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In quantum physics, the spin–orbit interaction is an interaction of a particle's spin 

with its motion. The first and best known example of this is that spin–orbit interaction 
causes shifts in an electron's atomic energy levels due to electromagnetic interaction 
between the electron's spin and the magnetic field generated by the electron's orbit around 
the nucleus.  
 
((Llewellyn Hilleth Thomas)) 
 

 
 
http://www.aip.org/history/acap/biographies/bio.jsp?thomasl 
 
Llewellyn Hilleth Thomas (21 October 1903 – 20 April 1992) was a British physicist 
and applied mathematician. He is best known for his contributions to atomic physics, in 
particular: Thomas precession, a correction to the spin-orbit interaction in quantum 
mechanics, which takes into account the relativistic time dilation between the electron 
and the nucleus of an atom. The Thomas–Fermi model, a statistical model of the atom 
subsequently developed by Dirac and Weizsäcker, which later formed the basis of density 
functional theory. Thomas collapse - effect in few-body physics, which corresponds to 
infinite value of the three body binding energy for zero-range potentials. 
http://en.wikipedia.org/wiki/Llewellyn_Thomas 
 
1. Biot-Savart law 

The electron has an orbital motion around the nucleus. This also implies that the 
nucleus has an orbital motion around the electron. The motion of nucleus produces an 
orbital current. From the Biot-Savart’s law, it generates a magnetic field on the electron. 
 



 
 
The current I due to the movement of nucleus (charge Ze, e>0) is given by 
 

NZeId vl  , 

 

where Nv


 is the velocity of the nucleus and Ndt

d
v

l
 . Note that 

 

NZe
dt

d
qd

t

q
Id v

l
ll 




 . 

 
The effective magnetic field at the electron at the origin is 
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where v is the velocity of the electron. Then we have 
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Since rr 1 , effB can be rewritten as 
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where me is the mass of electron. The Coulomb potential energy is given by 
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Thus we have 
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where Lz is the z-component of the orbital angular momentum, vrmL ez  . 

 
2. Derivation of the expression for the spin-orbit interaction 
 

 
 
Fig. Electron in the proton frame, and proton in the electron frame. The direction of 

magnetic field B produced by the proton is the same as that of the orbital angular 
momentum L of the electron (the z axis in this figure). 

 
We consider the circular motion of the nucleus (e) around an electron at the center. 

The nucleus rotates around the electron at the uniform velocity v. Note that the velocity 
of the proton in the electron frame is the same as the electron in the proton frame. The 
magnetic field (in cgs) at the center of the circle along with the current I flow. 
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according to the Biot-Savart law. The current I is given by 
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where T is the period. Then the magnetic field B at the site of the electron (the proton 
frame) can be expressed as 
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where L is the orbital angular momentum of the electron (the electron frame). Note that 
the direction of B is the same as that of L. The spin magnetic moment is given by 
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where S is the spin angular momentum and B is the Bohr magneton, 
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Then the Zeeman energy of the electron is given by 
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where the factor (1/2) is the Thomas correction. In quantum mechanics we use the 
notation  
 

SL ˆˆ1
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3. Thomas correction 

The spin magnetic moment is defined by 
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where S  is the spin angular momentum. Then the Zeeman energy is given by 
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where the factor 1/2 is the Thomas correction and the Bohr magneton B is given by 
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Thomas factor 1/2, which represents an additional relativistic effect due to the 

acceleration of the electron. The electron spin, magnetic moment, and spin-orbit 
interaction can be derived directly from the Dirac relativistic electron theory. The 
Thomas factor is built in the expression. 
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When we use the formula 
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the spin-orbit interaction constant  is described by 
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where 
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The energy level (negative) is given by 
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The ratio nE/2  is 
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((Note)) For l = 0 the spin-orbit interaction vanishes and therefore  = 0 in this case. 
 
((Summary)) 

The spin-orbit interaction serves to remove the l degeneracy of the eigenenergies of 
hydrogen atom. If the spin-orbit interaction is neglected, energies are dependent only on 
n (principal quantum number). In the presence of spin-orbit interaction (n, l, s = 1/2; j, m) 
are good quantum numbers. Energies are dependent only on (n, l, j). 
 
