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Although the splitting up of spectral lines in a magnetic field was discovered by
Zeeman as early as 1897, some 16 years elapsed before anyone succeeded in showing
that a similar effect is produced when a source of light is placed in an electric field. In
1913, Stark demonstrated that every line of the Balmer series of hydrogen, when excited
in a strong electric field of at least 10° V/cm, is split into a number of components.

Johannes Stark (15 April 1874 — 21 June 1957) was a German physicist, and Physics
Nobel Prize laureate who was closely involved with the Deutsche Physik movement
under the Nazi regime.

http://en.wikipedia.org/wiki/Johannes_Stark

1 Hamiltonian for the hydrogen atom in the presence of an electric field

H, is the Hamiltonian of the hydrogen atom. We apply an external electric field &
(along the z axis) to the hydrogen atom, producing the Stark effect.

A

I:|:H0+I:|1.

H =—j, ¢=—(~6F)-ce, =e&l.



where -e (e>0) is the electron charge and u, (=-€r) is an electric dipole moment. The
vector r is the position vector of electron. The proton (charge e) is located at the origin.
The eigenstate of H, is given by [n,l, m> with the energy

R
E"=—=.
n n2
where R is the Rydberg constant. R = 13.60569193 eV.
In the presence of H,, the full spherical symmetry of the Hamiltonian is destroyed by

the external electric field that selects the positive z-direction, but H is still invariant
under the rotation around the z axis.

v)=Rly),

(W) =y [R[w).
or

(IR HR|y)=(w|H[w),
or

R'HR, =H,
or

[H,R,]1=0
Since

ﬁfmmpégamd—%gw.
We have

[H,(,]1=0, or  [H,+H,L]=0
Since

[ﬁmﬁJ:O,[ﬁmﬁﬂ:O,[ﬁmﬁJ:O

then we have



Since

we also have

[L,,2]1=0.
where

L, = %p, - 9P,
2 Selection rules

The selection rules are summarized as follows.

(1) Selection rule-1
(n,L,m|z[n",I',m) =0,

only form'=m.

(i1) Selection rule-2

(n,l,m|x+iy

n,l',m)=0.
only for m'=m=1.

(ii1))  Selection rule-3

(n,Lm|z|n",I'm) =0
unless I’ =1+ 1.

3. Derivation of the selection rules from commutation relations
(a) Selection rule 1

We note that the commutation relation [I:Z, 2]=0, can be derived from the original
definition of the angular momentum.



with
[L,2]=0.

yA

Using the commutation relation, we calculate the matrix element;

(n,,m[[L,, 2] n", 1, mY = (n,I,m|L,2 - 2L, ]

=(m-m")a(n,l,m

n', 1, m’)

Zln, I mY =0

Thus,
only for m> = m.

(n,1,m|2

n,1',m) =0

(b) Selection rule 2

with

From this commutation relation, we have

A

[L,, L,g—%L,]

=(m-m"a(n,I,m

(n,1,m

X]

.1, mY=(n,I,m

n,l',m)
n,I',m’) (1)
n,1',m)

A

X

=in(n,l,m|y

and

n,1',m’)=(n,I,m

lizy_ yI:z] n"l"m'>
= (m—m")a(n,1,m|g|n",I',m") ()

n,l',m)

(n,I,m[[L,, 9]

=—in(n,l,m|x

From Egs.(1) and (2), we get



(m—m"*(n,L,m[&n',I',m’) =i(m—m)(n,1,m|y|n",I',m")
=(n,L,m|%n",I',m’)
or
[(m-m")* =1}n,I,m|%n",I',m) =0
For m'=m=1, we have
(n,Lm[g£ig|n',I'm’) =0.
For m'#m=+1
(n,Lm[&/n',1',m’) = (n,I,m|g|n",I'm) =0

(c) Selection rule 3
We can show the commutation relation

[L2,[L2,7]] =20 (L*F + FL%)
by using the two methods (i) the commutation relations and (ii) Mathematica.
Using this relation we can calculate the matrix element of the commutation relation

(n,L,m[[ 2, [L,F])n,1',m')y = 257 (n, L, m|(L°F + 7L7)

n,1',m)

) .
An,1,m)

=2 (I + 1)+ 1"('+1D)](n,1,m

Noting that
2r*(n, (2 + fE) 1, m)y = 28° [+ 1) + 1" (P+DY(n, 1, m [/ n', 1 m')
and
(n,L,m[[ 2, [L,F])n', 1 m) = 2 [+ D = 1" A+ D(n, L m [ £, 7] n', ', m')
=n' [+ D=1 A+DPIA+D{n, L m A, 1, m)
Then we get

A

r

(NA+ D=1 +DP =210 +1)=21'("+1)¥n, 1, m

n,I,my=0.



or

27

(I=1=D(A =1+ + 1)+ I'+2)(

m) =0
This leads to the selection rule

(n,L,m[Fn,1",m" =0

only for I’=1=+ 1.

