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Here we discuss the time evolution operator. There are three kinds of pictures;
Schrédinger picture, Heisenberg picture, and Dirac picture. In the Schrodinger picture,
the eigenket depends on time, while the operator is independent of time. The Schrodinger
equation indicates how the eigenket (wave function) changes with time. For simplicity,
we discuss mainly the case when the Hamiltonian is independent of time ¢ In the
Heisenberg picture, the eigenket is independent of time. The operator changes with time ¢
according to the Heisenberg’s equation of motion. This equation of motion is similar to
the corresponding equation in the classical mechanics. The Dirac picture is used when the
Hamiltonian includes the interacting Hamiltonian as a perturbation. Both the eigenket
and operator depends on time . We will use this picture for the discussion of the time-
dependent perturbation theory.

Erwin Rudolf Josef Alexander Schrodinger (12 August 1887— 4 January 1961) was an
Austrian theoretical physicist who was one of the fathers of quantum mechanics, and is
famed for a number of important contributions to physics, especially the Schrodinger
equation, for which he received the Nobel Prize in Physics in 1933. In 1935, after
extensive correspondence with personal friend Albert Einstein, he proposed the
Schrédinger's cat thought experiment.

http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger

Werner Heisenberg (5 December 1901— 1 February 1976) was a German theoretical
physicist who made foundational contributions to quantum mechanics and is best known
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for asserting the uncertainty principle of quantum theory. In addition, he made important
contributions to nuclear physics, quantum field theory, and particle physics. Heisenberg,
along with Max Born and Pascual Jordan, set forth the matrix formulation of quantum
mechanics in 1925. Heisenberg was awarded the 1932 Nobel Prize in Physics for the
creation of quantum mechanics, and its application especially to the discovery of the
allotropic forms of hydrogen.

http://en.wikipedia.org/wiki/Werner Heisenberg

Paul Adrien Maurice Dirac (8 August 1902 — 20 October 1984) was a British
theoretical physicist. Dirac made fundamental contributions to the early development of
both quantum mechanics and quantum electrodynamics. He held the Lucasian Chair of
Mathematics at the University of Cambridge and spent the last fourteen years of his life
at Florida State University. Among other discoveries, he formulated the Dirac equation,
which describes the behavior of fermions. This led to a prediction of the existence of
antimatter. Dirac shared the Nobel Prize in physics for 1933 with Erwin Schrodinger,
"for the discovery of new productive forms of atomic theory."

http://en.wikipedia.org/wiki/Paul_Dirac
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1 Time evolution operator
We define the Unitary operator as

v () =U(t,t)|w (t,))
(] =y )|U" t.1)
Normalization
wOlw®)=(w,)|w))=1.
Then
(W)U (61U @1 )w @) = (w @) w @,)),

or

U*(t, to)(} (t,t,) = 1 (unitary operator),

We note that

() = U@ty (1)) = Ut t)U (4 1)|w (1))
This should be

Ut t,) =U(t,,t)U(1,,1,)
It is easy to generalize this procedure

U(tn > tl) = l}(tn >tn—1)0(tn—1’ tn—2) ------ U(tptz )U(t2=t1)~

where 11, t2, ..., ta are arbitrary. If we assume that #1<t2<t3<...<tn, this formula is simple to
interpret: to go from #1 to t, the system progresses from ¢i to 72, then from 2 to #3, ... , then

finally from fn-1 to fn.
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2 Infinitesimal time-evolution operator
We consider the infinitesimal time evolution operator

Wty +dt)) =Ul(t, +dt,t,)|w(t,))

with
lim U(t, +dt,t,) =1

We assert that all these requirements are satisfied by
U(t, +dt,t,) =1-iQdt

The dimension of Q is a frequency or inverse time.

