Spin-orbit interaction
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Due Date: October 28, 2016)

In quantum physics, the spin—orbit interaction is an interaction of a particle's spin
with its motion. The first and best known example of this is that spin—orbit interaction
causes shifts in an electron's atomic energy levels due to electromagnetic interaction
between the electron's spin and the magnetic field generated by the electron's orbit around
the nucleus.

((Llewellyn Hilleth Thomas))
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http://www.aip.org/history/acap/biographies/bio.jsp?thomasl

Llewellyn Hilleth Thomas (21 October 1903 — 20 April 1992) was a British physicist
and applied mathematician. He is best known for his contributions to atomic physics, in
particular: Thomas precession, a correction to the spin-orbit interaction in quantum
mechanics, which takes into account the relativistic time dilation between the electron
and the nucleus of an atom. The Thomas—Fermi model, a statistical model of the atom
subsequently developed by Dirac and Weizsicker, which later formed the basis of density
functional theory. Thomas collapse - effect in few-body physics, which corresponds to
infinite value of the three body binding energy for zero-range potentials.
http://en.wikipedia.org/wiki/Llewellyn_Thomas

1. Biot-Savart law

The electron has an orbital motion around the nucleus. This also implies that the
nucleus has an orbital motion around the electron. The motion of nucleus produces an
orbital current. From the Biot-Savart’s law, it generates a magnetic field on the electron.



electran )

The current | due to the movement of nucleus (charge Ze, e>0) is given by

ldl = Zev,,
o . d?
where V is the velocity of the nucleus and i v, - Note that

ld/ :ﬂdl = Aqﬂ =Zevy,.
At dt

The effective magnetic field at the electron at the origin is
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where V is the velocity of the electron. Then we have
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Since r, = -r, B can be rewritten as
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where me is the mass of electron. The Coulomb potential energy is given by
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Thus we have
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where L is the z-component of the orbital angular momentum, L, = m.vr .

2. Derivation of the expression for the spin-orbit interaction

Fig.  Electron in the proton frame, and proton in the electron frame. The direction of
magnetic field B produced by the proton is the same as that of the orbital angular
momentum L of the electron (the z axis in this figure).

We consider the circular motion of the nucleus (€) around an electron at the center.
The nucleus rotates around the electron at the uniform velocity v. Note that the velocity
of the proton in the electron frame is the same as the electron in the proton frame. The
magnetic field (in cgs) at the center of the circle along with the current | flow.
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according to the Biot-Savart law. The current | is given by
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where T is the period. Then the magnetic field B at the site of the electron (the proton
frame) can be expressed as
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where L is the orbital angular momentum of the electron (the electron frame). Note that
the direction of B is the same as that of L. The spin magnetic moment is given by
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where S is the spin angular momentum and s is the Bohr magneton,
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Then the Zeeman energy of the electron is given by

1 1 2u el e’
H=——u-B=—(-"225)- = L-S,
2 Y (mech 2m,’c’r’

where the factor (1/2) is the Thomas correction. In quantum mechanics we use the
notation

R e? 1 A
H = VLS.
* 2mezc2<r3>av

3. Thomas correction
The spin magnetic moment is defined by

where § is the spin angular momentum. Then the Zeeman energy is given by
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where the factor 1/2 is the Thomas correction and the Bohr magneton s is given by
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Thomas factor 1/2, which represents an additional relativistic effect due to the
acceleration of the electron. The electron spin, magnetic moment, and spin-orbit
interaction can be derived directly from the Dirac relativistic electron theory. The
Thomas factor is built in the expression.
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When we use the formula

with

L 1
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the spin-orbit interaction constant & is described by
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h2
ay,=——5=0534A (Bohr radius).
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The energy level (negative) is given by

E,| e R
" 2n*a, n*’
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The ratio 7°£/|E,| is

e e _ o’
E| 2’1 +1/2)1+1)  n’l(d+1/2)(1 +1)

with

e’ 1

nc 137.037

((Note)) For | = 0 the spin-orbit interaction vanishes and therefore £= 0 in this case.
((Summary))

The spin-orbit interaction serves to remove the | degeneracy of the eigenenergies of
hydrogen atom. If the spin-orbit interaction is neglected, energies are dependent only on
n (principal quantum number). In the presence of spin-orbit interaction (n, I, s = 1/2; J, m)
are good quantum numbers. Energies are dependent only on (n, I, j).

4. Commutation relations
We introduce a new Hamiltonian given by

H=H, +H,,

The total angular momentum J is the addition of the orbital angular momentum and the
spin angular momentum,

J=L+S,
The spin-orbit interaction is defined by

R = § =6 (== 8%,

where

and



[1*,8*]=0

(a) The unperturbed Hamiltonian H 0

The unperturbed Hamiltonian I:|0 commutes with all the components of L and .