((Proof))

(i) Commutation relations
[L2,[[2,2]=2R* (212 + [*%)
((Proof)) Griffiths, Introduction to Quantum Mechanics

We prove this by using a various kind of commutation relations.

ﬁ
&
N)

e

I

[L2,2]+[L,% 21+[L,%, 2]
_+_

=L [C,21+[L,21C, + L [C

JIL,. 21+, 200, + L L, 2]+
=in(-L,9 - 9L, + L2+ %L)

Then we get

[L,2]=in[—(ih2 + yL,) - YL, + (=inz + RL,) + RL,)
=2in(RL, - YL, —in2)

Similarly,
[L,X]=2ia(yL, — ZL, —17X)

and

L,,2]1C

A

z



[L%,y]=2in(zL, - xL, —iry)
where
[C,.21=[9p, - 20,.21=[99,.21-[2D,.2] = Y p,, 2] =—iAJ .

A an omn A R N h.
[L)”Z]Z[pr_sziz]z_[xpzaz]=_X[pzaz]=_TX

=1inX.

Then we get



[L,[L,2]=2in{[L* R, ]~ [ L, YL, 1 - in[ L, 2]}
=2in{[ L, 1L, + XL, L, 1-[ L, 1L, - 91 L*, L, 1 - in[ L, 2]}
= 2in{2in(YL, — 2L, —inR)L, - 2in(2L, - KL, —ing)L
—in(L*3 - 20%)}
=-2n"2(L,L, - 2L,* —insL,) - 2(2L,” - RL,L, —ingL,)
—(I*2- 2%
= 21" 2(9L, —inR)L, —22(L7 + L,*) + 2(RL, +ing)L,)
—([2-120)}
=-2n" 20,90, —22(L* - L") + 2L, 8L,
—(I*2-20%))}
=-2n’2L,RL, + 9L, +2L,) - 20,20, - 22(L - L)) - (L2

Z

X

or

[L2,[12,2]=—2n*{-20 30, — 231> + 220 — ([*3 — 2I*}

=21* (2L + L'2)

where we use the relations,

8L, + 9L, +20, =0

r2 " r2 r2

[L°,L]=[L",L,]=[L",L,]=0

[L,,2]1=0
and

[L*,2]=2in(XL, — YL, —in2)
[L*,%]=2in(yL, — 2L, —inR)
[L%,9]=2in(2L, — KL, —ing)

(i1) Mathematica
Using the Mathematica, we show that the above commutations are valid.

[L,,2]=0.

— i



[L,,&]=iny. [L,,9]=-ik%.

25
[L2,[L*,F]] =20 (L*F + L)
((Mathematica))
Clear["Global ""];
<< VectorAnalysis™;

SetCoordinates[Cartesian([X, Y, z]];

ux={1,0,0};uy={0,1,0};uz=1{0,0,1};r={x,Vy, z};

Lx 1= (ux.(-i ACross[r, Grad[#]]) &) // Simplify;
Ly 1= (uy.(-i 2 Cross[r, Grad[#]]) &) // Simplify;
Lz := (uz. (-1 & Cross[r, Grad[#]]) &) // Simplify;

Lsq = (Nest[Lx, #, 2] + Nest[Ly, #, 2] + Nest[Lz, #, 2]) &;
eql = (Lz[z x[X, VYV, z]]1-zLz[x[X, YV, z11) // FullSimplify
0]

eq2 = Lz[xx[X, Y, z]] - xLz[ x[X, ¥, z]1-4Aayx[X, Yy, z] // Simplify
0

eq3=Lz[y x[X, ¥V, z]]1-yLz[ x[xX, y, z]]1+1AaXxx[X, ¥y, z] // Simplify
0
eqd = 242 (Lsq[X x[X, YV, z]1 + XLsq[x[X, Y, z11) // Simplify;

egs = Lsq[Lsq[x x[X, Yy, z]]1] -Lsq[xLsq[x[X, Yy, z]1] -Lsq[xLsq[x[X, Yy, z]]]+
xLsq[Lsqlx[x, Yy, z]111 // Simplify;

eg4 - eg5
0]