U*(t, +dt,1,)U(t, + dt,t,) = (1 - iQdry" (1 - iQdr)
= (1+iQ"dr)d - iQdr)
=1+i(Q" - Q)dt

A~

=1

or

Q' =Q (Hermitian)
We assume that

o-1

h
where H is a Hamiltonian.
3 Schrodinger equation
t t t+dt
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Ut +dt,t,)=U(t +dt,nU(t,1,)

=(1- i%dt)lj(t,to)

or
Ut +dt,t) = Ues1y) = =i diU (1.1,)
lim LU dbh) ZULR) _ _H 5
dt—0 dt h

or
O ~ H -
—U(t,t,)=—-i—U(t,t,),
Py (4,1y) - (1,2,)

or

ih%l)(t,to) = HU(1,t,)
Since U (t,,2,) = 1, we get a formal solution for U (t,t,) as
N P A N
Ot =1-— j HEU (', t,)dt
)

when H is dependent on ¢ This is the Schrédinger equation for the time-evolution
operator.

L0 o s
zhEU(t, 1) (ty)) = HU(1,1,)|w (1,))
or
. O A
’ha_| (1)) = H|y (1))
t
4 Unitary operator for time independent H

What is the form of U (z, t,) when H is independent of ¢?
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-

) At

ar="h

N

~ iH t—t i
lim[l - —(—)]" = exp[-—— (¢ —1,)],
N%[ h( N )] xpl h( o)l

from the definition of the mathematical constant e.
or

U(t,t,) = exp[—%(t —1)].
Using this, we have

W) = expl=1 A1,y @).
or simply, we have

(1) = expl— Filly (0).

for to = 0.

5. Time evolution (general case)

HHH‘»t
t

Suppose that the Hamiltonian is time dependent. We consider the state is given by

lw()=>.C,1)|4,)

where Cn(f) is a time-dependent coefficient and |¢n> is the orthonormal set of

eigenfunctions, where

(¢,

¢m> = §nm °

The Schrodinger equation:
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in < ly @) = A0l ©)

or

Din —a";t

m

8,)=>.C,(VH()|4,)

Multiplying (g,

, we get

Zth (t)<

8,14.)=2.C. (04,

)

or

Sindels, = c,wigi0g,)

m

or

_dC
zh% - ;(% ,)C,(0)

For the system with only n =1 and 2

in

st@) = H, ()C,(H) + H, (1) C, (1)

#9106 0+ a0, 0)
or

L d(CO)_(H0) H@Y GO

a\C,0) "\ Hy () Ha) | (0

This equation is a fundamental one for the maser with two energy levels.

6. Example-I
We start with

Time evolution of system 7 9/3/2017



i
(1) = eXp(—EHt)Iw(Z 0))
When |w(: O)> is described by the combination of the eigenkets of H

w(=0)=>c,

4,)

then we have

v (©)= Y exp(— fin,

h.)= Y exp— e 1),

4,)

where

H

4,)=¢,

4,)

We consider the particle in the one-dimensional box with the potential /=0 for O<x<a
and V= infinity for x<0 and x>a. The initial state is described by

W (0)) = ——[],)+2/¢,) +|4,)]
NG

with
(x|g,) = \/% sin(%)
o 2.2 2
&, :E(;) n"=En
v (0) = exp(— Finly (= 0)
= exp(— i) +26,) /)
- gy e L)
v6 ' V6 V6
or
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(sl ) =e el e el e T (xla)
POt =[(aly )]
It is interesting to make a plot of P(x, ¢) as a function of x at various ¢ using Mathematica'

((Mathematica))

Wave function in the One dimensional box ; time dependence of the wav e function

2 _ rnmx
v[x , n_ ] := - Sln[ ];
a a
72 kmy2
e[k ] 1= — (—) ,
2m a
1 i3]t ief2]t ie[l]t
§=—(e o Y[x, 3]+ 2e n o Y[X, 2]+ e - Y[x, 11];

rulel={m->1,Ah4-51,a->1};81 =8 /. rulel // Simplify;
82 = Abs[81]2;

R1 = Plot[Evaluate[Table[&2, {t, 0, 5, 0.5}]1], {x, O, 1},
PlotStyle » Table[{Thick, Hue[O0.1 1]}, {1, O, 10}],
Background -» LightGray, AxesLabel -» {"'x", "Prob"},
Ticks » {Range[0, 1, 0.5], Range[O, 4, 2]1}]
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Prob

0.5 1.