(i)
[H),L,1=0, [H.L1=0, [H,L]1=0
[H,,L1=0, [H,,L,1=0, [H,,L,]1=0
[H,, ']1==0,,

(ii)
[H,,S,1=0, [H,.S,1=0, [H,.S,]1=0
[H,.5,1=0, [H,,$,’1=0, [H,,5,/1=0
[H,.$°1=0,

and
[H,,J,1=[H,,L,+S,1=0.

We note that

or

We also note that



[J2, *1=[*+8*+2L-S,[*1=2[L-S,I*]=0,

[J2,82]=[L*+8*+2L-S,8*1=2[L-S,8*]=0,

A

[J2,3,1=[*+8>+2L-S,[,+S,]
=2[L-S,L,+S,1=0
=-2[L,,L,18, +2[L,,L,1S, —2L,[S,.S,
=-2inL, S, +2inL,S, - 2inl, S, + 2inL,
=0

+2L,[S

[S—

S,1]
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>
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Thus we conclude that |1//0> is the simultaneous eigenket of the mutually commuting

observables {I:|0,i2, S?, J?, and jz}.

|wo) =[n.1,s;j,m),
|:|0|W0>: E."lvs).
Lly,) =111 +1)y,),
$?|yo) =1s(s + Dy, ),
Plye) =1 j(j+Dwy),

Jlwo) = mmly,).

(b)  The perturbed Hamiltonian H ©
Here we note that L-S does not commute with I:Z or éz .
[L-S,,1=—L,,L]S
= —ihLySX +inL, S,



[L-8,S,1=-L,S,.S,1+L,S,.S,]
=-inl,S, +inL,S,
These relations lead to the commutation relation
[L-$,3,1=0

These commutation relations can be also derived from the invariant of the scalar product
L-S, under the rotation. The rotation operator around the z axis is given by

R,(50) :i—%jzé‘ﬁ. So we have

[i 8,3 J=0 from the rotation around the X axis.
[i .S, =0 from the rotation around the y axis.
[i 8,3 ,1=0 from the rotation around the z axis.

Similarly we have

[L-S$,31=0, [L-8,3]1=0, [L-S,3]=0,
and

[L-S,J*]=0

In summary, we have

A

.8,J%]=0, [L-S,3,1=0, [J%,J.]1=0.
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Thus the state vector |1//> is the simultaneous eigenkets of L-S,J% and J ,. In other

words,
L-Sly)=2ly),
Ply)=nj(j+ D),

Jofw)=nmly).



((Note))
E. Fermi, Notes on Quantum Mechanics, 2" edition (University of Chicago, 1962)

[L-S,[,]=0, [L-S,5,]=0. [L-S,3.1=0

Thus L-S mixes states of same j, m and different m, and m,.

In,l,s,],m>

{Ho,L%,S%,3%,3} S1,3%3)

SL

Fig. Perturbation due to the spin-orbit interaction. |[n,l,s, j,m> is the

simultaneous eigenkets of I:I0 L2, 3‘2, J? , and jz without spin-orbit interaction.
When the spin-orbit interaction is switched on, L-S mixes states of same j, m
and different m and m,. [I:l,j2]=0. [I:|,jz]=0. H is the total Hamiltonian.
Note that [L-S,H,,]=0 , [L-S8,J°]=0 , [L-S,J,1=0 , [J?,J,]=0 .

AA

[H,,J2]=0.[H,,d,]=0.[L-S,(,]=#0, [L-S.,S,]#0.

5. Application of the perturbation theory (degenerate case))
We need to choose the unperturbed states that diagonalize the perturbation (Cardinal
rule). So the best way we can do is to choose the state

w)=|i.m),

where j and m are the good quantum numbers. The perturbation L-S mixes states of
same J, and J? but different L, and S,. Here we use the following notation.



JP=r*j(j+)), J =hm, L, =am,, S, =hm;

with
m=m, +m,

where
m=0L1-1,1-2,.... -
m, =1/2,-1/2.