4. Selection rule derived from the parity operator
7 1s the parity operator:

Ay A ~_1
T == ,

Z is the parity odd operator with

mr=-17,



and

7

n,I,m)=(-1)

n,l,m),
or
(n,Lm|z =(=D"(n,I,m|.
Then we have
(n,l,m|Z|n",I',m") =0 for the I-state and I'-state with the same parity.
The reason is as follows.
(n,I,m|Z2z[n",I',m)==(n,l,m|Z|n", 1", m"),
or
(n,L,m{z|n",I',mY=(=D"*"™(n,1,m|2|n", 1", m).

When | +I' +1 =2k +1(odd numbers), or |+I'= 2k (even number), we have

(n,1,m[z|n",I'm"}=0.
5. Selection rule for the Wigner-Eckart theorem
<|',m'|'fq(k) a;l,m> #0
only if
m-m-q=0 (selection rule)
I'=1+kI+k-1,...[I-K|
where
=2
TO - X+iy
2

10



2—iy
I _
TO-2" 0

AN

6. The Stark effect on the n =1 level
The ground state is non-degenerate.

lw,)=|n=11=0,m=0)

o>

The energy to the first order:

E"” =-R

A

El(l) =<l//o||:|1|‘//o>=<19030 H,

1,0,0)=0

Z

2
E 2 _ 6282 z <1’0’O n, I’ m>‘
(I (0) (0)
n=l,l,m E] - En

where

with

h? me
=—F, R: = —.
% me?

Then we have

2
1 (1,0,0[2/n,1,m)
_e®@ _ 2 2.2
AE, =E, ——Eag =e’¢ n;’l“’m El(o) - En(o)

11



or

(10,0[2|n,1, m)’

(0) (0)
n=l,l,m E1 _'En

The proceeding sum is certainly not zero, since there exist states

n,l, m> whose parity is

opposite to that of

1,0,0>. To the lowest order in &, the Stark shift of the 1s ground state

is quadratic.

((Polarizability))

Electric polarizability is the relative tendency of a charge distribution, like the
electron cloud of an atom or molecule, to be distorted from its normal shape by an
external electric field, which is applied typically by inserting the molecule in a charged
parallel-plate capacitor, but may also be caused by the presence of a nearby ion or dipole.
The electronic polarizability o is defined as the ratio of the induced dipole moment P of
an atom to the electric field ¢ that produces this dipole moment.

p=as

The work done on the system as ¢ slightly changes to & +dg,
dW =—-pde =—-aede

or

W = AE = — Loz
2

The energy AE is quadratic with respect to the electric field.

6 Polarizability of the 1s-state

o

(n,1,m|2[1,0,0)
n,l,m) ‘111> 27/
) EO_E®

1,0,0)+ee)’

n=l
I,m

|V/15>:

The electric field € causes an induced dipole moment p.

n,1,m|2[1,0,0)[
p= <'//13 |(—e2)| '//15> = —28282 K EO_EO >‘

n=l 1 n
I,m

=aE

or

12



2

n,1,m|21,0,0)
a = —282 < PR Yy
Z EI(O) _ En(O)

n=l
I,m

Under the perturbation, the energy shift is given by

o

2

2 <n,1,m 21,0,0> 3 as’

AE—G&%} El(O)_En(O) - 9
I,m

((Note-1))
n,1,m[2]1,0,0) .
(| (—eD)|w,,) = ((1,0,0 +eg§<n’l’m|<(El(°)|—E (0))> +...)(—€2)
I,m n
(n,1,m|21,0,0)
x(11,0,0)+e& > |n,I,m +
reeTnlmy S

I,m

((Note-2))
Since

(1,0,0|2

190,0> = 0 and En(o) — EI(O) > Ez(O) _ EI(O) > 0
we have

(n,1,m|2]1,0,0) 2e?
a=2e") EO_EO ‘ < EO_E© 2

n#l
I,m I,m

2

Z

(n,l,m

1,0,0)

2 3
TE© 0
Ez - E1 n,

I,m

2

(n,1,m|2

1,0,0)

Here

Z Z 4 2’

3 1,0,0) = (1,0,0

n, n,
I,m I,m

(n,l,m

n,I,myn,I,m

1,0,0) =(1,0,0

1,0,0)

Then we have

13



2e?

