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Dirac picture
Fermi's golden rule
Heisenberg’s uncertainty of principle

Enrico Fermi (29 September 1901 — 28 November 1954) was an Italian physicist particularly
known for his work on the development of the first nuclear reactor, Chicago Pile-1, and for his
contributions to the development of quantum theory, nuclear and particle physics, and statistical
mechanics. He was awarded the 1938 Nobel Prize in Physics for his work on induced
radioactivity.

http://en.wikipedia.org/wiki/Enrico Fermi
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from E, Fermi "Lecture Notes on Quantum Mechanics (Dover).

((Fermi golden rule))



Although named after Enrico Fermi, most of the work leading to the Golden Rule is due to
Paul Dirac who formulated 20 years earlier a virtually identical equation, including the three
components of a constant, the matrix element of the perturbation and an energy difference. It was
given this name because, on account of its importance, Fermi dubbed it "Golden Rule No. 2.
https://en.wikipedia.org/wiki/Fermi's_golden_rule

((Golden rule No.2))
From p.142 of the book by E. Fermi, E. Fermi Nuclear Physics, revised edition (University of
Chicago, 1940).

“From quantum mechanics, the probability per unit time of transition = number of transitions
per unit time = w is given by “Golden Rule No.2™:

27 e dn
h dE’

. . . ) iy dn
where H is the matrix element of the perturbation causing the transition, and £ = energy

density of final states, counting each degenerate state separately.”

1. Time-dependent perturbation (Dirac picture, or interaction picture)
The Hamiltonian is given by

H=H,+V (),

where I:IO is independent of ¢. The state vector in the Schrodinger picture is related to that in the
Dirac picture (the interaction picture) by

. )= " |w, @),

or

i

|V/1(t)> =e"

Hoyt

v, ().

The state vector |1,//S (t)> satisfies the Schrodinger equation

ih 2y (0) = Al 0) = [, + 27 )]

78 (t)> . (Schrodinger picture)



In the Dirac picture, the state Vect0r|l//, (t)> satisfies the following equation of motion, based on

the Schrédinger equation for |1//S (t)> ,

L0 D i

in 8tl%@))—ﬂ’i 5 ¢ v, ()
= —Ifloeéﬁq v, (t)> + e;HOtih§| 78 (t)>
——Hye "y o)+ " TH, + AV (O], (0)).

- zeEH“tV(z)e‘%F’°t| (1)
= AV, w, (1))

or
e, A _ ‘
lha (1)) = AV, (0|, (©)) . (the Dirac picture)
where the new interaction operator is given by
2 iﬁot n —il‘}ot
V,it)=e" V(t)e "

This definition is true even if the perturbation depends on time.
Now we introduce the time evolution operator U ,(2,1,) 1n the interaction picture, such that

|V/1(1)> = 01(t3t0)| V/I(to)> .

Since
., 0 3
iy, (0) =47, (0l ).
the time evolution operator U ,(2,1,) satisfies the differential equation given by
o 0 A 5 T
zhaU,(t,to) =AV,(0)U,(1,t,) .

Using the initial condition that U (st = 1, we get the integral equation



U,(t.t,) :i—%ﬂfﬁ,(ﬂ)ﬁ,(z‘,to)dt‘.
ty

By successive iteration, we get an approximate solution to this integral equation [Dyson series]
as

7 i 0 7 i f g n 3 n "
U,(t10)=1=—-2 j t)[l—#jV,(r YO (1", 1, )de"|dt
—1+(——)/1J.V(t Ydt'+(—— %jV(t )dtJ.dt”V(t”)Jr

ty

It is sometimes convenient to write this series expansion in more symmetric form by using the
time-ordered product 7 (or time ordering operator). We define time ordered product of two
operators as

R | A (2 A G ("<t
W, @)W, ("] = {V1 V() <’

or
TIV, (Y, (t")] = @' ~t" W, (W, (") + O "~ W, (", ().

where ®(x) is a step function, ®(x)=1 for x>0 and 0 for x<0. This convention is easily

generalized to products of any number of time-dependent operators. With it we can prove that if
£>to, the time evolution operator may be written in the form

ttrt t

U, (t,t,) inl ——)";t"”j jdr dtdt, TIV, (6, W, (6, W, (4, V, (t,))],

or formally and compactly as
: it 1 '
U (t10) =T expl=— [V, (¢ ),
ly

Although this is just a compact way of writing the original series, but nevertheless it represents a
very important advance of the formalism because many formal manipulations are facilitated
much by this notation. Such a series are called Dyson series, named after Freeman J. Dyson.