We note that the spin-orbit interaction occurs only for |>1. In order to get the
eigenvalues and eigenkets of L-S, we choose two states:

1 1 1
4)=[l.m =m—5>®‘8 :E,m :—>,

|¢2>:

I,m, =m+l ®|S :l,ms _1
2 2 2

where m=m, +m, . Next we calculate the matrix element of L-S§ under the basis of the
kets, ¢51> and |¢2>;

i-Sla). L),

or

i.g=(<¢llé~~§|¢l> <¢1|1§.S:|¢2>J
<¢2|L'S|¢1> <¢2|L'S|¢z>

We can solve the eigenvalue problem of this matrix (2x2), leading to the two eigenvalues.
The corresponding eigenstates are denoted by

. 1 . 1
|l//1>=‘j=|+5,m>, forj=|+5

. 1 . 1
|1//2>:‘j:|—5,m>, for j= —3



We will check the value of j=1 i% later. In fact the value of j can be obtained the

triangular law as
D, xDy.y, =Dy + Dy

leading to

. 1 .
=l+=, and =l-—
. 2 . 2

Then the energy eigenvalues are obtained as

H. jzl+%,m>:§%(j2—i2—3'2)jzl+%,m>
=§h—22[j<j+1)—l<l+1>—%)]‘1=I+%,m>
:fh—;[(l+%)(l+%)—I(I+1)—%)]‘j:I+%,m>
=%§[‘j=l+%,m>

H. j=|—%,m>=§%(i2—ff—3‘2)j=|—%,m>
zf%z[j(jﬂ)—l(lﬁ)—%)]‘j =l—§,m>
=§§[(I—%)(I+%)—I(I+l)—%)]‘j:I—%,m>
- i =1- 1)

In summary
(1) ‘J =1 +%,m> is the eigenstate of H_ with the energy %
(ii) ‘j =1 —%,m> is the eigenstate of I-AISO with the energy —%.

6. The choice of |¢1> and |¢2> with the same j and m

6.1 [=1,s=1/2,leading toj=3/2 and j ="
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Fig. (mi, ms) plane for j=1/2.1=1and s=1/2. m=m, + m, (denoted by blue lines).

(b)  j=312 (m =3/2, 1/2, -1/2, and -3/2)



112 m=3/2
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(a)

M2 > m|

(mi, ms) plane for j =3/2.1=1and s =1/2. m=m, + m, (denoted by blue lines).

For m = 3/2, the superposition of |m| =1,m, =1/ 2>

For m = -3/2, the superposition of |m, =-1,m, = —1/2>

[=2,5=1/2, leading to j = 5/2 and j = 3/2

j=52 (m=5/2,3/2,1/2, -1/2, -3/2, -5/2)
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(b)

1/2 m=5/2
®
M=3J2 =2 M2 M2 > m,
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m=95/2 -1/2

(mi, ms) plane for j =5/2.1=2and s = 1/2. m=m, + m, (denoted by blue lines).

For m = 5/2, the superposition of |mI =2,m, =1/ 2>

For m = 3/2, the superposition of |m =1,m; =1/2) and |m, =2,m, =-1/2)

For m = -1/2, the superposition of |mI =-1,m, = 1/2> and |mI =0,m, = 1/2>
For m = -3/2, the superposition of |m, =—1,m, =-1/2) and |m, =-2,m, =1/2)
For m = 5/2, the superposition of |m| =2,m, =1/ 2>

j=30, (m =312, 1/2, -1/2, -3/2)
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(mi, ms) plane for j =3/2.1=2 and s = 1/2. m=m, + m, (denoted by blue lines).

For m = 3/2, the superposition of |m =1,m; =1/2) and |m, =2,m, =-1/2)

For m = -1/2, the superposition of |m, =-1,m, = 1/2> and |m| =0,m, = 1/2>

For m = -3/2, the superposition of [m =—1,m, =-1/2) and |m =-2,m, =1/2)

Solving the eigenvalue problem

We calculate the matrix element of the spin-orbit interaction under the basis of

1 1
6) = |,m.=m—§>®‘8=5,m5:—>,

1 1>
m=m-—m=—)=
2 2

I,m, =m+l ® S=l,m3:—l ,
2 2

1 1
|¢2>=‘m, =me+o.m, =—§>:

where m is fixed. Here we use the formula

J

j,m—1>,

j.m)=n(j+m)(j-m+1)

J.|j,m)=nJ(i-m)(j+m+D)| j,m+1),

) =1+),

A

S




S_|+)=1-),
J?[§,m) =n* j(§+ 1) j.m),

where
J=L+S,
JP=D+8*+2L-S=1+8+20,-S,+(L.S_ +LS.),
P-$=-0 -8, %(Lé +L8))

Then we get

L-S|$)=L-S

o1 1
=[=m--)+-L.$
[2( 2) 5 -]

1 1
m, =m——,ms =—
2 2
2
:h_(m_l) mI :m_l’ms :l
2 2 2 2

2
+h—\/(l+m+1)(l —m+l) m, :m+l,mS _1
2 2 2 2 2

) D me
- Djay+ Jaeme Da-me i



2
:%\/(I+m+%)(l —m+%)‘m, :m—l,ms :l>

2

h 1
2( 2)