Time dependence of the probability
n
r'[n]:=82/.t->—;x[n_]1=n/50//N
50
0.02n

G[n_] :=Plot[T[n], {x, 0, 1}, DisplayFunction -» ldentity,
PlotLabel - x[n ], Ticks -» {Range[0O, 1, 0.5], Range[O, 4, 1]},
PlotStyle » {Red, Thick}];

pt2 = Evaluate[Table[G[n], {n, O, 50}]11;

Show[GraphicsGrid [Partition[pt2, 4],

DisplayFunction -» $DisplayFunction]]
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Suppose that the Hamiltonian operator His given by the matrix element of the basis

{

A

4,)=U

b,)

We consider the eigenvalue problem;

q

¢n> =&,

4,)

or

H0(,) = £,0

b,)

or
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0" A0, ) =,

b,)

Thus the matrix form of U*HU is given by the diagonal matrix with the diagonal
element of the eigenvalues.

g 0 0 0
~oan |0 g 000
U*HU =
0 0 0
0 0 0 &
Similary,
g 00 0
oo 0 - 000
0 0 0
0 00 g’
g
e™ 00 0
U*exp(—il:lt)l]: o .0 0
h 0 0 0
0 00 e
Thus we have
L
e 00 0
exp(——Hr)=U 0 0 0 g
0 0
0 00 et

. . i A .
Once one can determine the matrix element of exp(—%Ht) , one can calculate the time

dependence of wavefunction |l//(t)> in the basis of {|bn> }.

8. Calculation of exponential of matrix

Here we calculate the matrix exp(—%fh) (see also the APPENDIX for the derivation
detail)
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with

in the basis of |1),]2).
Eigensystem[I:I ]
1
|W1> = \/15 for the eigenvalue A =3
V2
L
|w2> = 1/5 for the eigenvalue 4 =-1
V2

The unitary operator is

1L
22
R
2 2

U+ exp(—%flt)l} = exp(—%ﬁ*lfll}t)

or
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i 2t .. 2t
in Al g s, ] CosG) —isin(=o)
exp(—Hi) =U ¢ ) U =e? h h

1

.2t 2t
0 h —isin(— cos(—
e (h) (h)

Note that using the Mathematica, one can directly calculate the exponential of the matrix,
even if the matrix is a diagonal one. We need to use

MatrixExp[A]
where 4 is an arbitrary matrix.

((Mathematica))
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Clear["Global “%"]; exp_* z= exp /. {Complex[re_ , im_] :» Complex[re, -im]};
H={{1, 2}, {2, 1}}; eql = Eigensystem[H]

{{3, -1}, {{1, 1}, {-1,1}}}

¢yl = Normalize[eql[[2, 1]]1]; ¥2 = Normalize[eql[[2, 2]]]1; al =eql[[1, 1]1];
a2 =eql[[1, 2]11;

Yl* . y2
0
UT = {1, 42}
1 1 1 1

Wz 7 ie =l
U = Transpose[UT]; UH = UT*; H1 = UH.H.U // Simplify
{{3, 0}, {0, -1}}

1= {{exp[-~ ta1]. o}. {o. exp[- ca2]}} // simprity

3it it

{{e » .0}, {0, en }]
pl = U.K1.UH // Expand
1 it 1 _3it 1 it 1 _3it 1 it 1 _3it 1 it 1 _3it
{{*@h +—-—e h ,-—eh +—-e h },{—feh +—e h , —-—eh +—-e h }}
2 2 2 2 2 2 2 2
Direct calculation for comparison
p2 = MatrixExp[—il tH] // Fullsimplify
h
it 2t . At 2t . At 2t it 2t
{{e n Cos[?} “ie n Sln[?]}, {[-ie n Sln[?], e n Cos[?]}}

pl-p2// Simplify
{{0, 0}, {0, O}}

9. Spin precession
We consider the motion of spin S (=1/2) in the presence of an external magnetic field
B along the z axis. The magnetic moment of spin is given by

~ 2 ,uBS’

Z

fo=——— =0
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Note that here we consider the spin of electron. The direction of the magnetic moment
vector is antiparallel to that of spin. Then the spin Hamiltonian (Zeeman energy) is
described by

S 241, -
H=—ju.B=~(~1=)B = 1,68
. o eh
Since the Bohr magneton up is given by 1, = Pyt
mc
eBh h eB
=T =TT =70, e>0).
o 2me 2me 20 (>0)
or
eB .
W, =— (angular frequency of the Larmor precession)
mc

Thus the Hamiltonian can be rewritten as

A

H=—w,..

o |

Thus the Schrodinger equation is obtained as

(1) = expl=— Al (¢ = 0)) = expl~> 0,61t =0)).