((Note)) G. Baym, Lectures on Quantum Mechanics (Westview, 1990).



jdfjdt"T[r?,(z')V,(z")] = j.dt'j- dre'—t"W, (W, (") + jdt"jdt@(t"—t')ﬁ(t")V[(t')
= jdr’] d'v, (1YW, (t") + jdrj GAGAD!

ty to to to

t t
= 2!jdf j v, ("W, (")

fy to

Fig. The integral region for j dt'j dt”V[ (' )I}, (#") (green region)

to ty



t”

t t
Fig. The integral regions for .[dt'J- dt"I}, (t')V,(t")/ 2 (green region) and

fy fy

t "
Idt"j dt'V, (t")I}, (#')/2 (yellow region). Note that mathematically,

Lo to

[ar[dev, @), e)/2= [de"[ eV, ")V, (¢')/2 . The later time to the left of the
to ty to ty

earlier time.

(J.M. Ziman, Elements of Advanced Quantum Theory (Cambridge, 1959))

Similarly, we have

fda'fdrz'jdr;---jdrﬂ[ﬁ(a')ﬁ,(a')---VD(r;)]=n!jda'ma')]drm(t;)---t']ldtm(t,,m

to to fy fy Iy ty ty

because there are n! possible orderings of n times ¢,', t,',...., ¢,".




The time evolution operator in the Schrédinger picture US (t,t,) is related to that in the Dirac
picture as

i, ig,

~ ()N = el

U,itt)=e" U.(tt)e" 5
I 0 s 0

since
|‘//1 (t)> =U, (t>t0)|‘//1 (t0)>
=™y 0)
LIVIN
=e" U (1,1,) '//s(to)>
iI:IOt ~ —iﬁoto
=e" U/(t,1))e” |l//1(to)>
where

v, (1) =U,(t.t,)

'//s(to)> .

Let us now look at the matrix element of U (t,),

),

Hy|n)=E,

n

(£, 1-E,"1y)

(n[0, (t,t)|m) = " U, (t,t)|m),

(n

2

([0, )| m)|” =|(nfT, et )

((Note))
Suppose that

[H,A]#0 and [H,,B]#0,
Ala)=a'la") and  B|p')=0bb").
In this case,

(10, a2 [0, 1))

since



ia
——Hty

<b'|l71(t,to)|a'> = Z(b’|e;HOt n><n U, (1,1, )|m><m|e g

=3 )

n,m

a'

US (1.1, )|m><m|a'>

2 Transition probability (Dirac picture)
We now consider the case as shown below.

Switch—on
1> state
V=0 state V+0 state
» {
t=0 t=t
Att=0,
v, (t=0)=1i)
Att= to,

v, (1)) = U, (,,0)

v, (0)=c

iy.

Since

vt =e " " lw (1),

from the definition, we have

in in
Hoty ——Hoty

|l//1 (t )> = egHOtO Vs (t0> =eh Vet

iy=1i).

((Note))
The state vector in the Dirac picture does not evolve in the absence of the perturbation, while
it does in its presence.

i, (0) =27, (0, ).



0
ih—|y,(1))=0,
Vi)
for 0<<t,, since V,(¢)=0. Then we have

v @)=,

in this time region.

At a later time (£>t0), we have

|W1(t)> = U](t,t0)|l//1(l‘0)> :UI(tato)

i),
We assume that

|l// ; (t)> = ch (t)| n> \ (Dirac picture)

or

v, @)= 2ln)nlU, 10)fi)

or
¢, ) ={nly, ()= (n|U, (t,1)]i).
Note we use ¢, (¢) for the Dirac picture and a,(¢) for the Schrédinger picture.

Now we go back to the perturbation expansion (V' — AV)
¢, () =(n|U,(t.1,)|i)
=c, )+, )+ 2, P @)+ ...

=(nfi+ z(—%) j V(¢)dt+ 2 (—%)2 [ar[arv, @y, @+ .Ji)

fy fy

Thus we have

¢, (0)=(nli)=5,,,

10



D ENE a5 o
¢, =(—E);|;dt (n|P, (@i}

¢, (1) = (‘%)zfdt't{dt"@h}z(f’)l}l (")

fy

Since

Hy

v o="P@we """,

the matrix element in the Schrodinger picture is related to that in the Dirac picture such that

where

V() =(nlP (1)),
and

w, = £, ;in . (the transition angular frequency, Bohr frequency)
Then we hve

Similarly, we get

6, = (3" X [ar Tar{alf 7 ).

mto

or



The transition probability for |z> - | f > is given by

‘2

P(i— f)=|e, 0 =\cf<°>(r)+,1cf<"(t)+... .

When ¢ f(o) (t)=0, P(i > f) can be approximated as

Note that this probability is clearly only valid provided
Pi— f)<<I.

3. Exact solution in the Dirac picture
In the Dirac picture, we have the following equations without any approximation,

"h%”'*”f(’»=1Z<"|Vz<f>lk><klw,(r)>,

7, ) =™ o)k = e

where
Ve =(nF @]k),
and

() (0)
_E B

a, - (Bohr frequency)

Then we have

Using the matrix notation we get

12



Cl (t) V]] Vlzeizulzt Vl3eiwl3t L 01 (t)
c,(t) V, e V., Ve ™ .| e()
o|cs(t)| | Vye™ Vo™ vV, o .. | ()

((Two-level system))
For the two-level system (exact solution), we have

h% (O) =V, (6) + V™ (1)

. a iw,
li"zac2 () =V, c,(t) + Ve, (2).

where
W) =~ .
((Sakurai Problem 5-30))

Consider a two-level system with E, < E,. There is a time-dependent potential that connects the
two levels as follows:

Vi=Vy,=0, V=", Vy=pr™  (yreal)
At t =0, it is known that only the lower level is populated- that is
¢0)=1, ¢,(0)=0.
Find |c1 (t)|2 and |02 (t)|2 for t>0 by exactly solving the coupled differential equation.