1 1
m=m+—,m =——
2 2

K2 1 1 1
_7[\/0 +m +5)(| —-m +5)I¢1>—(m +E)|¢2>]

Thus we obtain the matrix of L-$ under the basis of |¢1> and |¢2> ,as

1 1 1
%i.ﬁ': (m—E) \/(I+m+5)(l—m+§) |

h 1 1 1
\/(I+m+5)(l—m+5) —(m+5)

We solve the eigenvalue problem. The eigenvalues are obtained as
A=, 4, ==(1+1).
For A, =1, the eigenket is obtained as

| >: l+m+1/2
! 21+1

+ ,/I_m—ﬂ/?‘|m| =m+1/2,m, =-1/2)
21 +1

Using 4, =1, we get

Im =m-1/2,m, =1/2)



JP=nj(j+1)
=[*+S8*+2L-S

=A7[I(l +1)+%+ﬂl].
=h2[l(l+1)+%+l]

24 Ly a3
=h (I+2)(I+2)

which means that -

For 4, =—(1+1), we have

) =— '_2":—:/2|m, —m—1/2,m, =1/2)
'+2”|“—j:11/2|mI —m+1/2,m, =—1/2)

Using 4, =—(I+1), we get

JP=n"j(j+1)
=I’+S*+2L-S

=n*[I( +1)+%+/12]

_ 3_ -yl
—h[l(l+1)+4 I+D]=nr" 2)(I 2+1)

which means that -

Then we can obtain

. . 1
(1) J—|+E



(ii)

. 1
) =|i=t+3.m)

2 12m, =1/2)
21 +1
p T2 2,m, = -1/2)
21 +1
. szh .
Hso|l,y1> = > |1,y1> (which is independent of m)
. 1
J—|—E
. 1
|V/2>:‘J:|_Eam>
s M 12m, = 1/2)
21+1
e 2 s 2m, = —1/2)
21+1

A A

2
I:|so|1//2> =¢L-S 1,//2> = _%h’/ﬁ (which is independent of m).

_ 1

j=14
9 El
1 :
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Fig. Splitting of the energy level due to the spin-orbit interaction. E, :Iﬂ.

2
E, = _{d+Den? . This splitting is independent of the quantum number m.

7. Mathematica: the eigenvalue problem

1

Clear["Global +"]; rulel = {Vlé.me SL+ 5};
1 1

rule2={k—>\/(L—m+—) (L+m+—) };Al:
2 2

eql = Eigensystem[Al];

Al =eql[[1, 2]] /- rulel // Simplify[#, L>0] &
L

A2 =eql[[1, 1]1] /- rulel // Simplify[#, L>0] &
~1-L

fl=eql[[2, 2]] /- rulel // Simplify;
f2=eql[[2, 1]] /- rulel // Simplify;

Normalize[f1l] /. rule2 // FullSimplify[#, {L-m+1/2>0, L+m+1/2>0}]&

1 1
{J§+th’JE_L2L}

Normalize[f2] /. rule2 // FullSimplify[#, {L-m+1/2>0, L+m+1/2>0}]&

8. Another method (Sakurai)
We start from the assumption that

=1 m)=old)+ A6)

j=1-3.m)= )+ 1)

where we need to determine the values of &, £, 7, and J. The normalization condition:

a’+p =1



yi+o’ =1

The condition of the orthogonality:

ay+BS =0

There are four unknown parameters and three equations. So we need one more equation.

Later, we show that

We want to determine the values of £, 7, and 6. To this end, we assume that

a =cosb,

P =sind

y=cos(@+m/2)=-sinb,0 =sin(6+n/2)=cosl

y
A
B(7,9) Aa,B)
mf2
1>
() T X

Since

a’+ B =1,




we have

1 1
I+m+5 I—m+5
p 21+1 21+1
Then we get
l+m+1/2
2l +1

l-m+1/2

21 +1

where >0, >0, y<0, and 6 >0 (assumption). The final result is the same as one
derived from the Clebsch-Gordan coefficient (addition of angular momentum).

l+m+1/2
21+1 |

l-m+1/2
21 +1

[j=1+1/2,m)=

l-m+1/2

lj=1-1/2,m)=- el

 =m—1/2,m =1/2)

Im =m+1/2,m =-1/2)

Im =m-1/2,m =1/2)

1 2,m, =—1/2)
2l +1

or

/I+m+1/2
[j=1+1/2,m)=| V 21+

| iI=emt1/2 |
21 +1

I-m+1/2
R _
M+m+1/2
21+1

j=1-1/2.m) =

((Note))

The ratio o/ can be determined as follows. We demand that

2jz|+%,m>:h2j(j+l)

. 1 1 3. 1
=l+—m)=r1+)1+D)|j=1+=,m),
J 5 > ( 2)( 2)‘] 5 >



where

it
j=|+5,m =a

2

1 1
m=m-—,m,=—)+
=m-dm = 2)es !