Note that the time evolution operator coincides with the rotation operator
~ i -
R(@y0) = expl- 0,6.1].

((Note)) Classical physics
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4S5’

\

21,8

The torque is exerted on the magnetic moment u = — ; , in the form

r=ﬂxB=(—%)xB

The equation of motion:

d—S:‘t':—%SxB
dt h

or

AS = 2%(3 x S)At
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So the spin vector S rotates around the z axis in counter-clock wise.

((Note))

We assume that

_i¢
; ; e ? cos(g)
(e =0)=|+n)=expl-2 6. glexpl-6,0042) =, 2
e’ sin(z)

R(@qf) = expl=5 0,6.1]
The average

(8.
(5.,
(8.), =

<

)

> <+ n|exp[ ®,0.t]o, exp[—Ea)0

< (t)|S |l//(t)> <+n|exp[ w,0.t]o, exp[— —C()OO' t]+n>

)

> <+ n|exp[ ®,0.to. exp[—aa)0

Here we have

: ' 0 1
exp[ia)oé-zt]o-x exp[—iwo&zt] _le? 0 e 2 0
i ? ) 0 e

it it
0 B 20 1 0 20
B O eit{uo
- —itw, 0
22 NERZ
i i e 2 0 0 —i),e 2 0
exp[— a)OO'Zl]O'y expl-—w,0.t]= oy | ity
2 2 0 e 2 N 0 0 e?
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L oo expl-L o= °
exp[—w,o.tlo. exp[——w,6.t] =
p 2 0~ z z p 2 0~ z 0 _1
Thus we have
hno.
<Sx>t = Esm Ocos(wyt + @)

= gsin O[cos(w,t)cos ¢ —sin(w,t)sin @]

ho. .
<Sy >t = Esm Osin(w,t + @)
= gsin O[sin(w,t)cos @+ cos(w,t)sin @]
<Sz> = Ecos 0
L2
Att=0,

h .
<Sx>0 =Esmecos¢
(s,), =§sin Gsin ¢

h
<SZ> 0= ECOS 0
Using this we have
(S.) =(8,), cos(@,t) - <Sy>0 sin(w,?)
<Sy >t = <Sx >0 sin(w,t) + <Sy >0 cos(@,t)
h
(5.),=(8.), = Feost

Note that
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This means that the spin vector { <Sx>t,<Sy >t} rotates around the z axis in counter clock-

wise.
() =(w@®|S,|w®) = §<+ n |eXp[% ©,6.116, eXp[—%wocit] +n)
= §<+ n|6, cos(wt) - &, sin(ayt)|+ n)
where
(S,), = g<+ nl6 |+n)
We also get
(8,) = (WOl |y®)= §<+ nlexpl2- 0,616, expl— @611 +n)

=g<+n

G, sin(@yt) + 0, cos(a)ot)|+ n>

by using the Baker-Hausdorf lemma,

(5,), =5+ n, [+ n)
and
(8.), =(wOB.lw )
= g<+ n |exp[é w,6.116. exp[—%a)oé'zt] +n)
=2 (enl6fen)=(s),
Then
(), = (S.), cos(@y)—(S, ), sin(@y)
(S,) =(8.),sin(@y) +(S,), cos(ey)
and
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10 Baker- Hausdorff lemma

Baker-Campbell-Hausdorff Theorem

Henry Frederick Baker,
John Edward Campbell,
Felix Hausdorff.

(We will discuss this theorem in the topics of coherent state and squeezed state later).

In the commutation relations, [jz,jx] =inJ ,» We put jz = %6‘2 and J_ = %6‘

X X

Then we have

y z2 7 x v

[Eﬁz,ﬁ&x]=ihﬁﬁ or [6.,6.]=2i6
2 2 2

Similarly, we have
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We notice the following relations which can be derived from the Baker-Hausdorf
lemma:

2 3
exp(Ax)Bexp(-Ax) = B +%[A,B] +%[A,[A,B]] +%[A,[A,[A,B]]] +..

exp[i%o‘z]é‘x exp[—igé'z] =G,c0s0 -0, sind

9 ~ ~ ~ ~ . A
exp[iz o.lo, exp[—i; 0.]=0,sinf+ o cos 6

((Proof))

We note that

Then we have

I =exp[xc_ o, exp[-x0.]