BRO) (0)
Ez _El

52

(1,0,0|2

27

E (0) E(O) Z

1,0,0)

2
aszLaf:Ea =5.33a,’

e 1
28,074

which is consistent with the experimentally observed value: a = 4.5 a,3. Note that a, is
the Bohr radius, a, = a; = 0.52917721067 A.

52

(1,0,0|2

1,0,0)=a,’
((Note)) Evaluation of <r2>

Another method to calculate the value « is shown as follows. Here we use the
formula

)=

Forn=1,Z=1, and | =0, the radius R can be evaluated as

Rzmzx@ao

for a = aB. Then « is calculated as

2

a
Zzn2[5n2+1—3l(l+1)].

a =R*=34/3a,” =5.196a,’

Experimentally, o for hydrogen is &= 6.67 x 102° cm® = 4.50 a¢®.

((Bethe-Salpeter))

Hans Albrecht Bethe (July 2, 1906 — March 6, 2005) was a German-American physicist,
and Nobel laureate in physics for his work on the theory of stellar nucleosynthesis. A
versatile theoretical physicist, Bethe also made important contributions to quantum
electrodynamics, nuclear physics, solid-state physics and particle astrophysics. For most
of his career, Bethe was a professor at Cornell University.

14



http://en.wikipedia.org/wiki/Hans Bethe

How can we calculate the exact value of &?

DR Z R
et E() E() n¢1 E() E()

<

2%

= [d’rRy (Y™ (8,4)1 cosOIR, (1Y, (6. 9)]

Here

Y,'(0.9) = ﬁ  cosO) = \/?wa, 9

<

2%

%Yﬂ(e,mzr3dar.(r)Rm<r)

4O 0.9 X' (09 = 58,0

Then we have

15



1 o0
0) =—=0,,0n0 | PR (NR,(1)
\/g 1,1 ,0_([ 1 10

<

2%

or

=_[Il’3dar1(r)Rw(r)] =4, f(n)

(n.1

where f(n) is obtained by H.A. Bethe and E.E. Salpeter [Quantum Mechanics of One- and
Two Electron Atoms, Academic Press, New York, 1957, p.262]

1 28n7(n 1)2n 5
3 (n+1)2n+5

f(n)=

me* e

"ok’ 2nla,

e’ 1
EO_EO_——_1_-—
1 2a0( nz)

Then we have

N B () ; ,
o =2e Z E«» E«» =43, 3. =43,"0915806 =3.66326,
1 =

n=l n

((Mathematica))

16



Stark effect with n =1

Clear["Global +"];

1 L0 73 = r2 T 2r
R[N ,7 ,r ]i=—— |2* a0 2 e @0 n"“r (n-7/-1)1 LaguerreL[-1+n—/, 1+27, —])
N+t aon

Y[/ _,m_, &, ¢ 1 :=SphericalHarmonicY[/, m, &, #];
yn_,7,m_,r_,6,¢]1:=R[n, 7, r1 Y[/, m, &, &]
fn1_,712 ,ml_,n2 ,2 ,m2 ,r ,6,¢]=

(-1)™ g[nl, ¢1, -ml, r, @, ¢] rCos[e] ¥[n2, ¢2, m2, r, e, ¢] r>Sin[e] // Simplify;
Integral calculation

gMni_, 74 _,ml_,n2_, 72 ,m2_] :=
f[n1, 71, m1, n2, 2, m2, r, 6, ¢]

a0

Simplify[lntegrate[lntegrate[Integrate[ , {4, 0, 27!}],
{6, 0, m}], {r, 0, ®}], a0 0];

Beth' s formula

128n7 (n-1)2n-5
hin]=-n ——
3 (n+l)2n+5

Table[{n, 1, g[n, 1, 0, 1, O, 012// N, h[n] // N}, {n, 2, 10}] // TableForm

2 1 0.554929 0.554929
3 1 0.0889893 0.0889893
4 1 0.0309238 0.0309238
5 1 0.0145191 0.0145191
6 1 0.00802234 0.00802234
7 1 0.00491424 0.00491424
8 1 0.00323396 0.00323396
9 1 0.00224381 0.00224381
10 1 0.00162158 0.00162158

