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Enrico Fermi (29 September 1901 – 28 November 1954) was an Italian physicist particularly 
known for his work on the development of the first nuclear reactor, Chicago Pile-1, and for his 
contributions to the development of quantum theory, nuclear and particle physics, and statistical 
mechanics. He was awarded the 1938 Nobel Prize in Physics for his work on induced 
radioactivity. 
 

 
 
http://en.wikipedia.org/wiki/Enrico_Fermi 
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from E, Fermi "Lecture Notes on Quantum Mechanics (Dover). 
 
((Fermi golden rule)) 
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Although named after Enrico Fermi, most of the work leading to the Golden Rule is due to 
Paul Dirac who formulated 20 years earlier a virtually identical equation, including the three 
components of a constant, the matrix element of the perturbation and an energy difference. It was 
given this name because, on account of its importance, Fermi dubbed it "Golden Rule No. 2. 
https://en.wikipedia.org/wiki/Fermi's_golden_rule 
 
((Golden rule No.2)) 
From p.142 of the book by E. Fermi, E. Fermi Nuclear Physics, revised edition (University of 
Chicago, 1940). 
 

“From quantum mechanics, the probability per unit time of transition = number of transitions 
per unit time = w is given by “Golden Rule No.2”: 
 

dE

dn
Hw

22




 , 

 

where H is the matrix element of the perturbation causing the transition, and 
dE

dn
 = energy 

density of final states, counting each degenerate state separately.” 
 
______________________________________________________________________ 
1. Time-dependent perturbation (Dirac picture, or interaction picture) 
The Hamiltonian is given by 
 

)(ˆˆˆ
0 tVHH  , 

 
where ˆ H 0 is independent of t. The state vector in the Schrödinger picture is related to that in the 
Dirac picture (the interaction picture) by 
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The state vector )(ts  satisfies the Schrödinger equation 
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In the Dirac picture, the state vector )(tI  satisfies the following equation of motion, based on 

the Schrödinger equation for )(ts , 
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or 
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 . (the Dirac picture) 

 
where the new interaction operator is given by 
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This definition is true even if the perturbation depends on time. 

Now we introduce the time evolution operator ),(ˆ
0ttU I  in the interaction picture, such that 

 

)(),(ˆ)( 00 tttUt III   . 

 
Since 
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the time evolution operator ),(ˆ
0ttU I  satisfies the differential equation given by 
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Using the initial condition that 1̂),(ˆ
00 ttUI , we get the integral equation  
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By successive iteration, we get an approximate solution to this integral equation [Dyson series] 
as 
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It is sometimes convenient to write this series expansion in more symmetric form by using the 
time-ordered product T (or time ordering operator). We define time ordered product of two 
operators as  
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where )(x  is a step function, 1)(  x  for x≥0 and 0 for x<0. This convention is easily 
generalized to products of any number of time-dependent operators. With it we can prove that if 
t>t0, the time evolution operator may be written in the form 
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or formally and compactly as 
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Although this is just a compact way of writing the original series, but nevertheless it represents a 
very important advance of the formalism because many formal manipulations are facilitated 
much by this notation. Such a series are called Dyson series, named after Freeman J. Dyson. 
____________________________________________________________________________ 
((Note)) G. Baym, Lectures on Quantum Mechanics (Westview, 1990). 
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(J.M. Ziman, Elements of Advanced Quantum Theory (Cambridge, 1959)) 
 
Similarly, we have 
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because there are n! possible orderings of n times '1t , '2t ,…., 'nt . 