2 3
R SR X . X i a A A
=0 +—|o.,0 ]+E[O'Z,[O'Z,O'x]]-l-E[O'z,[O'Z,[O'Z,O'X]]]

X 1' z27x

4

+%[&z,[ 5.,06..06.,6, 1111+ ...

. . 2 . 3
[=6,+ l.£2i&y i (g) [6.,2i6,] +l(§j [6..[6.,26,]]

12 2 3|
N4
+ig) [6..16..16..2i6, 111 +.

or
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TN PSR N 2
[—O'x—(90'y+l?[0'y,0'2] — (=2i)[5.,[0,,5.]]

3' 2°
1 o’
+ o ((20[6..[6..[6,.6.11)....
3
=6,-66,+ zg—zza —Lg—(—2l)(2l)[0' 6.1
+l9_4 =2i)(2))[0..[0.,6, 1]+ ...
4| 24( l)( l) O-ZJ O-ZQO-
or
>, P& . 16
=6 0(7 —7(7 —5?( 2l)(2l)26y+Iz_4(_2l)(2l)(2l)(_21)0x+---
2 03 4
—6-06-26+% 6 +% 6 4

. 6* 6 R 6’
:Ux(1—7+z )—O'}(l—?'i‘)

=6, c080 -5, cos0

11 Schrodinger picture

The Schrédinger equation

lw(0) =

v, (1))
. (0) = U1 w. (1))
where l}(t,to) is the time evolution operator;
U (t,1,)=U"'(1,1,) .

In the Schrodinger picture, the average of the operator 1213 in the state |y/s (t)> is defined
by

(w, (|4,

w, (1))

12 Heisenberg picture
The state vector, which is constant, is equal to
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|V/H(t)> =

Vs (to)>-

From the definition

(Wil Olw) = v, |4.@)

V),
or
A (D)=U" (1,1)A.(OU(1,1,).
In general, IZIH(t) depends on time, even if zgls(t) does not.

13 Heisenberg’s equation of motion
The Schrédinger equation can be described in the Schrodinger picture

i<y (0) = L0y, 0)
t
or

ih%ﬁ(mo) v (1) = HL(OU 1)y, (1))
or

ihiz)(z t,)=H. (OU(1,t,)

dt sto/) T s s b0

or

d - i o

E U(tato) = _% Hs(t)U(t: to)
and

d ~, i, ~
—U'(t,t,)) ==U"(t,t,)H (t
0 (4,4 . (4,4,)H(?)

where I:[;(t) = I:[S (¢t) . Therefore
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dA, (1) ‘ﬂégt)A(OUUt)+L”OI)A(0

dt

=%U+(m)H OAOUt)-U" (t,t,)A, (z) (00 (,1,)+ U (1,1,) 220

L TN S A . 1@
= U 60O, AU 61)+ U (61) =

dA (t)

= -[15( (1), 4, (D] + (=),

where
H, () =U" (tL1)H (U (t.1,)
Finally we obtain the Heisenberg’s equation of motion

dA (1)

L 2,0 = A0,y 0]+ D,
14 Simple example for the Heisenberg picture
H(t)=F A =4
to=0
O=cr"

Then we have the Heisenberg’s equation of motion:

d s
zhEAH:[AH,HH]

dU(t,t,)

+ U (t,1,) =2

U(t.t,)

dA (t)

U(t,t,)

dA, (t)

U(tt,)

We get an analogy between the classical equations of motion in the Hamiltonian form

and the quantum equations of motion in the Heisenberg’s form. /]H is called a constant

of the motion, when[zng,]:I , ]1=0 at all times.
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Therefore [IZIH,I{VH] means [/Als,fls] =0

15.  Ehrenfest’s theorem: Schrodinger picture

Paul Ehrenfest (January 18, 1880 — September 25, 1933) was an Austrian and Dutch
physicist and mathematician, who made major contributions to the field of statistical
mechanics and its relations with quantum mechanics, including the theory of phase
transition and the Ehrenfest theorem.