4. Commutation relations 

We introduce a new Hamiltonian given by 
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The total angular momentum J is the addition of the orbital angular momentum and the 
spin angular momentum, 
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The spin-orbit interaction is defined by 
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where 
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(a) The unperturbed Hamiltonian 0Ĥ  

The unperturbed Hamiltonian ˆ H 0  commutes with all the components of L̂  and Ŝ .  
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We note that 
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0]ˆˆ,ˆ[]ˆ,ˆ[ 22  zzz SLJ LL  
 

0]ˆˆ,ˆ[]ˆ,ˆ[ 22  zzz SLJ SS  
 
Thus we conclude that 0  is the simultaneous eigenket of the mutually commuting 

observables { ˆ H 0 , 2L̂ , 2Ŝ , 2Ĵ , and ˆ J z }. 
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(b) The perturbed Hamiltonian soĤ  

Here we note that SL ˆˆ   does not commute with zL̂  or zŜ . 
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These relations lead to the commutation relation 
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These commutation relations can be also derived from the invariant of the scalar product 

,ˆˆ SL  under the rotation. The rotation operator around the z axis is given by 
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0]ˆ,ˆˆ[  xJSL   from the rotation around the x axis. 

 

0]ˆ,ˆˆ[  yJSL   from the rotation around the y axis. 

 

0]ˆ,ˆˆ[  zJSL   from the rotation around the z axis. 
 
Similarly we have 
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In summary, we have 
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Thus the state vector   is the simultaneous eigenkets of SL ˆˆ  , 2Ĵ , and zĴ . In other 

words, 
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((Note)) 
E. Fermi, Notes on Quantum Mechanics, 2nd edition (University of Chicago, 1962) 
 

0]ˆ,ˆˆ[  zLSL ,  0]ˆ,ˆˆ[  zSSL .  0]ˆ,ˆˆ[  zJSL  
 

Thus SL ˆˆ   mixes states of same mj,  and different lm and sm . 
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Fig. Perturbation due to the spin-orbit interaction. mjsln ,,,,  is the 

simultaneous eigenkets of ˆ H 0 , 2L̂ , 2Ŝ , 2Ĵ , and ˆ J z  without spin-orbit interaction. 

When the spin-orbit interaction is switched on, SL ˆˆ   mixes states of same mj  ,  

and different lm and sm . 0]ˆ,ˆ[ 2 JH . 0]ˆ,ˆ[ zJH . Ĥ  is the total Hamiltonian. 

Note that 0],ˆ ,ˆˆ[ 0  HSL , 0]ˆ,ˆˆ[ 2  JSL , 0]ˆ,ˆˆ[  zJSL , 0]ˆ,ˆ[ 2 zJJ . 

0]ˆ,ˆ[ 2
0 JH . 0]ˆ,ˆ[ 0 zJH . 0]ˆ,ˆˆ[  zLSL , 0]ˆ,ˆˆ[  zSSL . 

 
 
5. Application of the perturbation theory (degenerate case)) 

We need to choose the unperturbed states that diagonalize the perturbation (Cardinal 
rule). So the best way we can do is to choose the state 
 

mj, , 

 

where j and m are the good quantum numbers. The perturbation SL ˆˆ   mixes states of 
same Jz and J2

 but different Lz and Sz. Here we use the following notation. 
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sm  = 1/2, -1/2. 

 
We note that the spin-orbit interaction occurs only for .1l  In order to get the 

eigenvalues and eigenkets of SL ˆˆ  , we choose two states:  
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where sl mmm  . Next we calculate the matrix element of SL ˆˆ   under the basis of the 

kets, 1  and 2 ; 
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We can solve the eigenvalue problem of this matrix (2x2), leading to the two eigenvalues. 
The corresponding eigenstates are denoted by 
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In summary 

(i) mlj ,
2

1
  is the eigenstate of soĤ  with the energy 
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6. The choice of 1  and 2  with the same j and m 

 
6.1 l = 1, s=1/2, leading to j = 3/2 and j = ½ 



 
(a) j =1/2  (m = 1/2 and m = 1/2) 
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Fig. (ml, ms) plane for j = 1/2. l = 1 and s = 1/2. sl mmm   (denoted by blue lines). 

 
 

For m = 1/2, the superposition of 2/1,0 3  mml  and 2/1,1 3  mml  

 
For m = -1/2, the superposition of 2/1,1 3  mml  and 2/1,0 3  mml  

 
(b) j =3/2  (m = 3/2, 1/2, -1/2, and -3/2) 
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Fig. (ml, ms) plane for j = 3/2. l = 1 and s = 1/2. sl mmm   (denoted by blue lines). 