 
 
__________________________________________________________________________ 
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The time evolution operator in the Schrödinger picture ),(ˆ
0ttUs  is related to that in the Dirac 

picture as 
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where 
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Let us now look at the matrix element of ˆ U I (t, t0 ), 
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((Note)) 
Suppose that 
 

[ ˆ H 0,
ˆ A ]  0 and [ ˆ H 0,

ˆ B ]  0 , 
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2. Transition probability (Dirac picture) 

We now consider the case as shown below. 
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((Note)) 

The state vector in the Dirac picture does not evolve in the absence of the perturbation, while 
it does in its presence.  
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in this time region. 
________________________________________________________________________ 
At a later time (t>t0), we have 
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Note we use )(tcn  for the Dirac picture and )(tan  for the Schrődinger picture. 
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the matrix element in the Schrödinger picture is related to that in the Dirac picture such that 
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The transition probability for fi   is given by 
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Note that this probability is clearly only valid provided 
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3. Exact solution in the Dirac picture 

In the Dirac picture, we have the following equations without any approximation, 
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((Two-level system)) 

For the two-level system (exact solution), we have 
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((Sakurai Problem 5-30)) 
 
Consider a two-level system with 21 EE  . There is a time-dependent potential that connects the 
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02211 VV ,  tieV 12 ,  tieV  21  ( real) 
 
At t = 0, it is known that only the lower level is populated- that is 
 

1)0(1 c , 0)0(2 c . 
 

Find 
2

1 )(tc  and 
2

2 )(tc  for t>0 by exactly solving the coupled differential equation. 

 
((Solution)) 
 
Interaction picture 
 






























2

1

'

'

2

1

0

0

c

c

e

e

c

c

t
i

ti

ti








  

 



14 
 

with initial condition; 
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4. Exact solution in the Schrödinger picture 

Here we discuss the time-dependent perturbation using the Schrödinger picture and compare 
the results with those derived from the Dirac picture as described above. 

We consider ˆ H 0  to be discrete and non-degenerate. 
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where )(tcn  is the co-efficient for the Dirac picture, while an(t) is the co-efficient for the 
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We note that )(tcn  for the Dirac picture is related to )(tan  for the Schrödinger picture by 
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which is exactly the same result derived directly from the approach of Dirac picture. 
 
5. Constant perturbation 

We discuss the case of the constant perturbation using the Dirac picture. Here we assume that 

t0 = 0 for simplicity and )(ˆ tV  is given by 
 









0for          ˆ
0for            0

)(ˆ)(ˆ
tV

t
tVtV  

 

H0

V

t
t0 = 0  

 
Fig. Constant perturbation. 
 
Then the probability is given by 
 

2
)()( tctP fif  , 

 
where 
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c f (t)  c f
(0)(t)  c f

(1)(t ) 2c f
(2)(t) . 

 
From now on, we shall assume that the sate i  and f  are different. 

 
c f

(0)(t)   f ,i  0 . 

 
Thus we get 
 

2

0

'

2

2

2)1(2

')'(

)()(





t

fi
ti

fif

dttVe
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fi





 

 
What happens to the higher order term: cn

(2) ? 
 

  
m

t t
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minmn
minm edtdteVV

i
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0

'

0

"'2)2( "')()( 


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We note 
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
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e
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
















 

 
The second term gives rise to a rapid oscillation when t. The first term is dominant when En 
≈ Ei. 
 

)
1

)(()1(
1

)(
2

)2(  





m in

ti

mi

minm

m

ti

mi

minm

ni
n EE

e

EE

VV
e

VV
tc

ni

ni





. 

 
6. The transition probability for constant perturbation 

Here we discuss the probability (to the first order of ) which is given by 
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2

0

'

2

2
2)1(2 )'(')( 

t

fi
ti

fif tVedttcP fi


. 

 
Since 
 

)1(')(
0

')1(   ti

fi

fi
t

fi
ti

f
fifi e

V
Vedt

i
tc 


, 

 
we get 
 

  

  2
2

2

22

2

2)1(

2/

2/sin1

cos22)(

fi
fi

fi

fi
fi

fi

f

V
t

t
V

tc

























 

 
or 
 

  2
2

2

22

2/

2/sin
fi

fi

fi
if V

t

tt
P


















. 