1 1>
m=m+—,m =——).
2
Here we note that
JP =D +8*+2L-S=*+8*+20,-S,+(L.S_ +LS,)
Then we get

Ja|g)=nall(l+1) +%+ (m —%)+ L.S 14)

=nafl(1 +1) +%+ (m —%)|¢l>+h2a\/(l +m +%)(| -m +%)|¢2>

J’Blg,)=n Bl +l)+%—(m +%)+ LS. ¢

g 3 mel
=h ﬂ[l(l+1)+4 (m+2)|¢2>

5 1 1
+h ﬂ\/(l +m +5)(l -m +§)|¢1>
Since

jz

= +%,m> = (@l + A1) = WA+ + el + )
we have

s 13
h (|+5)(|+5)[05|¢1>+/3|¢2>]

2 3 1
= h2a[l( +1)+Z+(m—§)]|¢1>

) 1 1
+h a\/(l + m+5)(l —m+5)|¢2>

2 3 el
+h /;’[|(|+1)+4 (m+2)]|¢2>

2 La_m. L
+h ﬂ\/(l+m+2)(l m+2)|¢1>



or

1 1 1
[a\/(l +m+5)(| —m+5) - A +m+§)]|¢1>

1 1 1
+[,B\/(I +m+5)(l —m+5) ~a(l —m+5)]|¢2>
=0

Then we have

9. Energy splitting due to the spin-orbit interaction
The eigenket can be described by

) =] .l
Note that the expression of the state can be formulated using the Clebsch-Gordan
coefficient. When the spin orbit interaction is the perturbation Hamiltonian, we can apply
the degenerate theory for the perturbation theory,

|:|L5|y/>:§i-§ jam;|=5>
S S IR
2
=T LG+ D =10+ D=5+ D] mil.s)
=E. j,m;l,s)
. 1 an’
Forj=|+§, E.=E = >

| + )7’
ELszEzz_f( )

Forj=|—%, 5

Thus the energy eigenvalue due to the spin-orbit interaction is



so=%2[j(j+1)—l(l+l)—8(8+l)]
_efn? [j(j+D) -1+ —-s(s+1)]
Cam’cE Pl +1/2)(1 +1)

CES [ +D =10+ 1) —s(s+1)]
" mgc? I(+1/2)(1 +1)

and the eigenket is |w> =], m;I,s>, where

he?r 1
nE,’ = —
m, 4n’a,
222
e 724500x10%ev
2m,c ag
We note that
=14+
2 _4 4 — —
Eso = e 2 Z] { | %
4 3 —(1+1) .
NI+ =) +1 ===
I+ )1+1) i=1-3
with
m.c’a’

=362.263 peV.

We consider the hydrogen atom (1 electron) [spin 1/2, and ] problem with the spin
orbit interaction, where Z = 1.

The eigenket |1,//> is expressed by

n,l,s; j,m> . The angular part of this eigenket is

jmy=|j,m;l,s;)
with
s=1/2,j=1+1/2

A, =S =22 -1 - 8%



Hso j9m>:§i'3‘ j:m>
S - -$Y)im)
=§h2[j(j +1) =11 +1)-3/4] j,m)
j=1+1/2
A,=0 1
[>]
A;=0 (I+1)
T =1-1/2
((Note))
The energy levels with degenerate states are split to the state with j =1 + 1/2 and the state
with j = | - 1/2, due to the spin-orbit interaction. However, these states are still

degenerate. When the magnetic field is applied to the system, these states are finally
separated into the non-degenerate states.

|j=1+1/2,m,), wherem: =1+ 1/2,1-1/2,....., - (1 + 1/2)

and
|j=1-1/2,m_), wherem.=1-1/2,1-3/2,.....,- (I - 1/2)

(a) Forj=1+1/2,

Py

ESO=§h2[(l+1/2)(|+3/2)—|(|+1)—3/4]= w2

2

Then we have



I+m+1/2|
21 +1

y M s 2m, =-1/2)
21 +1

In summary, the energy shift due to the spin-orbit interaction is given by

|j=1+1/2,m)= =m-1/2,m, =1/2)

E,, =§h2| , for j=1+1/2
_ S _
E,, = Eh (I+1, forj=1-1/2
) S p 0
so = £,
0 -2 (I+1
5 (I+1

under the basis 0f|j:|+1/2,m> and |j =1 —1/2,m>, where

e e _a 1
E| 2’11 +1/2)1+1)  n® 10 +1/2)( +1)

or

hé mc’ o* 1
2 2 0 I +1)2l+1)