http://en.wikipedia.org/wiki/Paul Ehrenfest

Schrédinger equation:
nZly@)=Ay@)  or L) =-LAlw)
ot ot h
Taking the Hermitian conjugate of both sides,
0 oy .
- ihg@/(t)l =(v|H" =(w()|H
or

o) = ol =yl

We now consider the time dependence of the average defined by <1//(t)|21|1//(t)>
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d, - _ 0 o4 e

@A)y 0) = O Ay )+ (o]l ©)+ oAy o)
- %@,(t)m,aw,(m+<y/(t)|aa—‘f|y/(r)>+<w(r)|21(—%)lw(t)>
- —%(w(r)u?l,ﬁﬂw(r)) +<w(t>|aa—flw(t>>

or

&

. ; A n oA
v oldy )= —%@/(r) L4 iy @)+ ()| = v )

A

When Z—Ij =0, we have

Syl o) = oAV o)

where
[4,H]=AH - HA .
When [IZI,I-AI] =0, we get
<1//(t)|21|1//(t)> = const

16.  Heisenberg’s principle of uncertainty
((Messiah, Quantum mechanics, Townsend problem (4-15) first edition of Quantum
Mechanics))

Consider any observable A associated with the state of the system in quantum
mechanics. Show that there is an uncertainty relation of the form

d %’
)

provided the operator A does not depend on explicitly on time. The quantity

(AA)/ |§<A> | is a time we may call A7. What is the physical significance of 4z.?
t
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((Solution))
We recall that

[4,B]=iC

implies that

()
(A4)AB)> %

We start with the commutator [121, H ]; then

(aa)ag)= 2 | {417

But since

2 dt
or
(a) -4 2
|i<A>|_2'
dt
If we define
ar=—84)
d
—(4
Idt< )
then
AEAtZE
2
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For example, for position, if Ax =1 cm and %<x> =0.1lcm/s. then we have

which is the time necessary for <x> to shift by an amount Ax.

17.  Example for the Ehrenfest theorem
We consider a particle in a stationary potential.

~2

A= 4y
2m

So that we can write

(%, H]w (1))

X

Ly

i
0 (1)) = —#w(t)

—é(w(t)l[i,f—m]lt//(t»

=~ iy )| "y )

or
] A .
E<y/(t)|x|t//(t)> = (v/(t)I%]|l//(f)>
or
d 1
E<x> = ;<p )
Similarly
§<w<z> Ay ) =y p Hlw )
’ h
_ —é@/(t) [V ®)lw (@)
) 0 ., ~
_ _%7@,@ V@)
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or

d . 0 .«
E@/ ®|p praidtol

w(0)=—(w (1)

w(1))

or

=)

The equations

£l =—(p),

and

4 in=-{%)

express the Ehrenfest’s theorem. These forms recall that of classical Hamiltonian-Jacobi

equations for a particle.

18 The same example in the Heisenberg picture
I .2 - 1 .
H,= o ps +V(xy), (Schrodinger picture)
m
H, = Py D +V(%,), (Heisenberg’s picture)
m

[)GH’ﬁH] = )eHﬁH - ﬁH)%H

Iy A

=U"[%, p]JU =ihU*U =inl
(2, Py 1=U"[%,p°10

=2ihU* pU

=2ihp,

Heisenberg’s equation for the free particles,
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d . R | 1 o . o
ih—x, =[x,, = s —1 =—1Ihp, ,
i (X, H 2[HpH] m af?HpH mpH
or
. A A I .
— Xy =[xy, Hyl=—py.
t m
Similarly
L d . A N lA AN AL A A iy O -
ih—py =Py, Hy1=U"[p,HU =U"[p,V(O)JU = (=ih)——V (%)
dt 0xy
or
d . _ . oV (x,)
ar =) %,

We consider a simple harmonics.
V A _ l 2A 2
(X)) = ) mao xy

d . 24
— Py =—mo Xy,

dt

Now consider the linear combination,

or

i . A
H)ZBHeza)t

(X ———p
mao

where le and I§H are time-independent operators:
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R i .
=%, (0)+ Ppu(0),
ma

~ R i .
B, =x,(0)- Py (0).
mao

Note that x,,(0) and p, (0) correspond to the operators in the Schrédinger picture. From
these equations, we get final results

A

Xy =X, (0)cos ot +Lf7H(0)sin wt
mae

Py = Py (0)coswt —max,, (0)sin wr .