 

We now consider the probability normalized by 
2

222



fiVt
 as 

 

2

2

2

222

2

2
sin


















x

x

Vt

P

fi

if




. 

 
where x tfi . This function has a maximum (= 1) at = 0. Since 1ifP , the above perturbation 

theory is valid only if 
 

1
2

222




fiVt
. 
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Here we make a plot of the function 
  2

2/

2/sin













t

t

fi

fi




 as a function of tx fi . As t becomes large, 

2)1( )(tc f  is appreciable only for those final states satisfy the condition 

 

 2 tx fi . 

 
Note that 
 

2
)

2
(

2
sin

2

2















dx
x

x

,  or  




dx
x

x
2

2sin
, 

 
and 
 

1
)

2
(

2
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lim
2

2

0










 x

x

x
. 

 

x=wfit

PP0

-4 p -3 p -2 p -p p 2 p 3 p 4 p
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0.8

1.0

 
 

Fig. Normalized transition probability P/P0 as a function of tx fi . 
2

222

0


fiVt
P


 . 

Note that this function becomes zero at  tx fi  ±2, ±4. 
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((Note)) The Dirac delta function 
The Dirac delta function )(x  has a very sharp peak at x = 0 and  
 

1)( 




dxx  

 
We consider the probability given by 
 

  2
2

2
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P









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
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
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We note that 
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x

t
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t

t
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
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2

2
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, 

 
where t is sufficiently large and 
 

2

t
x fi
  

 
Since 
 

 
  1

2/
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2
lim 2

2





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fi
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t
d

t
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



 

 
and 
 

 
  


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2/sin

2
lim 2

2

0

t

t

tt

fi
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


 (which becomes extremely large as t ) 

 
we can define the delta function as 
 

 
  )()()(

2/

2/sin

2 2

2

if
if

fi

fi

fi EE
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t
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


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



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Using this definition of the delta function, the probability can be rewritten as 
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 
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2
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2

2
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2
2

2
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iffi
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fi

fi
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EEV
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t

V
t
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P

































  (Fermi’s golden rule) 

 
((Note)) 
 

)(
ˆˆ

ˆ2
2

if
m if

if EE
EE

iVmmVf
iVftP 


  


  (to the second order of ) 

 
or 
 

)(
ˆˆ

ˆ2
2

if
m if

if EE
EE

iVmmVf
iVfw 


  


 

 
7. Heisenberg’s principle of uncertainty 

When we use 
 



E
fi


 , 

 
we get the transition probability as 
 

2

2

2

2

22

2

2
sin







 







 


t

E

t
E

t

V

P

fi

if






. 

 

Here we make a plot of 
22/ fiif VP   as a function of )( fiE  . This function shows a sharp 

peak at 0E . The peak height at 0E  is 22 /t , while the width of the peak is tE /4  . 
The area of the peak is proportional to 
 







t

t

t
A

 44
2

2

 . 
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When t is long enough, the peak height becomes large. The width becomes narrow. The function 
becomes a Dirac-type delta function around 0E . Such a behavior corresponds to the 
Heisenberg’s principle of uncertainty; 
 

Et .  
 

DE

t2Ñ2

O
2 pÑ

t

4 pÑ

t

6 pÑ

t
-

2 pÑ

t
-

4 pÑ

t
-

6 pÑ

t
 

 

Fig. Plot of 
22/ fiif VP   as a function of fiE  . 

 
We note that 
 

t
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x

x

t
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2
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

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

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 










, 

 

where t
E

x
2


 . Then the total area enclosed under the red line is evaluated as 

 







t

t

t
Aexact

 22
2

2

 . 

 
 
8. Multiple final states 
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Ei
0

En
0

 
 
Fig. Energy levels. The discrete energy level (Ei

(0)) and the continuous energy levels 
(En

(0)). 
 