10.  The Zeeman splitting
In the presence of an external magnetic field along the z axis, the Zeeman energy is
given by

HB =_(_&I:z _%SAZ B:ﬂLB(I:Z—'_ZSAZ)'
h h h

We now consider the influence of the magnetic field on the eigenstates | j=1+1/ 2,m>
and |j :|—1/2,m>

@@ |i=1+1/2,m)



Hy|j=1+1/2,m) :§h2I|j =1+1/2,m)

The expectation value of I; and éz

Cli=t+2m=n 2 0 o)m = m—1/2,m, = 1/2)
21+1
h V2 ), =me1/2,m, = —1/2)
21+1
l+m+1/2
- JEE Y m-1/2)
(j=1+1/2,m|C|j=1+1/2,m)=n \/”m“/2 \/' m+1/29\  21+1
21+1 21+1 l-m+1/2
M m+1/2)
21+1
_p I+m+1/2(m_1/2)+I—m+1/2(m+1/2)
L 21+1
_ h2Im
21+1
Similarly,
S i=t+r2my=n Y2 4 oym —mo12,m, = 1/2)
21+1
n V2 o m = me1/2,m, = —1/2)
21+1

. A l+m+1/2 l-m+1/2
=1+1/2,mS |j=1+1/2m)=h| —(1/2)———(1/2
(i 52/ ) { 21+1 1/2) 21 +1 ( )}

_hm
21+1

Then we have the expectation value of H g as



(b) Forj=1-1/2,

P IV LI 3 Sy
=S RL0= )0+ )=10+ D=3 1= =2 (1 +1)

m+1/2|
21 +1

p M2 1 2,m, = -1/2)
2l +1

[j=1-1/2,m)=- m =m-1/2,m,=1/2)

or
F|50|j:|—1/2,m>:—§h2(| +1)|j=1-1/2,m)

The expectation value of I; and éz

<j:|_1/2,m||:z|j:|_1/2,m>:h I—m—+1/2(m_1/2) I+m—+1/2( m+1/2)
21+1 21 +1
_2nm(l +1)
21 +1
<j:|_1/2,m|§z|j:|_1/2,m>:h I_m—+1/2(1/2) I+m—+1/2(1/2)
21+1 21+1
_m
21+1
(j=1-1/2,m|L, +2S,|j=1-1/2,m)= hm(l—zl—)

Then we have the expectation value of H g as



Eso1+Ep1

so1

|j=1+1/2,m>

Eso2+Eg2

lj=1-12,m> _~

soZ

HO Hso Hso"' HB

Fig.  Energy level splitting due to the spin orbit interaction and the Zeeman effect

S S I+1
Esol = Ehzl , E502 = —Ehz(l + 1) , EBl = 2m,UBB T , and

11.  Effect of the spin-orbit interaction on the spectrum in hydrogen atom
For hydrogen, Z = 1.



Eso=§(J2—L2—S2)=%2[j(j+1)—l(l+1)—s(s+1)]
_mc ot [j(+D-1d+D—s(s+1)]
2o 11+ )21 +1)

where « is the fine structure

e’ 1

= =7.2973525698 x 10~
hc 137.036

(a) The energy level of the 2S state does not change since L = 0.
(b) The 2P state is split into two states due to the spin-orbit coupling.

2P /ooy

2A

y
2 2P1/2

Spin —orbit interaction

Fig.  Splitting of 2 P level into two states (2 2P32 and 2 2P122).

I=1(Q2p)andspins=1/2 —>j=3/2and j=1/2

(D1 x D12 = D32 + Din).

2 2P3p (G=32,1=1,5s=1/2)
2 %P1 (G=1/2,1=1,5s=1/2)
Whens=1/2,

Eso =A =15.0943 peV for the 2 ?P3 state

Eyo =—2A =-30.1886 peV for the 2 *P1 state



3A = 45.2829 peV.

The energy difference is 3A = 45.2829 peV.

Note that the Land¢ g-factor is defined by.

3, S(+D-10+1)
72 2i(j+y)

For2P3n (j=3/2,1=1,5=1/2)

3
. +Z_1(1+1)_4
1—_ — Y~ - — — .
2 235 3

3
g _3+Z_1(1+1)_2
2—_ - . - = .
27,13 3
22

(©) The 3p state is split into two states due to the spin-orbit coupling.
I=1@3p)andspins=1/2 >j=3/2and j=1/2
(D1 x D12 = D32 + Din).
32P3p (G=3/2,1=1,s=1/2)
3P G=1/2,1=1,s=1/2)
Then we have

Eso =A =4.47239 peV for the 3 ?P3/2 state

Eyo = —2A =-8,94478 neV for the 3 ?P1 state

3A=13.4172 eV.