 
 

For m = 3/2, the superposition of 2/1,1 3  mml  

 
For m = 1/2, the superposition of 2/1,0 3  mml  and 2/1,1 3  mml  

 
For m = -1/2, the superposition of 2/1,1 3  mml  and 2/1,0 3  mml  

 
For m = -3/2, the superposition of 2/1,1 3  mml  

 
6.2 l = 2, s=1/2, leading to j = 5/2 and j = 3/2 
 
(a) j = 5/2  (m = 5/2, 3/2, 1/2, -1/2, -3/2, -5/2) 



m 5 2

m 3 2m 1 2m 1 2m 3 2

m 5 2

ms

ml

1 2

1 2

1 2

1 0 1 22

 
 
Fig. (ml, ms) plane for j = 5/2. l = 2 and s = 1/2. sl mmm   (denoted by blue lines). 

 
 

For m = 5/2, the superposition of 2/1,2 3  mml  

 
For m = 3/2, the superposition of 2/1,1 3  mml  and 2/1,2 3  mml  

 
For m = 1/2, the superposition of 2/1,0 3  mml  and 2/1,1 3  mml  

 
For m = -1/2, the superposition of 2/1,1 3  mml  and 2/1,0 3  mml  

 
For m = -3/2, the superposition of 2/1,1 3  mml  and 2/1,2 3  mml  

 
For m = 5/2, the superposition of 2/1,2 3  mml  

 
(b) j = 3/2,  (m = 3/2, 1/2, -1/2, -3/2) 
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Fig. (ml, ms) plane for j = 3/2. l = 2 and s = 1/2. sl mmm   (denoted by blue lines). 

 
For m = 3/2, the superposition of 2/1,1 3  mml  and 2/1,2 3  mml  

 
For m = 1/2, the superposition of 2/1,0 3  mml  and 2/1,1 3  mml  

 
For m = -1/2, the superposition of 2/1,1 3  mml  and 2/1,0 3  mml  

 
For m = -3/2, the superposition of 2/1,1 3  mml  and 2/1,2 3  mml  

 
 
6. Solving the eigenvalue problem 

We calculate the matrix element of the spin-orbit interaction under the basis of  
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where m is fixed. Here we  use the formula 
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 Ŝ , 
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Thus we obtain the matrix of SL ˆˆ   under the basis of 1  and 2 , as 
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We solve the eigenvalue problem. The eigenvalues are obtained as 
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Fig. Splitting of the energy level due to the spin-orbit interaction. 
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7. Mathematica: the eigenvalue problem 
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eq1  EigensystemA1;
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8. Another method (Sakurai) 

We start from the assumption that 
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where we need to determine the values of , , , and . The normalization condition: 
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The condition of the orthogonality: 
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There are four unknown parameters and three equations. So we need one more equation. 
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We want to determine the values of , , and . To this end, we assume that 
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where 0 , 0 , 0 , and 0  (assumption). The final result is the same as one 
derived from the Clebsch-Gordan coefficient (addition of angular momentum). 
 

2/1,2/1
12

2/1

2/1,2/1
12

2/1
,2/1













sl

sl

mmm
l

ml

mmm
l

ml
mlj

 

 

2/1,2/1
12

2/1

2/1,2/1
12

2/1
,2/1













sl

sl

mmm
l

ml

mmm
l

ml
mlj

 

or 
 


























12

2/1
12

2/1

,2/1

l

ml
l

ml

mlj , 

 



























12

2/1
12

2/1

,2/1

l

ml
l

ml

mlj . 

 
((Note)) 
 
The ratio / can be determined as follows. We demand that 
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9. Energy splitting due to the spin-orbit interaction 

The eigenket can be described by 
 

slmj ,;,  

 
Note that the expression of the state can be formulated using the Clebsch-Gordan 
coefficient. When the spin orbit interaction is the perturbation Hamiltonian, we can apply 
the degenerate  theory for the perturbation theory, 
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Thus the energy eigenvalue due to the spin-orbit interaction is 
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We consider the hydrogen atom (1 electron) [spin 1/2, and l] problem with the spin 

orbit interaction, where Z = 1. 
The eigenket  is expressed by mjsln ,;,, . The angular part of this eigenket is  
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((Note)) 
The energy levels with degenerate states are split to the state with j = l + 1/2 and the state 
with j = l - 1/2, due to the spin-orbit interaction. However, these states are still 
degenerate. When the magnetic field is applied to the system, these states are finally 
separated into the non-degenerate states. 
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In summary, the energy shift due to the spin-orbit interaction is given by 
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10. The Zeeman splitting 

In the presence of an external magnetic field along the z axis, the Zeeman energy is 
given by 
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We now consider the influence of the magnetic field on the eigenstates mlj ,2/1  

and mlj ,2/1  
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Then we have the expectation value of BĤ  as 
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(b) For j = l -1/2,  
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The expectation value of ˆ L z  and ˆ S z  
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Then we have the expectation value of BĤ  as 
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Fig. Energy level splitting due to the spin orbit interaction and the Zeeman effect 
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11. Effect of the spin-orbit interaction on the spectrum in hydrogen atom 

For hydrogen, Z = 1. 
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where  is the fine structure 
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  =7.2973525698 x 10-3 

 
(a) The energy level of the 2S state does not change since L = 0.  
(b) The 2P state is split into two states due to the spin-orbit coupling. 
 