A group of final states around the state with Ei
(0). Ei

(0) is not the state in the continuous 

region. )0()0(
ni EE   (or )0()0(

ni EE  ). For simplicity hereafter we use nE  instead of )0(
nE . Then 

we have the probability 
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with 
 

)(
2

)(
2 22

2

2
22

2)1(
infifin EEtVE

t

t
Vc  






 

 
where t is sufficiently large, dEE)(  is the number of states within interval (E ~ E + dE) and 

)(E  is the density of states. Note that )( in EE   (the unit of [energy]-1) is the Dirac delta 

function, which has a sharp peak at in EE  , 

 

1)( 



nin dEEE . 

 
Thus the total probability is proportional to t for large value of t. We can define a transition 
probability per unit time 
 

)(
2 22

][ innini EEVW  


, (Fermi’s golden rule) 

 
where [n] stands for a group of final states with energy similar to i. It must be understood that 

expression is integrated with  )( nn EdE   

 
((Note)) Density of states for the 3D system for free electrons 
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4
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
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
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   (the density of states for the 3D system) 

 
((Mathematica)) 
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Clear"Global`";

IntegrateSinx2

x2
, x, , 



IntegrateSinx
x

, x, , 

  
 
9 Harmonic (sinusoidal) perturbation 
A. Formulation 

We consider a perturbation which oscillates sinusoidally with time. This is usually termed a 

harmonic perturbation. Now we assume that )(ˆ tV  has one of the simple forms 
 

titi eVeVtV   ˆˆ)(ˆ , 
 

where V̂  is time-independent observable; t0 = 0. For simplicity hereafter we use nE  instead of 
)0(

nE . Then we have 
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As t 
2)1(

fc  is appreciable only if 

 
   fi  0   or Ef  Ei   ,  (stimulated emission) 

 
or 
 

  fi  0  or Ef  Ei   ,  (absorption) 

 
where 
 



if
fi

EE 
 . 

 
Therefore, we have 
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B. Resonant nature of the transition probability 

We consider the following case (two discrete case) 
 

absorption emission

 i

 i f

 f
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for the emission 
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for the absorption. 
 
(i) When Ef > Ei,  fi > 0. Under such conditions, A- dominates (absorption). 
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The function  ),( fitF    is only non-negligible when 
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Then we have 
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Taking into account of the number of states ff dEE )( , the total probability is given by 
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This is proportional to t. )(   if EE  indicates the energy conservation. We can define a 

transition probability per unit time 
 

)(ˆ2 2
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][ 



 

 ifni EEiVfW , (Fermi’s golden rule) 

 
where [n] stands for a group of final states with energy similar to i. It must be understood that 

expression is integrated with  )( nn EdE   
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Fig. Transition probability as a function of tfi )(    at a fixed time t. 

 
(ii) When Ef > Ei,  fi < 0. A+ dominant (emission). 
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F(t,   fi ) 
sin( fi  )t / 2

( fi  ) / 2
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






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

2

, 

 

F = 0 at

 fi   

2
t

,
4
t

,  
4
t


 
In the limit of larger t, we have 

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or 
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
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Then we have 
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Taking into account of the number of states ff dEE )( , the total probability is given by 
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  )(ˆ)(
2 2

2 



ifnn EEiVfdEEtP  (emission) 

 
This is proportional to t. )(   if EE  indicates the energy conservation. We can define a 

transition probability per unit time 
 

)(ˆ2 2
2

][ 



 ifni EEiVfW , (Fermi’s golden rule) 

 
where [n] stands for a group of final states with energy similar to i. It must be understood that 

expression is integrated with  )( nn EdE   

 
 
((Note)) 

The plot of the function 
2
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Fig. Plot of 
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C. Discussion of the resonant approximation 
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20 (green), and 30 (blue). As a is decreased, the position of two peaks approaches to 
zero. 
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Fig. Plot of 2
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(green), 6 (blue), and 8 (pink). When a is close to zero, two peaks are overlapped to each 
other. 
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If fi 2 , in the neighborhood of    fi , the modulus of A+ is negligible compare to that 

of A. Since  
4
t

, we have  
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
11


fi

t  (resonance condition). 