These look to the same as the classical equation of motion. We see that X, and p,
operators oscillate just like their classical analogue.

An advantage of the Heisenberg picture is therefore that it leads to equations which are
formally similar to those of classical mechanics.

((Note))
5 d2 dx p mao’ o . . o’ h .
ih dz [ T, H] [ = H ]__[pH’ > xHZ]:T[pH’xHZ]:E 72XH
or

d? )

FXH:—(O X s

with the initial condition

d . 1 . R n
EXH |t:0:;pH(O) ) Xy o= X, (0).

The solution is
q = C’l cos(wt) + éz sin(at)

%,(0)=C,,
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diy

g =0T [-oC, sin(wr) + &C, cosn(at)),_, = oC, = 4 (0)
m

Thus we have

&, = Pu(©
mao
and
X, =X, (0)cos(awrt) + pH—(O)sin(a)t)
mao
19 Analogy with classical mechanics

In the classical mechanics, dynamical variables vary with time according to the
Hamilton’s equations of motion,

dq, _oH
dt ap]

where gjand pj are a set of canonical co-ordinate and momentum, and H is the
Hamiltonian expressed as a function of them,

H = H(qlaq29Q3a““aqnﬂp1’pzapsa‘"pn)
where n is the degree of freedom.

For a given variable 4 = V(q,,G5,55-es 4> P1> P2s P3P »
Z 04 dg; o4 dp,
dt oq, dt 8pj dt

z 0A OH 04 oH
oq, op, dp, oq,

=[4,H]

classical
[ Jelassical:a classical definition of a Poisson bracket.
20 Dirac picture (Interaction picture)

A~ A

H=H,+ V(1)
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where 1:10 1s independent of 7.

or

v, ) =¢ "y, )

@)=

v, (1))

We assume that

4,

(v, (0|4, 0|y, ) = (v, ()

v, (1))

A

For convenience, A4, is independent of z.

or

or

or

or

.0l " 40 ly.0) = (y. (|4,

w, (1))

—él:lot A él:lot A
e A (t)e" =

N

[ [
A —Hgt ~ ——Hyt

A (t)=e" Ade’

s

d - i~ faga Ly Lhga Lhg A
ihEAI(t):ih%[Hoeh Ae™  —e" Ae" H,

s

=[4,(),H,]

Thus every operator behaves as if it would in the Heisenberg representation for a non-
interacting system.
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0 %ﬁot

o .
S, 0)=in-se" |, 0)
=A™y 0)+ e;H"’ih% v, ()

Since

i<y 0) =1, + 7.0l ()

. 0 L0 i-Iqot A iﬁot iﬁot A ~

in <y, ) =i ey, )=~ . 0)+ 1, + VO, 0)
or

<y, 0) =" PO, 0) = 7,0y, 0)
or

i<y, 0) =7, 0l 0)

t

where

ot

v y=""V )" (Schrédinger-like)

which is a Schrodinger equation with the total H replaced by I}I

We assume that

|‘//1 (t)> = UI (t:t0)|‘//1 (to)>

satisfies the equation

0 5

iy, (0) =7,y ()
Then we have the following relation.

L0 - S s
ih—U, (0.1 =V, (0, (0:1,)
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with the initial condition

.t
U,(t,t,) = 1—%[17,@')0, (t',t,)dt' .
lo

We can obtain an approximate solution to this equation [Dyson series].