((Solution))

Interaction picture
lh g Cl _ O | }/ei o't C1
ot\c, e 0 \c,

13



with initial condition;

¢(0)=1, c,(0)=0
where

0'=0- 0,

The probability:

2 2
2 4 /4
|c1 (z)| =(1- ey )+ ey cos’(Q)

: 7
.2
|Cz(t)| ZhZFSln (Qt)

(Rabi formula)
with
12 2
=% 7’_2
4 h
4. Exact solution in the Schrodinger picture

Here we discuss the time-dependent perturbation using the Schrodinger picture and compare
the results with those derived from the Dirac picture as described above.

We consider Iilo to be discrete and non-degenerate.
o) =E,"|n).

I:IO is not explicitly time-dependent. So that eigenstates are stationary. At ¢ = 0, a perturbation is
applied to the system

H(t)=H,+ AV(t)  (0<A<1),

The Schrodinger equation
L, 0 A .
iy () =[H, + 2V Olv, ).

with the initial condition:

14



(=0 =),

We assume that

v, (t)> = Zan (t)| n> , (Schrodinger picture)

with

g Lp

a,0=(aly. @)= " (alw,0)=¢ " e, 0).

where ¢, (¢) is the co-efficient for the Dirac picture, while an(#) is the co-efficient for the
Schrodinger equation.

a,(t=0)= <n

w,(t=0))=5,.
For simplicity, we introduce

V, (&)= (nV (t)|k).
Recalling that

(n|H |k)=E,"S5,,,

we get
., 0 . d
1h5| 78 (t)> = thH:E a, (t)| n>
=[H, + AV O]y, ®)
=[H,+ V()Y a,@)|n)
=>a,()E,"|n)+> Aa, (t)V (1) k)
or
ih%an ) =E,"a,t)+ D AV, (t)a,(t) (Schrddinger picture) (1)
with

15



a,(0)=0,.
We note that ¢, (¢) for the Dirac picture is related to a,(¢) for the Schrédinger picture by
a,(B)=c, (e, 2)
Substituting Eq.(2) into Eq.(1), we obtain
ih{én (t)e ™" +c, (z)(— %En(‘” je"w} =E, ¢, (t)e"™"" + Zk:/wnk (t)c, (t)e ™" .
Then

ih%cn )= /Iz ey (e, (1),
k

which is exactly the same result derived directly from the approach of Dirac picture.

S. Constant perturbation
We discuss the case of the constant perturbation using the Dirac picture. Here we assume that

to = 0 for simplicity and V(t) is given by

I}(Z)_VA@(I)_ 0 for <0
B |V for t>0

Hy
th=0

Fig. Constant perturbation.

Then the probability is given by

2
’

Py (t)=|c, (¢)

where

16



c () =cP(0) + AV (t)+ XP() +

From now on, we shall assume that the sate |z> and | f > are different.
(y=5,,=0.

Thus we get

P (1)= /12‘0(1)(1)‘
2
:;—zj iy (@)dr'

What happens to the higher order term: c¢,(2) ?

¢, )= (—- ) Z : mj i 'dtjdz" ont”

We note
t t' z{u it 1
i0,,,,t' iw,t" _ la)nmt
I=[e dz'jdt"e J.dt' -

0 mi

— Idt (el(a) +@,, )t _eiwnmt')
l&)ml 0

— jdt (eza) ia z{u mt')
lwml 0

1 (eia)nit _ 1] (eia)”mt _ 1]
lwmi la)ni lwnm

The second term gives rise to a rapid oscillation when #—co. The first term is dominant when £}
~ Ei'

z{u it

@)y _ 1 Vanmi o' Onit nm’_mi
& (O==r > (I—e™) = Z(E E)(E E)

ni m mi

6. The transition probability for constant perturbation
Here we discuss the probability (to the first order of 1) which is given by

17



t 2
2,2‘ (1)(2‘)‘2 :;’_zj'dtyeiwﬁt'Vﬁ(t') .
0
Since
(1) (t) = %j‘dﬂeia’ﬁt'Vﬁ :_%(eia}ﬁt _1)’
0 y
we get
2
0] = 2~ 2c08(w, )]
f
1 sm(a)fz/z
R w2 il
or

P 2212 l:Sin(wﬁt/z)T‘Vﬁ‘z-

if 2
n| w2

iztz‘V ‘2
We now consider the probability normalized by —2ﬁ

where x= w,f. This function has a maximum (= 1) at = 0. Since F, <1, the above perturbation

theory is valid only if

At 2‘ ‘ <<1.