 

The condition fi 2  implies that the line width of each peak is much smaller than that the 

separation between two peaks due to absorption and emission. 
 
 
D. Limit of first-order calculation 
 

2
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

 

 
This becomes infinite when t  , which is absurd, since a probability can never be greater 
than 1. In practice, for the first-order approximation to be valid at resonance, the probability (1) 
must be much smaller than 1. 
 

1ˆ 2
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2

 tiVf
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
, or 

iVf
t




ˆ
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. 

 
Therefore t should be  
 

iVf
t

fi



ˆ

11




, 

 
or 
 

iVffi



ˆ

1




, 

 
or 
 

iVffi
 ˆ . (the condition for the validity of perturbation theory) 

 
10. Harmonic perturbation at resonance (exact solution))  

If the perturbation acts for a long time at resonance, the above perturbation scheme breaks 
down. In this case we need to solve the problem exactly. Here we assume that 
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fi  . 

 
We consider the two states i  and f . 
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d
i ifi
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ffff
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We choose the harmonic perturbation as 
 

'ˆ)()sin('ˆ2)(ˆ HeeitHtV titi   . 
 
Then we have 
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In the approximation of fi  , we can approximate and write 
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((Rotating wave approximation)) 

We assume that the system is initially in the i-state.  
 

1)0( ic , 0)0( fc . 

 
The solutions of this differential equations are as follows. 
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where 
 

  fi0 , 
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1
iHfc   


   (Rabbi frequency) 

 
The transition probability is given by 
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 (Breit-Wigner formula) 

 
This probability is between 0 and 1, no matther how long the perturbation acts. When the 
transition probability is zero, the system has oscillated back to the initial state. At the resonance 
( 00  ), we have 

 

)'ˆ1
(sin)

2

1
(sin 22 tiHftP cfi


  . 

 
In the limit of 0t , we have 
 

2
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2
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tiHfP fi

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((Mathematica)) 
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Clear "Global` " ;

eq1 C1' t Exp 0 t A C2 t 0;

eq2 C2' t Exp 0 t A1 C1 t 0;

eq3 C1 0 1; eq4 C2 0 0;

f1 DSolve eq1, eq2, eq3, eq4 ,

C1 t , C2 t , t

FullSimplify ,

A 0, A1 0, 0 0, 0 &;

rule1
4 A A1 02 2

c,

1
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1
c

;

f1 . rule1 Simplify

C1 t
1
2 t 0 Cos

t c
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c
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C2 t
2 A1

t 0
2 Sin t c

2
c  

 
11. Fermi's golden rule 

From the above discussion we have 
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We assume that the final state is a state of the continuum, labeled by the wave number kf (energy 
Ef).  
 

)(
1  


 iffi EE . 

 
Note that EEE if  )(  . So the resultant transition probability is 
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 behaves like a Dirac delta function. This funcntion shows a shapr 

peak at 0 fi . We put 
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Thus, the rate of transition to such a group of states is 
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2 2

f
fi

fi EiHf
t

P
R 


 

  

 
12. Summary on Femi's golden rule (Wikipedia) 

http://en.wikipedia.org/wiki/Fermi%27s_golden_rule 
 

In quantum physics, Fermi's golden rule is a way to calculate the transition rate (probability 
of transition per unit time) from one energy eigenstate of a quantum system into a continuum of 
energy eigenstates, due to a perturbation. 

We consider the system to begin in an eigenstate, i , of a given Hamiltonian, 0Ĥ . We 

consider the effect of a (possibly time-dependent) perturbing Hamiltonian, 'Ĥ . If 'Ĥ is time-
independent, the system goes only into those states in the continuum that have the same energy 

as the initial state. If 'Ĥ  is oscillating as a function of time with an angular frequency , the 
transition is into states with energies that differ by  from the energy of the initial state. In both 
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cases, the one-to-many transition probability per unit of time from the state i  to a set of final 

states f  is given, to first order in the perturbation, by 

 

f
fi

fi iHf
t

P
R  2

'
2


 

 , 

 
where  is the density of final states (number of states per unit of energy) and iHf '  is the 

matrix element of the perturbation 'Ĥ  between the final and initial states. This transition 
probability is also called decay probability and is related to mean lifetime. Fermi's golden rule is 
valid when the initial state has not been significantly depleted by scattering into the final states. 