© 12

nhpn] /N

n=2 n2 -1

3.66326

7 Stark effect on the n = 2 level
We now consider the state with n = 2.

n = 2 state (4 states-degeneracy):

=1 (m==1, 0): p-state (3 states)

=0 (m=0): s-state (1 state)
Note that
R
E" = =

is the eigenvalue of I:IO . The degenerate system with the four states:

In,l,m) =

2,0,0),

2,L,1),

2,1,0),

2,1,-1)

with the same energy. For convenience we introduce the basis as

17



y/I(O)> = 2,0,0> even state
v,")=[2.L1)

1//3(0)> = 2,1,0> odd states
v, =[2.1,-1)

From the selection rule, we have

(2,1,m|2|2,0,m’) = (2,1,m|2]2,0,m)s,, .,
(2,,m|2]2,,m’) =0,
(2,0,0(2|n,0,0)=0.

The matrix of I:|l based on these bases is given by

0 0 (H), 0
0 0 0 0
(H1)3l O O O
0 0 0 0

where

a

(l:|1)31 = e5<‘//3(0) z

z//1(°)> = 3es, =-E,,
or
E, =3e&, (>0).
Note that
(. |lw ) = (2,10 r)r

= [[[r cos R, (1) 1Y, (0,4)] Ry (1), (6, $)r” sin Adrd el

=-3a,

o

Z yA

2,0,0)= [dr(2,1,0

2,0,0)

Matrix elements of <n,l', m'|I-A|1

n,l, m> is given by

18



2,11 |2,1,0) |21,-1) [2,0,0)
L] o 0 0 0
(20 0 0 0 -E
211 0 0 0 0
(2000 0 -E, 0 0
where
(2,1,0|H|2,0,0) = —3eza, =—E,.

The reduced matrix:

2,1,0) |2,0,0)
(2,00 0  -E,
(200 -E, 0

We find that

Hl W1(0)>:_E0‘V/3(0)>a
|:|1 W2(0)>:0’
|:|1 '/’3(0)>:_E0“//1(0)>
A, ) =0.

‘%(0)> and ‘l//4(0)> are the eigenstates of I:|l with the energy 0.

We now consider the matrix of H , in terms of the basis ‘l//l(o)> and ‘1,1/3(0)>

ﬁ”:(o —aj,
-E, O
|¢1> :U‘W1(0)> and |¢73> :U‘l//3(0)> )

with

19



1
T i |5 @ .
U22 1 _L

NCRNG)

For A = -E( (the lowest level)

¢)=U

1
Rk

=0l ) ﬂ
2

The degenerate level of n = 2 splits into the three levels:

(1) The round state: E = E2<0) — E, (symmetric state)

o) = (\ ")+
(11) The first excited state with EZ(O) (double-degeneracy)
‘W2(0)> and ‘l//4<0>>.

(ii1))  The second excited state with EZ(O) +E, (anti-symmetric state)

o= i)l

20



|p3>

Ey"+Eq
(0) Q) (0
E Wy ">,y > 0
E
EX—E,
1>

Fig.  Energy splitting (Stark effect withn=2). E  =3eesa,.
1 1
|@}3WWHHW’ M%Vﬁmmpmp
i) =211), i) =[21-1)

8 Charge density distribution for the Stark effect with n =2

The charge density distribution for the |g01> , >, 1//2(0)> and

l//4(0)> is evaluated
from the CountourPlot (Mathematica) of

(rlo). frlof |

where y = 0, in the X-z plane.

(0)
ry,

and ‘

‘//2

b 3

21



& °
[
wn
L

-10}
-10

o
ContourPlot of Kr|¢)1>‘2 with y =0, in the X-z plane. When the electric field is applied

along the z axis, the average position of electrons shifts to the (-z) direction. The energy
eigenvalue is E=E,”’ — E,.

10F"

_107\ L L L \7
-10 -5 0 5 10

ContourPlot of Kr|go3>‘2 with y =0, in the X-z plane. When the electric field is applied

along the z axis, the average position of electrons shifts to the z direction. The energy
eigenvalue is E =E,” +E,.
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10F°

_107\ Il Il Il \7
-10 -5 0 5 10

ContourPlot of ‘<r“//2(0)>2

2
= ‘<r‘y/4(0)>‘ with y =0, in the x-z plane. When the electric

field is applied along the z axis, the average position of electrons remains unshifted in the
direction to the z axis. The energy eigenvalue is E = Ez(o) .