18



sin(a)ﬁt/Z) ’

Here we make a plot of the function { :I as a function of x =7 . As t becomes large,

a)ft/Z

‘ )(t)‘ is appreciable only for those final states satisfy the condition

x=‘wﬁ‘tz27z.

Note that
. sin (2j 0 2
.[ 4dx 2, or I s_2de =7,
= Oy S
and

—4r -3 -2 - Vg 2 3nm 47

2{2 2
Fig.  Normalized transition probability P/Po as a function of x=w . F, = ‘ ‘

Note that this function becomes zero at x = @t = +27, +47.

19



((Note)) The Dirac delta function
The Dirac delta function &(x) has a very sharp peak at x =0 and

T5(x)dx =1

We consider the probability given by

2t sin(a) lt/2) ’
By = 72 { a)ﬁz;f/2 :|‘V/z‘2

We note that

T sinz(a)ﬁt/2) 2 T sin’ x 2
@4t/2

where ¢ is sufficiently large and
a)ft

1

X=—

2

Since

and

¢ sin’lwt/2)_ ¢ (which b tremely | t—> o)
m-— =— whicC ecomes extreme arge as o0
0021 (,t/2f 27 Y e

we can define the delta function as

ot sinz(a)ﬁt/2)
27 wt/2

E, -E,
h

—>d(w;) =( )=ho(E, —E,)

Using this definition of the delta function, the probability can be rewritten as

20



P At {sm(a)ftu } ‘ /,‘

if
| w2
2,2
};ll; 2 ‘V ‘ O(E,-E) (Fermi’s golden rule)

_z—/ﬂV \ S(E, - E,)

((Note))
A AL 2
= t%[ <f |I7| i> + z <f|VE|m>_<2|V|z>% O(E, —E);) (to the second order of 4)
m f i
or
A A 2
27| i e s PP
Wr =7 {f V’>+; E,-E ‘ O(E, —E))
7. Heisenberg’s principle of uncertainty

When we use

we get the transition probability as

sin’ &t
A

ﬂz‘Vﬁ‘z - h2 [AEtT
2h

Here we make a plot of F,/ /ﬂVﬁ‘z as a function of AE(=%®,). This function shows a sharp

peak at AE =0. The peak height at AE =0 is ¢*/#*, while the width of the peak is AE =47h/t .
The area of the peak is proportional to

_ 4nh _4m
w0 n

21



When ¢ is long enough, the peak height becomes large. The width becomes narrow. The function
becomes a Dirac-type delta function around AE = 0. Such a behavior corresponds to the

Heisenberg’s principle of uncertainty;

INE ~ .

272

P

AE

6 nth 4 rth 2 rh ( 2rh 4nh

6 nth

t t t t t

Fig. Plotof P,/ iz‘Vﬁ‘z as a function of AE =ha,.

We note that

t

AE .
where x = Et . Then the total area enclosed under the red line is evaluated as

_t 2 _2m
exact hz t h *

8. Multiple final states

22



E®

Fig. Energy levels. The discrete energy level (Ei?)) and the continuous energy levels
(En®).

A group of final states around the state with Ei?. E{© is not the state in the continuous
region. E,” #E” (or E” = E,”). For simplicity hereafter we use E, instead of £, . Then

we have the probability
P=i Yl
n,E,=E;
=X J. dE, p(E,)|c\” ’
= 2p,[ 277” [8(AE)p(E,)dE,

- %”zﬂlfﬁf [8(E, - E)p(E,)dE,

23



with

12727‘1
t

(1)

ﬂV S(AE) = ﬂVM%$@rE)

where ¢ is sufficiently large, p(E)dE is the number of states within interval (E ~ E + dE) and

p(E) is the density of states. Note that S(E, — E,) (the unit of [energy]™") is the Dirac delta
function, which has a sharp peak at £, = E,,

T&@—QMQ:L

Thus the total probability is proportional to ¢ for large value of . We can define a transition
probability per unit time

W 27z

t—)[n] =

(Fermi’s golden rule)

where [n] stands for a group of final states with energy similar to i. It must be understood that
expression is integrated with jdEn p(E))

((Note)) Density of states for the 3D system for free electrons

A7k’ dk

p(EYIE =225

2z
o
2
E= h—k2 or 2—’? E=k
2m h

mm%—éﬂ%ﬁ JEdE

Thus we have

3 /2
p(E)= ﬁ(%) JE (the density of states for the 3D system)

((Mathematica))

24



Clear["Global %"];

Sin [x]
Integrate[ , {X, -, oo}]
T
Sin[x]
Integrate[ » {X, -, oo}]
T
9 Harmonic (sinusoidal) perturbation
A. Formulation

We consider a perturbation which oscillates sinusoidally with time. This is usually termed a
harmonic perturbation. Now we assume that I}(t) has one of the simple forms

I}(t) Ve + Ve ™

where V' is time-independent observable; f; = 0. For simplicity hereafter we use E, instead of