Although named after Fermi, most of the work leading to the Golden Rule was done by Dirac 
who formulated an almost identical equation, including the three components of a constant, the 
matrix element of the perturbation and an energy difference. It is given its name because, being 
such a useful relation, Fermi himself called it "Golden Rule No. 2."  
 
13. Free electron gas in three dimensions 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
 

kkkkk

p   2
22

22 mm
H


. (3) 

 
It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
 

),,(),,( zyxzyLx kk   , 

),,(),,( zyxzLyx kk   , 

),,(),,( zyxLzyx kk   . 

 
The wavefunctions are of the form of a traveling plane wave. 
 

rk
k r  ie)( , (4) 

 
with 
 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
 

ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
 

kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 
 
The components of the wavevector k are the quantum numbers, along with the quantum number 
ms of the spin direction. The energy eigenvalue is 
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Here 
 

)()()( rkrrp k kkk i
 


 . (6) 

 
So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . The 

ground state of a system of N electrons, the occupied orbitals are represented as a point inside a 
sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-electron 
ground state by placing electrons into the allowed one-electron levels we have just found. 

14. The Pauli’s exclusion principle 

The one-electron levels are specified by the wavevectors k and by the projection of the 
electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. Therefore 
associated with each allowed wave vector k are two levels: 
 

,k , ,k . 

 
In building up the N-electron ground state, we begin by placing two electrons in the one-electron 
level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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Density of states 

There is one state per volume of k-space (2/L)3. We consider the number of one-electron 
levels in the energy range from  to +d; D()d  
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where D() is called a density of states. Since 2/12 )/2( mk  , we have 

)2/()/2( 2/12 dmdk  . Then we get the density of states 
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where the spin factor (2) is included. 
________________________________________________________________________ 
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15. Time dependent perturbation: selected examples 
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Using the following formula, we solve several problems. 
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15.1 A linear harmonic oscillator is acted upon a uniform electric field which is considered to 

be a perturbation and which depends as follows on the time: 
 

2)/(1
)( 


 teAt  , 

 
where A is a constant. (Since the action of a uniform field is equivalent to a shift of the 
point of suspension, this problem can be solved not only by perturbation theory, but also 
exactly). Assuming that when the field is switched on (that is, at t = -∞) the oscillator is 
in its ground state, evaluate to a first approximation the probability that it is excited at the 
end of the action of the field (that is, at t = +∞). 

 
((Solution)) 
The total pulse P0 is defined by 
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P0 is classically transferred to the system by the electric field. A = P0/e. 
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The probability for a transition from the state n  to the state k  is equal to 
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So the matrix element is not zero only if k = 1. 
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When t→∞,  
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For a given P0, the probability for excitation decreases steeply with increasing effective duration 
of the perturbation . If 110  , this probability is very small and we are dealing with a so-

called adiabatic perturbation. 
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The criterion of applicability of perturbation theory is that the probability for excitation should 
be much smaller than 1. 
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___________________________________________________________________________ 
15.2 Solve the preceding problem for a field which varies as follows, 
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and which corresponds to a given total classical imparted impulse P. 

 
((Solution)) 
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((Residue theorem)) 
 
We use the upper-half plane of the complex plane. There is a simple pole at z = i. 
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Then we have 
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____________________________________________________________________________ 
15.3 Solve the preceding problem for a field proportional to 
 

 /)( tAet   for t>0. 
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corresponding to a given total classical imparted impulse P. 
 
((Solution)) 
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APPENDIX-I 
Equivalence of the probability amplitude in the Dirac picture and Schrodinger picture 
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APPENDIX II 

Dirac delta function 
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