Two of the four degenerate states for n = 2 (‘1//2(0)> and ‘1//4(0)>) are unaffected by the

electric field to the first order, and the other two linear combinations
o) = (\ v )+, ") E= BV -E,),

and
|¢)3 (‘ %(0)> ‘ (0>>) (E=E, o E )

This means that the hydrogen atom in this unperturbed state behaves as though it has a
permanent electric-dipole moment of magnitude 3eao, which can be oriented in three
different ways; one state parallel to the external electric field, one state anti-parallel to the
field, two states with zero component along the field (Schiff).

((Mathematica)) The eigenvalue problem for n = 2 is solved using the Mathematica.
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Calculation of matrix element for the Stark effect with n = 1

R[n,7 ,r]:=

1

Y((n+7)!

3 r
(21” a0’ 2 e@n n 2’V (n-/-1)1

2r
LaguerreL[-1+n—/, 1+27, T )
aln

Y[ ,m , & , d ] :-=SphericalHarmonicY[/, m, &, &#];
y[Mmn ,7 ,m,r ,8 ,¢]1:=R[n, 7, r] Y[/, m, &, #];
fln1 ,7214 ,ml_,n2 ,72 ,m2 ,r ,6,d8]-=
(-1)™ g [nl, ¢1, -ml, r, 6, ¢] rCos[e] ¥[n2, ¢2, m2, r, 6, ¢]
rZSin[e] // Simplify;

Simplify][
Integrate]
Integrate[Integrate[f[2, 1, 0, 2, 0, O, r, &, ¢],
{6, 0, 2n}1, {6, 0, 7}], {r, 0, «}], a0 > 0]

-3 a0

24



EO0 =3 e a0 &; Eigenvalue problem for the simplified system

H22 = {{0, -EO}, {-EO, 0}}
{{01 —EO}, {_EO, 0}}

eql = Eigensystem [H22]
{{_EO, EO}’ {{11 1}’ {_11 1}}}

¥1 = Normalize[eql[[2, 1]]]
1 1

= =)

¥2 = -Normalize[eql[[2, 2]]]
1 1

{\/?’_\/?}

UT = {y1, ¢2}
1 1 1 1

% {5 -]

U = Transpose [UT]

{{1’ O}’ {O’ 1}}

25



9 n = 3 Stark effect
We consider the case of n = 3.

n = 3 state (9 states degenerate):

=2 (m=+2, +1, 0): d-state (5 states)
I=1(m==1, 0): p-state 3 states)
I=0(m=0): s-state (1 state)
Note that
R
0)
E, "= 3

is the eigenvalue of |:|O .

Matrix elements of Hi:

32,2)  [3.2.]) 32,00 [3.2-1) [3.2.-2)

(32,2 0 0 0 0 0

(32,1 0 0 0 0 0
(320 0 0 0 0 0
(32-1 0 0 0 0 0
322 0 0 0 0 0

(3,1 0 -—Zea, 0 0 0

310 0 0 -3V3eam, 0 0
31L-1 o 0 0 - %eeao 0
(3,0,0 0 0 0 0 0
where

A

(3.21|H,|3,L1) = —%egao ,(3,2,0|H,

(3,1,0(2]3,0,0) = -3/6esa, .

Note that

26

3,,0) =-33esa,,(3,2,-1

3,L1) 3L0)  [3.L-1)
0 0 0
- 2ega0 0 0
2
0 - 3\/§ega0 0
9
0 0 -Ze
58
0 0 0
0 0 0
0 0 0
0 0 0
0  -3Jéesa, 0
, 9
23,,-1) = — e

3,0,0)

oS o o o o



9 >:O9

1 »=_>:0

Thus , > ,2,— > are eigenstates of Hi1 with the zero energy. So we consider the
9>3 7>7 79_>9 5>9 5>7 aa_>a a>}
321)  [3.20)  [3.2-1) 13,L,1) 3,,0)  [3L-1)  [3,0,0)
9
(32, 0 0 0 —-—es, 0 0 0
2
(3.2, 0 0 0 0 -3J3ea, 0 0
(3,21 0 0 0 0 0 -~ea, 0
9
(3,11 -—eza, 0 0 0 0 0 0
2
(3, 0  -33ea, 0 0 0 0 -3J6es,
(3.1,-1| 0 0 —%esao 0 0 0 0
(3,0,0| 0 0 0 0 -3J6ea, 0 0

This matrix consists of three submnatrices.