E”. Then we have

.1

l iogt' iw
PO =— [ U Pli)e™ + (/17|
0
. 1({u+a), )t . ei(—a}+wﬁ)t _1 .
= ——[( WS ]i)+ ———H )]
o+, -0+,
(1)‘2 - . :
c is appreciable only if
o+w,=0 or E,=E -ho, (stimulated emission)
or
-—0+w, =0 or E, =E +ho, (absorption)
where
E. -E
I
@, o

Therefore, we have

25



P .(t,w)= ﬂf‘c”)(t)‘2
if\" s
/12 ei(w+wﬁ)t 1 i(—otwg)t 2

E N D

Yy
h o+o, —0+o,

B. Resonant nature of the transition probability
We consider the following case (two discrete case)

absorption emission

|'/’f> L, O |‘//i>
ho =E, - Ef = —ha)ﬁ

E

f
ho = Ef -FE = ha)ﬁ

E, O |l//i> E, |‘//f)

(£,>E) (£, <E)
We have

(@ +w) 1
- T +o)t -1 _ l‘ei(“’/"+”)t/2 sln[(a)ﬁ + a))t/2]

+

@+ (0, +w)/2

for the emission

o @ _q _ o2 sin[(a)ﬁ —w)t/2]

v, -0 (@, - )2

for the absorption.

(1) When Er > Ei, = ori > 0. Under such conditions, 4- dominates (absorption).

s e
B o) =17 )] F o= o),

with
in( Ve /2 ’
sin(w, —
F(to-w,)= A ,
' (0, —w)/2
2 4 4
onat a)ﬁ_a):iTﬂ’iTE,... Aa);—jz-.



The function F(z,0—®,) is only non-negligible when

For finite ¢,

lim F(t;0 — a)f)—t

DO fi

In the limit of larger ¢, we have

2
sin(w, —w)t/2
F(faw—wﬁ):{ (@ f- w)/2 }
fi
=2mé(w; — o)

= 27t5(E, — E, — ha)

since

2
T si —w)t/2 < I/2
J- sin(@,; — @) do, - 2 J- sin(@,, — w) do,
5 (0,—0)/2 2| (@, —o)/2
2’_[ sm X
=2m
=2 J‘da)_/ié‘(a)_/i - w)
Then we have
Y PR
P, (t;0) = —ZK 1P| 2208 (E, - E, - hoo)

_t—/ﬂ [P i ‘§(E —E, —ho)

Taking into account of the number of states p(E,)dE , the total probability is given by

A 2
P= x—/ﬂ p(E,)dE,|( f |V+|i>‘ S(E, —E,~h@) (absorption)

27



This is proportional to 7. 6(E, —E, —hw) indicates the energy conservation. We can define a
transition probability per unit time

/4

i—[n]

— 27”,12‘<f|l}+|i>‘2 O(E, - E -hw), (Fermi’s golden rule)

where [n] stands for a group of final states with energy similar to i. It must be understood that
expression is integrated with J‘dEn p(E,)

—4r -3r -2x -7 b/g 2n 3 4n

Fig.  Transition probability as a function of (@, — )t at a fixed time .

(i1) When Er> Ei, = ori < 0. A+ dominant (emission).

o) s 2
Ef(t;w)zh—2‘< f|V|z>‘ F(t,o+,),

2
sin(w . + w)t/2
Ft,o+w,)= @, ) ,
(@,+w)/2
2 4 4
F=0at P +a):i—”,i—ﬂ,~-~. Aa)z—ﬂ.
t t t

In the limit of larger ¢, we have

28



sin(@, + a))t/2}2

F(f’wmﬁ){ (0, +@)/2
fi

=2mé(w; + @)
=27tS(E, — E; + hw)

since

T {sin(a)ﬁ + a))t/2:|2 _p < l:sm(a)f + a))t/2} do,

(0, +w)/2 (@, +o)t/2

¢ sm X
2tj

—00

=2t

=2m J.da)ﬁé'(a)ﬁ + )

—00

or
sin’ (a)tj
— 5 (w) = 11m—22 (formula)
t—© g
5)
or
sin ( j
2715(e) = lim———2~2 (formula)

(—w (wf
2

Then we have

~ 2
(/P)i)| 278 (E, - E, + hoo)

12
ng(t; a)) = h_z

( f|I7|i>r§(Ef _E +hao)

=t2—”/12
h

Taking into account of the number of states p(E,)dE, , the total probability is given by

29



This is proportional to 7. 6(E, — E, + ho) indicates the energy conservation. We can define a

transition probability per unit time

where [#n] stands for a group of final states with energy similar to i. It must be understood that
expression is integrated with I dE p(E))

((Note))

: 2
sin U
The plot of the function y =———= as a function of x, where ¢ is changed as a parameter.
X

2

2
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sinz(j
Fig.  Plot of y =——=~+ as a function of x, where £ =5, 10, 15, 20, and 25.
X

2

sinz(t(x_a)] Sin2(t(x+a))
Plot of y = 3 + 3
x X
S
20 (green), and 30 (blue). As a is decreased, the position of two peaks approaches to
Zero.