Spin-orbit interaction
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Fig. Splitting of 2 P level into two states (2 2P3/2 and 2 2P1/2). 
 
 

l = 1 (2p) and spin s = 1/2 →j = 3/2 and j = 1/2 
 

(D1 x D1/2 = D3/2 + D1/2). 
 

2 2P3/2   (j = 3/2, l = 1, s = 1/2) 
 

2 2P1/2   (j = 1/2, l = 1, s = 1/2) 
 
When s = 1/2,  
 

SOE  = 15.0943 eV for the 2 2P3/2 state 

 
 2SOE  = -30.1886 eV for the 2 2P1/2 state 

 



3  45.2829 eV. 
 
The energy difference is 3 = 45.2829 eV. 
 
Note that the Landè g-factor is defined by. 
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For 2P3/2 (j = 3/2, l = 1, s = 1/2) 
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For 2P1/2 (j = 1/2, l = 1, s = 1/2) 
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(c) The 3p state is split into two states due to the spin-orbit coupling. 
 

l = 1 (3p) and spin s = 1/2 →j = 3/2 and j = 1/2 
 

(D1 x D1/2 = D3/2 + D1/2). 
 

3 2P3/2   (j = 3/2, l = 1, s = 1/2) 
 

3 2P1/2   (j = 1/2, l = 1, s = 1/2) 
 
Then we have 
 

SOE  = 4.47239 eV for the 3 2P3/2 state 

 
 2SOE  = -8,94478 eV for the 3 2P1/2 state 

 
3 13.4172 eV. 
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Fig. Splitting of 3 P level into two states (3 2P3/2 and 3 2P1/2) 
 

SOE  = 4.47239 eV for the 3 2P3/2 state 

 
 2SOE  = -8.94478 eV for the 3 2P1/2 state 

 
3 13.4172 eV. 

 
(d) We note that the energy level of the 3S state does not change since L = 0.  
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12. Sodium D lines 

The electron configuration of Na is (1s)2(2s)2(2p)6(3s)1. The atomic number is Z = 
11. The famous Na doublet arises from the spin-orbit splitting of Na 3p level, and 
consists of the closely spaced pair of spectral lines at wavelength of D1 line (589.592 nm) 

for the transition 3 2P1/2 2S1/2, and D2 line (588.995 nm) 2P3/2 2S1/2. (Serway). 
 



2 P32

2 P12

2S12

l=589.0 nm
l=589.6 nm

 
 
Fig. 3 2P3/2 (j = 3/2, l = 1, s = 1/2). 3 2P1/2 (j = 1/2, l = 1, s = 1/2). 3 2S1/2 (j = 1/2, l = 0, s 

= 1/2). The splitting of the energy levels (3 2P3/2 and the 3 2P1/2) is due to the spin-
orbit interaction. The D1 line (denoted by blue line). The D2 line (denoted by red 
line). 

 
The sodium D lines correspond to the 3p  3s transition. In the absence of a 

magnetic field B, the spin orbit interaction splits the upper 3p state into 3 2P3/2 and 3 
2P1/2 terms separated by 17 cm-1. The lower 3 2S1/2 has no spin-orbit interaction.  
For l = 1, the energy shift due to the spin-orbit interaction is given by 
 

0sE ,  for j = 3/2 (3 2P3/2) 

 
 2soE ,  for j = 1/2 (3 2P1/2) 

 
For the Na doublet, the observed wavelength difference is 
 

597.012   nm, 
 
since 
 

592.5892  nm, 995.5881   nm. 
 
Then the energy difference between the 3 2P3/2 state and 3 2P1/2 state is derived as follows. 
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13. Clebsch-Gordan co-efficient in Na 



 
(a) For the electron with 3s state (l = 0, s = 1/2) 
 

D0 x D1/2 = D1/2 
 
Thus we have j = 1/2. The state is described by 2S1/2. 
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(b) For the electron with 3p state (l = 1, s = 1/2) 
 

D1 x D1/2 = D3/2 + D1/2 
 
Thus we have j = 3/2 and j = 1/2. The state is described by 2P3/2 and 2P1/2 
 
(i) j = 3/2 
 

2/1,12/3,2/3  sl mmmj  

 

2/1,1
3

1
2/1,0

3

2
2/1,2/3  slsl mmmmmj  

 

2/1,0
3

2
2/1,1

3

1
2/1,2/3  slsl mmmmmj  

 
2/1,12/3,2/3  sl mmmj  

 
(ii) j = 1/2 
 

2/1,1
3

2
2/1,0

3

1
2/1,2/1  slsl mmmmmj  

 

2/1,0
3

1
2/1,1

3

2
2/1,2/1  slsl mmmmmj  

 



ms

1,120,12-1,12

-1,-12 0,-12 1,-12

m=32

m=12m=-12

m=-32

j= 32

 
 
Fig. Clebsh-Gordan diagram for mj, with j = 3/2. m = 3/2, 1/2, -1/2, and -3/2. 