(i)
0) 0) 0)
(3.2, 0 ~343ea, 0
(3,,0] -3+3eza, 0 —3/6esa,
(3,0, 0 ~3/6eca, 0
or
0 ~3+/3esa, 0
M, =| —3+3eea, 0 ~3J6esa,
0 ~36esa, 0

Eigensystem[M] (Mathematica is used for the calculation)

i

0)~

Ei1 =9ecao = 3Eo

3,1,0)+

0)]

0)]

i) = \/—
|'/’2>:ﬁ

Ex=0,
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E: = -9eca0 = 3o W:%[\l@ 0)+[2[3.1,0)+
(i)
2,-1)  [3,1-1)
(32-1 0 —%egao
9

Eigensystem[M:] (Mathematica is used for the calculation)

3 1

9
E4:58830:EE0 |l//4>=ﬁ[ , ,—>— N

9 3
ESZ-EGSaOZ-E Eo |(//5>: ,2,— >+

(iii)
1 3L
(32,1 0 ——ea,
(Bl -Zeea, 0
0 ——ee,

M, = 2

——eeq, 0

Eigensystem[M3] (Mathematica is used for the calculation)

2.1)=[3.L1)]
1)+ [3,LD]]

3

9 B
Es4= Eeaaoz EEO |w6>

Es= —geeao = —i Eo
2 2

|w7>=3[[

0)]



> EY4+3.0E,

ez We> g0, sE,
Ey lr> o
B.2.2>, B.2-2>
s E-1.5E,
[efr3 > E§0)_3'0E0

Fig. Energy splitting (Stark effect withn=3). E; =3eeq,.

)= 5153200 = 5[310) <[3.00))
|wz>=T 0)- ,,>],

)= J51f5 13200+ 3300} 4 3000
)= 552111

) =321+ B,

i) = J51132:) - 3.0

)= g5 0320+ 5L

10 Charge density distribution for the Stark effect with n =3
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7107\ L L L L
-10 -5 0 5 10

ContourPlot of K"|‘/’1>‘2 with y =0, in the x-Z plane. The energy eigenvalue is E{” +3E,.

10F

L)

-10 -5 0 5 10

ContourPlot of Kr|t//3>‘2 with y =0, in the x-Z plane. The energy eigenvalue is E” —3E,.
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10F

W
T

_107\ L L L L
-10 -5 0 5 10

ContourPlot of Kl‘|l//2 >‘2 with y =0, in the x-z plane. The energy eigenvalue is E” - 3E,.

10F°

—10+

-~ i
—-10 -5 0 5 10

ContourPlot of ‘<r|1//7>‘2 and Kr|t//5 >‘2 with y =0, in the X-z plane. The energy eigenvalue
is E{” —1.5E,.
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o 0 ; o
ContourPlot of ‘<I’|l//6>‘2 and ‘<I"|l//4>‘2 with y =0, in the X-z plane. The energy eigenvalue
is E{” +1.5E, .

10F

‘I

_107\ Il Il Il Il
-10 -5 0 5 10

? and Kr

W

f=}

W

ContourPlot of Kr 3,2,—2)‘2 with y =0, in the x-z plane. The energy

3,2,2)

eigenvalue is E{”.
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11. Stark effect of hydrogen: energy levels forn =2 and n=3

ammg  mptmg= mj

I‘I(hg_‘l’lﬂ“i‘ﬁ Ty et ih
n-2
H Y2432
il 424
amyny mome=n L
n{nyn)=+ = 0t y2=142
\
1Py Hthet 124150
3 R L
Fi 2 -W _w#_ .
W2 +]= - "
"'gw -1+ ﬁ:% tIoyerye
N, “ItyE-32
- 0t y2-i12 ;
No field i
Weak field J _Vé_r%
Strong field, -1+ -2
0t 2ty
Strong field

Fig. Stark effect of hydrogen, showing weak- and strong-field energy levels for n = 2
and n = 3. from the book of H. White, Introduction to Atomic Spectra (1934).
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APPENDIX-I

The wavefunction of hydrogen atom:

l//nlm(r’e’¢) - <I‘ n’l’m>
(01Dl 19 exp(- Lyt 'L”%(—)Y 6.9)
(n+1)! na,

The matrix element:

33



(0,11, m'|2n,1,m) = [[[r* sin ArdOgdQy ., (1,0, ) cos O (1, 0,9)

Calculation of matrix elements for n =3

R[n ,7,r_]:=

3 __r 2r
21+ 072 e @ n 2 'V (n-/-1)1 LaguerreL[-1+n—/, 1+27, 5 ])
aon

V(n+/)!