Fig.

as a function of x, where ¢ = 2. a = 10 (red),
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sin® (t(xz— a)) sin® (t(x;— a)j
Fig. Plotof y= > +
*
)
(green), 6 (blue), and 8 (pink). When a is close to zero, two peaks are overlapped to each
other.

as a function of x, where = 2. a = 2 (red), 4

-8

If Aw<< Z‘a)ﬁ

, in the neighborhood of @ = @, the modulus of 4+ is negligible compare to that

4
of 4. Since Aw = —tﬂ , we have
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1 1 .
{ >>——=— (resonance condition).
‘a)ﬁ‘ @

The condition Aw << 2‘a)ﬁ‘ implies that the line width of each peak is much smaller than that the

separation between two peaks due to absorption and emission.

D. Limit of first-order calculation

2

A A ) 22 .
e s P =l e

P (to=w,)=

NN 22 NN
<f|V|1>‘ wl_}{?),;F(t;w+wﬁ)=§<f|V|l>‘ t

/12
Pif(t,a) = —a)ﬁ) = ?

This becomes infinite when ¢ — oo, which is absurd, since a probability can never be greater
than 1. In practice, for the first-order approximation to be valid at resonance, the probability (1)
must be much smaller than 1.

2 A
jl_2<f|V+|i>‘2t2 <<1, or t<<m.
Therefore ¢ should be
1 1 /]
— = << << - ,
® ‘a)ﬁ‘ ;t‘(f v 1>‘
or
1 — h
o (i)
or

h‘a)ﬁ‘ >> Z‘( f |I}+|z>‘ . (the condition for the validity of perturbation theory)

10. Harmonic perturbation at resonance (exact solution))
If the perturbation acts for a long time at resonance, the above perturbation scheme breaks
down. In this case we need to solve the problem exactly. Here we assume that
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a)za)f.

1

We consider the two states |z> and | f >
. d —iw 4t
i (0=, e 0+ Y, (0e, ().

. d o,

zhzc (O =V, (e, (D) +e "V (0)e, (1)
We choose the harmonic perturbation as

V(f)=2H'sin(wr) = —i(e'” —e ™) H".

Then we have

1L )= it e i )it e Y e (),

i O =i =& YA f)e, =it ™" =Y F e, 0,

In the approximation of @ ~ @, we can approximate and write
. d . —i(@;-0)t /.| . —i(w;-o)t Sl o\
zhEcl.(t):—le (i|H'| f)c, (t) = —ie (fIH]i) ¢, (),

ih%cf () =ie" """ f|H]i)e,(t) .

((Rotating wave approximation))
We assume that the system is initially in the i-state.

c,(0)=1, ¢,(0)=0.

The solutions of this differential equations are as follows.

; 1 iw 1
c.()=e""[cos(=w t) +—sin(—w 1)],
(1) [ (2 1) S (2 )]

c

Cf(t) = 2<fh|—al;l'|i>eiwot/2

c

.1
sin(—aw.t).
(2 1)
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where

0y=0,—0,

]

The transition probability is given by

Py =le,0f
A 2
A'i
= 4‘<f|2—|;>‘sin2 (l ,t) (Breit-Wigner formula)
h o, 2
A 2
4 fH"i
A,
W, + 4 f|A)

This probability is between 0 and 1, no matther how long the perturbation acts. When the
transition probability is zero, the system has oscillated back to the initial state. At the resonance
(@, =0), we have

. a1 a1 Nl
P, = smz(za)ct) = 31n2(%‘<f|H |1>‘t) .
In the limit of t — 0, we have
1 ~a?
p. = Ll

((Mathematica))
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Clear["Global *"];
eql=aC1"[t] + Exp[-iwOt] AC2[t] == O;
eq2=haC2"[t] - Exp[iwOt] ALC1[t] == O;
eq3=C1[0] ==1; eqgqd4 =C2[0] = O;
Tl =DSolve[{eql, eg2, eq3, eqg4},
{Cirt], C2[t1}, €1 //
FullSimplify[#,
{A>0, A1>0, wO>0, 2>0}] &;

V4 A AL + w0? A2
rulel:{ 7 - wC,

1 1 }
Q b
V4 ALA+w0?n2 hoC
f1//. rulel // Simplify

{{cut] L e2itw

cos| 12, 225U,

2 wC

i twl
2Ale 2 Sin[t<]
caltl ~ wC h }}

11. Fermi's golden rule
From the above discussion we have

2

Al
wo 4l 2

Al 2
AN -0
~ sin
n’(o-o,)’ 2

- sinz(la)ct)

i->f =

We assume that the final state is a state of the continuum, labeled by the wave number &t (energy
Ey).

1
@, —a)=%(Ef -FE -hw).

