefore cancel when adding the contributions
to the energy from electric and magnetic fields, leading to (7.6.17).