Y7 ,m , & , & ] :=SphericalHarmonicY[/, m, &, #];
yn_, 7 ,m_,r_,ée,¢]:=R[n, 7, r1 Y[/, m, &, 4]

fn1 ,722 ,ml_,n2 ,2 ,m2 ,r ,6 ,4]=

(-1)™ y[n1, ¢1, -ml, r, 6, ¢] rCos[e] ¥[n2, ¢2, m2, r, 6, ¢] r>Sin[e] // Simplify;
gmni_,A_,ml ,n2_,72_,m2_] :=
Integrate[ Integrate[ Integrate[f[nl, 71, m1, n2, 2, m2, r, 6, ¢1, {¢, 0, 2x}], {6, O, 7}],
{r, 0, ©}] // Simplify;

Matrix element calculation

a = Simplify[g[3, 2, 1, 3, 1, 1], a0 > 0]; B = Simplify[g[3, 2, 0, 3, 1, 0], a0 > 0] ;
¥y = Simplify[g[3, 2, -1, 3, 1, -1], a0 > 0] ;
6 = Simplify[g[3, 1, 0, 3, 0, 0], a0 > 0];

M1={{0, B, 0}, {8, 0, 6}, {0, 6, 0}}
{{o, -3+/3 a0, 0}, {-3+/3 a0, 0, -3/6 a0}, {0, -3/6 a0, 0}}
eql = Eigensystem[M1]

1 3

{(0, -9a0, 9a0}, {{-V2,0, 1}, {ﬁ’ 51 {ﬁ’ -5 - U

M2 = {{0, a}, {a, O}}

({o. -%22). {-%3%. 0}

eq2 = Eigensystem[M2] // Simplify

{{7%’, ?}, ({1, 1}, (-1, 1}}}

M3 = {{0, a}, {a, O}}

({o. -2}, (-222, 0}}

Eigensystem [M3]

H_%’, ?}, ({1, 1}, (-1, 1}}}
APPENDIX-II Polarizability
F: force,

F=qE [dyne = erg/cm],
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where q is the charge. The polarization P is

p=cE=qr.
Then we get
qr g°r _erg-cm’ ;
o=—= =[ ]=[cm’].

E ¢E erg/cm

We have two spheres, each of radius a, one of which has volume charge density +p and
the other of which has density -p. The vector from the center of the positive sphere to the
center of the negative sphere is d. The two spheres have a region of overlap and we want
the electric field within this region.

Suppose that an external electric field ( E)) is applied to a dielectric sphere. As a result,

there occurs a polarization inside the sphere. For simplicity, we consider a positive
charged sphere (the charge density p) centered at the point O2, and a negative charged
sphere (the charge density — p) centered at the point O1. The point Oz is deviated from

the point O1 by a vector d. The overlapped region has no charge because of the
cancellation of charges. The positive charges appear at the pink region (the right edge)
and the negative charges appear at the green region (the left edge).

Ep

——

_— +++
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We see that the electric field inside a uniformly negatively charged sphere is (restoring
the vector notation)

A 4ar’(-p) _ A

E = 5 r,
4ar 3 3
or
E, :—4Lpr
3

where r is the vector from the center of the sphere (O1) to the point in question (A). Now
suppose that s is the vector from the center of the positive sphere to the same point. So
we get

Es=4£s
3

So the total electric field is, using the superposition
\ 4mp
E'=E +E, :T(r—s)z——d:——P

where r —s = —d . The resultant electric field inside the sphere is

E, =EO+E':EO—4T7ZP

The polarization vector is defined by

P=pd

. o . 4r
The electric field due to the polarization vector is ——— P .

For the system (sphere, radius R) with the total charge g, the charge density p is obtained
as

4R’
3

q p
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Then we have

3 4R R R

47zd 3 qd _p

or
p=RE=aE

The polarizability is given by
a=R’.

For the hydrogen, if we take R=a, =0.52917721092 A, we get

a=ao=1.48185x 10> cm’.
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