Note that £~ (E, + hw) £ AE . So the resultant transition probability is
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e 4 | sin’ (@ o)

2
B, = p(E)dE, .
! _L n’ (w,-w)
@, — o)t
sin? M
The function ( 2)2 behaves like a Dirac delta function. This funcntion shows a shapr
W, -
(a)ﬁ — o)t
peak at @, —@=0. We put x =—"——
Ariary
iL t* 2h Tsin’x
i—>f hz p( /)4 t_oo xz
Al 2
HS D] p(E,) Fsin’ x
= : I dx

2

h 2 X

—00

2 .
=2 7o o
where

dx=r.

2h Tsin? x
dE . =—1dx,
f ¢ J. xz

Thus, the rate of transition to such a group of states is

P

>, 2 AP
Ry :Tf=7ﬁ<f|H [0 P(E))

12. Summary on Femi's golden rule (Wikipedia)
http://en.wikipedia.org/wiki/Fermi%27s_golden_rule

In quantum physics, Fermi's golden rule is a way to calculate the transition rate (probability
of transition per unit time) from one energy eigenstate of a quantum system into a continuum of
energy eigenstates, due to a perturbation.

We consider the system to begin in an eigenstate, i>, of a given Hamiltonian, I:IO. We

consider the effect of a (possibly time-dependent) perturbing Hamiltonian, H'.If H'is time-
independent, the system goes only into those states in the continuum that have the same energy

as the initial state. If H' is oscillating as a function of time with an angular frequency w, the
transition is into states with energies that differ by 7@ from the energy of the initial state. In both
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cases, the one-to-many transition probability per unit of time from the state |1> to a set of final

states | f > is given, to first order in the perturbation, by

P, _2 "y
R, === sl o,

where p is the density of final states (number of states per unit of energy) and < f |H '|i> is the

matrix element of the perturbation H' between the final and initial states. This transition
probability is also called decay probability and is related to mean lifetime. Fermi's golden rule is
valid when the initial state has not been significantly depleted by scattering into the final states.

Although named after Fermi, most of the work leading to the Golden Rule was done by Dirac
who formulated an almost identical equation, including the three components of a constant, the
matrix element of the perturbation and an energy difference. It is given its name because, being
such a useful relation, Fermi himself called it "Golden Rule No. 2."

13.  Free electron gas in three dimensions
We consider the Schrodinger equation of an electron confined to a cube of edge L.

p’ n s
Hy, =~y =———VY, =&¥,. 3)
2m 2m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

l//k(x+L,y’Z):l//k(xﬁyaZ),
l//k(x’y+L’Z):l//k(xﬁyaZ),
l//k(x’y’Z+L):l//k(xﬁyaZ)'

The wavefunctions are of the form of a traveling plane wave.

i (r)=e"", (4)
with

kx = (2n/L) nx, (nx =0, £1,£2, £3,.....),

ky = (2n/L) ny, (ny=0, 1, £2, £3,.....),

k.= Q2n/L) nz, (nz =0, £1, £2,£3,....).

The components of the wavevector k are the quantum numbers, along with the quantum number
ms of the spin direction. The energy eigenvalue is
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h2 2 2 2 hz 2
e(k)=—:/k, +ky +k)=—Kk". (%)
2m 2m

Here
P () = 2V, (1) = k(). ©)

So that the plane wave function , (r) is an eigenfunction of p with the eigenvalue 7k . The

ground state of a system of N electrons, the occupied orbitals are represented as a point inside a
sphere in K-space.

Because we assume that the electrons are noninteracting, we can build up the N-electron
ground state by placing electrons into the allowed one-electron levels we have just found.

14. The Pauli’s exclusion principle

The one-electron levels are specified by the wavevectors k and by the projection of the
electron’s spin along an arbitrary axis, which can take either of the two values +//2. Therefore
associated with each allowed wave vector k are two levels:

k,T>, k,¢>.

In building up the N-electron ground state, we begin by placing two electrons in the one-electron
level k£ = 0, which has the lowest possible one-electron energy ¢= 0. We have

3
N=2E s Voo
2x) 3 RY/1
Density of states

There is one state per volume of K-space (277/L)°. We consider the number of one-electron
levels in the energy range from £to etdeg;, D(g)de

L3

(27}

where D(g¢) is called a density of states. Since k=2m/h*)*Je, we have
dk = (2m/h*)*de /(2\/;) . Then we get the density of states

D(¢)de = 2——— 4nk>dk

2 2
7\ h

D(¢) =2L(2m) Je .

where the spin factor (2) is included.
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15.

where

Time dependent perturbation: selected examples

v, (0) =2 ¢, (0)|n)

c,(t)=c ")+ ¢,V () + 22, P (1) +...

Using the following formula, we solve several problems.