 

ml

ms

0,12-1,12

0,-12 1,-12

m=12m=-12

j= 12

 
 
Fig. Clebsh-Gordan diagram for mj, with j = 1/2. m = 1/2 and -1/2. 

 
14. Total angular momentum and the total magnetic moment 

The total angular momentum J is defined by 
 

SLJ  . 
 
The total magnetic moment  is given by 
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The Landé g-factor is defined by 
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Fig. Basic classical vector model of orbital angular momentum (L), spin 

angular momentum (S), orbital magnetic moment (L), and spin 
magnetic moment (S). J (= L + S) is the total angular momentum. J is 
the component of the total magnetic moment (L + S) along the 
direction (-J).  

 



Suppose that 
 

 LJL a   and   SJS b 
 
where a and b are constants, and the vectors S  and L  are perpendicular to J. 

Here we have the relation 1 ba , and 0  SL . The values of a and b are 
determined as follows. 
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using the average in quantum mechanics. The total magnetic moment  is 
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15.  Landé g-factor in Na 

The Landé g-factor is given by 
 

gJ 
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s(s 1)  l( l 1)

2 j( j 1)
 

 
Table 

 



Term j l S g 
 

2 2P3/2  3/2  1  1/2  4/3 
2 2P1/2  1/2  1  1/2  2/3 

 
_______________________________________________________________________ 
REFERENCES 
J.J. Sakurai Modern Quantum Mechanics, Revised Edition (Addison-Wesley, Reading 

Massachusetts, 1994). 
D.J. Griffiths Introduction to Quantum Mechanics (Prentice Hall, Upper Saddle River, 

NJ, 1995). 
E. Fermi Notes on Quantum Mechanics (University of Chicago, 1961). 
R. Serway, C.J. Moses, and C.A. Moyer, Modern Physics, 3rd edition (Thomson 

Brooks/Cole, 2005). 
________________________________________________________________________ 
APPENDIX-I  Clebsch-Gordan co-efficient 

Mathematica program for the Clebsch-Gordan coefficients 
Clear"Global`";

CCGGj1_, m1_, j2_, m2_, j_, m_ :

Modules1,

s1  IfAbsm1 b j1 && Absm2 b j2 && Absm b j,

ClebschGordanj1, m1, j2, m2, j, m, 0
CGj_, m_, j1_, j2_ :

SumCCGGj1, m1, j2, m  m1, j, m aj1 , m1
bj2, m  m1, m1, j1, j1

j1 = 1 and j2 = 1/2;

j1  1; j2  12;

CG32, 32, j1, j2
a1, 1 b1
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CG32, 12, j1, j2
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a1, 0 b 1
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CG32, 32, j1, j2
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CG12, 12, j1, j2
2

3
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a1, 0 b 1
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2


3

CG12, 12, j1, j2
a1, 0 b 1
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3


2
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a1, 1 b 1
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 j1 = 0 and j2 = 1/2

j1  0; j2  12;

CG12, 12, j1, j2
a0, 0 b1

2
,

1

2


CG12, 12, j1, j2
a0, 0 b1

2
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APPENDIX-II Effect of spin orbit interaction of 2p electron 
Application of the perturbation theory (degenerate case) 

We consider the state of 2p electron. Suppose that there is one electron with spin 1/2. 
There are 6 states, taking into account of spin 1/2. These are degenerate states  
 
The orbital angular momentum:  
 

1l  (p state)  (ml = 1, 0, -1) 
 

The spin angular momentum: 
2

1
s   (ms = 0) 

 
The total angular momentum: 
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The degenerate state for 2p statefor the unperturbed Hamiltonian  
 
(a) The unperturbed state: 
 

There are 6 states: 3 x 2 = 6: 
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(b) Perturbed states 



According to the perturbation theory, we have 
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So the state slmj ,;,  is the eigenstate of LSĤ . We note that slmj ,;,  is expressed as 
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where  and  are the Clebsch-Gordan coefficient 
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