SR S A X ................

Y
3%P,

Spin—orbit interaction
Fig.  Splitting of 3 P level into two states (3 *P32 and 3 ?P1/2)
Ey =A =4.47239 peV for the 3 ?P3 state
Eso =—2A =-8.94478 peV  for the 3 *P1y state

3A=13.4172 peV.

(d) We note that the energy level of the 3S state does not change since L = 0.

12.  Sodium D lines

The electron configuration of Na is (15)2(2s)2(2p)®(3s)!. The atomic number is Z =
11. The famous Na doublet arises from the spin-orbit splitting of Na 3p level, and
consists of the closely spaced pair of spectral lines at wavelength of D; line (589.592 nm)

for the transition 3 2P/, — 3 2S5, and D, line (588.995 nm) 2P3,, — 2S,. (Serway).



A=580.0 nm
A=589.6 nm

251/2

Fig. 32P32(j=3/2,1=1,5=1/2).3?Pin(j=1/2,1=1,s=1/2).32812(j=1/2,1=0,s
= 1/2). The splitting of the energy levels (3 P32 and the 3 *P12) is due to the spin-
orbit interaction. The D1 line (denoted by blue line). The D2 line (denoted by red
line).

The sodium D lines correspond to the 3p — 3s transition. In the absence of a
magnetic field B, the spin orbit interaction splits the upper 3p state into 3 2P/, and 3

2P, terms separated by 17 cmrl. The lower 3 23, has no spin-orbit interaction.
For | = 1, the energy shift due to the spin-orbit interaction is given by

E,=A, forj=3/2  (3%P3p)
E, =-2A, forj=1/2  (3%Pin)
For the Na doublet, the observed wavelength difference is
Al =24, -2, =0.597nm,
since
A, =589.592 nm, A, =588.995 nm.

Then the energy difference between the 3 *P32 state and 3 P12 state is derived as follows.

hc

2

AE =3A= AA=2.1314x 103 eV

13. Clebsch-Gordan co-efficient in Na



(a) For the electron with 3s state (I =0, s=1/2)
Do x Dy =Dip

Thus we have j = 1/2. The state is described by 2S 5.
lj=1/2,m=1/2)=|m =0,m,=1/2)

lj=1/2,m=-1/2)=|m =0,m, =-1/2)

(b) For the electron with 3p state (=1, s = 1/2)

Dy x Dy, =D3pp+Dypp
Thus we have j = 3/2 and j = 1/2. The state is described by 2P3/, and 2Py
Q) j=3n

|j=3/2,m=-3/2)=|m =-1,m =-1/2)

] =3/2,m=—1/2>=\/%|m| =0,m, :—1/2>+L|m, =-1,m =1/2)

NE]
: 1 2
|j=3/2,m :1/2>:—3|m, =1,m, :—1/2>+\/;|m, =0,m, =1/2)

|j=3/2,m=3/2)=|m =1m, =1/2)

i) j=1/2

: 1 2
|j=1/2,m :—1/2>:$|m, =0,m, :—1/2>—\/;|m, =-1,m, =1/2)

. 2 1
lj=1/2,m :1/2>:\E|m' =1,m, :—1/2>—$|m, =0,m, =1/2)



A |
1=13/2
(-1,1/2) (0,1/2) ® (1,12
m=3/2
»
m=-1/2 m=1/2
@®(-1.-1/2) 0,-1/2) (1,-1/2)
m=-3/2

Fig.  Clebsh-Gordan diagram for

j.m) with j =3/2.m=3/2,1/2, -1/2, and -3/2.

Mms
A .
=12
(-1,1/2) 0,1/2)
» M|
m=—1/2 m=1/2
0,-1/2) (1,-1/2)

Fig.  Clebsh-Gordan diagram for

j.m) with j=1/2.m=1/2 and -1/2.

14. Total angular momentum and the total magnetic moment
The total angular momentum J is defined by

J=L+S§.

The total magnetic moment g is given by



ﬂz—%(um).

The Landé¢ g-factor is defined by

9,4
Hy =— Jh e J,
where
Fig. Basic classical vector model of orbital angular momentum (L), spin

angular momentum (S), orbital magnetic moment (), and spin
magnetic moment (us). J (= L +.5) is the total angular momentum. g is
the component of the total magnetic moment (x + us) along the
direction (-J).