15.1

Cn(O) (t) = 5n,i

.t
@) ! iyt '
c ' =(=)|dt'e"V (¢
. =( h);[ i (1)

0 t t'
6 = R e [tV )V, ()
lo

mto

2

[ (f P @i

)

: 2 X
Pi— f)=2le," () =

A linear harmonic oscillator is acted upon a uniform electric field which is considered to
be a perturbation and which depends as follows on the time:

e(t)= A—1 e ,

Tz

where 4 is a constant. (Since the action of a uniform field is equivalent to a shift of the
point of suspension, this problem can be solved not only by perturbation theory, but also
exactly). Assuming that when the field is switched on (that is, at # = -0) the oscillator is
in its ground state, evaluate to a first approximation the probability that it is excited at the
end of the action of the field (that is, at # = +o0).

((Solution))
The total pulse Po is defined by

P, = jee(t)dt _A I exp[—(%)z]dt =eA = const .

Jrr

Po is classically transferred to the system by the electric field. 4 = Po/e.
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H=—p +-mo,x", H, = —est (e<0),
2m 2
H0|n>:En(°) n>,

with

1
E" :(n+5)ha)0,

(«/;|n—l>+\/n+1|n+l>).

A . h
Hl|n> = —egx|n> =(—e¢) e
0

The probability for a transition from the state |n> to the state |k> is equal to

2

P(n— k)= /12\ %)\ exp(za)kt)<k|H|>

-0

where
_ O (0)
ho, =E " —-E .

For|n>:|0>,

: 0) = (—ee) | ~(ces) |
(k|H,|0) = —es(k|5[0) = (—ee) T (k[1) = (—e&) 2mw05,(,1.

So the matrix element is not zero only if k = 1.

2

PO —>1)= \cf“)(z)\

J.exp(za)lot )<l |H |O>dt

or

5 2

>

Lo 1 en | N T
P(o—>1)_\cf (z)\ T Imar :[Oexp(za)wt Ye(')dt

or
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2 2

2 P
TSN g
0

[explioy £t/ 7)1t

—00

b

or

2

)

2

> P (w,7)
PO—>1)=|c," (1) =——L—exp[—-—2
01 =|e, () i Py

iw,T
2

1+ erf[- -
-

When t—o0,

2

2 P (w,7)°
PO =lc, ") =—L—exp[-—2L].
0> 1=l 1) T P ]

For a given Po, the probability for excitation decreases steeply with increasing effective duration
of the perturbation 7. If @,z >>1, this probability is very small and we are dealing with a so-

called adiabatic perturbation.
(b)

1 2 P
lime(?) = lim[A——e "7 1= A5(t) ==26(¢) .
11_1;1’015() Tl_r}g[ \/;Te ] () o ()

Then we have

‘ 2

[expiot)S(t")dr| =

Rh
2ma,

POZ

mha,

2
PO 1=l 1) =2

— 00

The criterion of applicability of perturbation theory is that the probability for excitation should
be much smaller than 1.

2

P(0—>1)=2P;l <<,
mha,
or
2
L << he,.
2m

15.2  Solve the preceding problem for a field which varies as follows,
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()=

2+

and which corresponds to a given total classical imparted impulse P.

((Solution))
£(t) = ,
® £+
P = L es(t)dt = eA_J; S di=ed,
or
3
er
PO->10)=|c “)(t)r—i eh jex (o z')g(f)arf2
’ f 72 2may, |5 plia,
2 2 0 . ' 2
PO Li=m)=—2 " | XPUDL)
2r°mhe,|?, t“+r
((Residue theorem))

We use the upper-half plane of the complex plane. There is a simple pole at z =iz

o0

| %“’f”dr —2ziResfir] = 27 SPCOD) LT o 7).
1" +7 2it T

—00

Then we have

2
PO—>1Lt=mw)= h exp(—2w,,7) .
2mh

@,

15.3 Solve the preceding problem for a field proportional to

g(t)= Ae™"'* for £>0.
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corresponding to a given total classical imparted impulse P.

((Solution))

o0 0

P, = Ieg(t)dt = J‘eAe’”’dt =eAr,

0 0
or
A="0
er’
OpNE
P(O—)l)=‘cf (t)‘
1 e [? ’
e
=— exp(io,t')e(t")dt’
Hmwj pliw g e(r)
e >
=— A*|| exp(iw, t)e™ " dt'
P Ymw, ‘l‘ pliw, ')
or
2 © 2
P(O—)l)zzL [explio—t'/7)dt| = 2P° - |,
2r°mha, | 27 mha)o‘—ia)lo +1/z“
or
2
PO->1)= h 12 =~ |-
2mhoy\ 1+ o, 7
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APPENDIX-I

Equivalence of the probability amplitude in the Dirac picture and Schrodinger picture
|l// ; (t)> = ZCn(t)|n> , (Dirac picture)
|l//s (t)> = Zan (t)|n> (Schrodinger picture)

Here we show that

e, =la, 0

We note that

v, (1)) = exp(%ﬁotﬂ ws(0).

Then we get

= <n | exp(él‘}ofﬂ Vs (t)>
= exp(% Ent)<n|l//s (t)>
= exp(% E t)a,(t)

or

&, @f =la,®f .

APPENDIX 11
Dirac delta function

5(x) = lim - Sn0%)
X

n—w© g1
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