Suppose that
L=aJ+L, and S=bJ+S§,

where a and b are constants, and the vectors .S, and L, are perpendicular to J.
Here we have the relation a+b=1, and L +S, =0 . The values of a and b are
determined as follows.

J-L J-S

=" o

Here we note that

JP-r-8 J-LI+S°
2 2

2

J-S=(L+8)-S=8>+L-S=8"+

or

J-r+8*

J.S = - =L@+ = LL+D+S(S +1)],

using the average in quantum mechanics. The total magnetic moment y is
_ Mg __Hs
M= —7(L+2S) = —7[(a+2b)J+(LL +2SJ_)]
Thus we have
Hg Hg 9,48
=-—E(@+2b)J =—-—=(A+b)J=—"="2J,
H, 5 ( ) 5 (1+b) 5

with the Landé g-factor

J-S_3 SES+h-L(L+1)
J: 2 2J(J +1) '

g, =1+b=1+

15.  Landé g-factor in Na
The Landé g-factor is given by

_§+S(S+1)—I(I+1)

T Ty

Table



Term j I S g

2 2P 32 1 1/2 4/3
2 2Pipn 1/2 1 1/2 2/3
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APPENDIX-I Clebsch-Gordan co-efficient
Mathematica program for the Clebsch-Gordan coefficients
Clear["Global %"];

CCGG[{j1_, mi_}, {J2_, m2_}, {§_, m_}] :==
Module[{sl},
sl = IF[Abs[m1] < J1& & Abs[m2] < j2 && Abs[m] < j,
ClebschGordan[{j1, m1}, {j2, m2}, {§, m}], O]]

CGL{J_»,m 1}, §1 ,j2.] :=
Sum[CCGG[{j1, ml}, {J2, m-ml1}, {J, m}]a[jl, ml]
brj2, m-mil, {mi, -ji, j1}]

jl=1andj2=1/2;
Jl=1; j2=1/2;

CG[{3/2,3/2}, j1, j2]
1 1

all, 1] b[i, E]

CG[{3/2,1/2}, j1, j2]
1 1
a[l, 11b[2, 7]

2
V3

a[l, 0] b[—;,

+
]

N



CG[{3/2, -1/2}, j1, j2]

a[fl, -1]b[%,
[2 a1, O]b[—l,—}]+ 2: )
3 27 2 V3

CG[{3/2, -3/2}, j1, j2]

CG[{1/2,1/2}, j1, j2]

a[l, 0] b[i,6 1
[2 a1, 1]b[—1,—}]— 2 2]
3 27 2 A3

CG[{1/2, -1/2}, j1, j2]

afl, o)b[t, -1
¥ 2}_ 2 a1, -11b[—1,}}
\/g 3 2 2
jl=0andj2=1/2
J1=0; j2=1/2;
CGr{1/2,1/2}, j1, j2]
1 1
0, o b ~ A
a0, 03 b[7. 7|
CG[{1/2, -1/2}, j1, j2]
1 1
0, o b ~ T A
a0, 03 b7, -7 |
APPENDIX-II Effect of spin orbit interaction of 2p electron

Application of the perturbation theory (degenerate case)
We consider the state of 2p electron. Suppose that there is one electron with spin 1/2.
There are 6 states, taking into account of spin 1/2. These are degenerate states

The orbital angular momentum:

| =1 (p state) (m=1,0,-1)
. 1
The spin angular momentum: S = 5 (ms=0)

The total angular momentum:



D, xD,,, =D;,+D,,,

leading to
.3 31 1 3
== m:_a_a__a__
J 2 ( 22 2 2)
| 1 1
= — m:—,——
1=3 ( 5 2)

The degenerate state for 2p statefor the unperturbed Hamiltonian
(a) The unperturbed state:

There are 6 states: 3 x 2 =6:

O = (2R, saw)

() j= (2R state)

.1 1 1

j=—,m:—,|=l,S:—
2 2 2

jzl,m:—l,lzl,s—l
2 2 2

(b) Perturbed states



According to the perturbation theory, we have

I_AILS j,m;l,s>:§i-§ j:m;lss>
—E - -$7)]jmiLs)
2
=L LG+ D =10+ D=5+ D] miLs)
:ELS j’m;las>

where
B =i+ D1+ 1) -5(s 41

So the state

J,m;l, S> is the eigenstate of H . We note that

j.m;1,s) is expressed as

) 2

; 1 1
,m;l,S =lmh :m__’mS:_ +
J > I > 2> )

1 1 >
m=m+—,m =——
2
where « and g are the Clebsch-Gordan coefficient

F j=2 2 %P, E —QZF i=L (2% E.=-&"’
OrJ—z( 22) s =, OrJ—z( /2) s =&