3 l t g 1 l f 5 " 3 n " 1
U,(t,ro)zl—gtjom )[1—%;0%0 YU, (¢, )dt"\dt

.t . t t'
_ _i o ' _LZ ' W7 (N (4"
=1+( h);[V,(t)dt—i-( ) jdtlj;dt V(W (") +...

to

21 Transition probability
Once U, (t,t,) is given we have

|'//1(t)> = UI(tato)|W1(to)>

where

v)=" @) o )=

v, (1))
and

v (0) =U(t.t,)

Y (Zo)>

ly, () = e U (1.1,

v, (&, )>

LAy A LA,
=e" U (t.t,)e" |‘//1(to)>

Then we have

iyt~ = Hyt

U,tt,)=¢" "U,(ity)e "
Let us now look at the matrix element of U (t,t)

)

I:IO|n>=E

n
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(n[0, (110 m) = & (0 (1ot | m)
(nl0 ) =[(n [0 2.t ),
((Remark))
When

[H,,A]#0 and [H,,B]#0
AlaY=a'la) and  B|b')=b'b")
in general,
‘2

(010, eap|a| = [B10, ) )

Because

(10, aha)= T e

n,m

L(E~Eyio) (b )(n

-y
n,m

T
n ——Hly
U.(t,t,)e "

US (t, t0)| m><m | a'>

22.  Application of Schrodinger and Heisenberg pictures to simple harmonics

i~
A ——Ht

U=e"

The operator in the Heisenberg picture is defined by

~ ALA A Tae o ipy
A, =U"AU=¢e" Ae’
where H is the Hamiltonian
A 1 . ma;
H=—p"+—2%°
2m 2
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Using the equation of Heisenberg picture, we obtain

A A | .
X, = Xcoswt +—— psinwt
mao

and
Py = Pcos ot —m@xsin ot

The matrix of x and p are given by

0 41 0 0 0
oo V2 0 o0
o L]0 N2 0 V3 o0
V280 0 A3 0 4
0 0 0 4 0
and
0 1 0 0 0
~J1 0o V2 0 o
Homay | 0 -2 0 3o
V2i8| 0 0 -3 0 4
0 0 0 -4 0
((Discussion))

What are the expectation values <l//(t)|)%|l//(t)> and <1//(t)| f?|l//(t)> ?

(W@ Ry (1) = (w(0)|z,]|w(0))

<w(0) |fc coswt + Lﬁ sin a)t| 1//(O)>
mao

Xy

= <1,//(O) |fc|t//(0)> cos wt + i(t//(O) |ﬁ| 1//(0)>sin wt
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(W (@)|plw ) = (W (0)|py|w(0))
<w(0) |j7 COS @t — ma@x sin a)t| z,//(O)>

<w(0) |j7| z,//(O)> coswt — mw(ty(O) |fc| z//(0)> sin @t

Suppose that
1
Oy O)=72(0)+21)+[2)

we can calculate the matrix elements <t//(0)|)2|1//(0)> and <1//(0)| f)| y/(0)> as follows.

1
(1 2 1)1 oY ?
wORyO)=|— = — —{1 0 ﬁ]—
NG 6x/5ﬂ0ﬁ 0 f
J6
1 2
:x/_T,BE(lJME)
1
(1 2 1) o ! ; \/26
wOlply©O)=| = = ’”—“’1{1 0 V2||=0
J6 o 6 )2 o -3 0 f
Jo

@ )= (o)1)

oo (1 1)1 (0 1\ 1
<w<o>|x|w<o>>-( : 2j ﬁﬂ(l 0} 2
<w<o>|p|w<o>>=(—
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<1,//(t)|fc|z//(t)> = \/%,3 cos wt

and

ma

WwOlbly©)=-7 5 sinex

((Another method, Schrodinger picture))

@)= (0)+]1)
(e—iEot/h|0> n e—iElt/h|1>)

oot /h
o iE/h

iEgt /1 iElt/h)

Sl- Sl-

ol=l

R 1 2 1 im0 1 SR
(l//(ﬂlﬂt//(ﬂ){ﬁj \/_Tﬂ(e ! {1 Ojt_,-glt/hJ

1 ~iEytIh
_ 1 ( iEgt/h iE/n) €
- o Eot!h

1

228

L1 ’):Lcosa)t
2425 2p

e
(eiwot + e—iwo

23.  Example-1

A spin 1/2 particles in a eigenstate of Sx, with eigenvalue 7/2 at time # = 0. At that
time it is placed in a magnetic field of magnitude B pointing in the z direction, in which it
is allowed to precess for a time 7. At that instant, the magnetic field is rotated very
rapidly, so that it is now points in the y direction. After another time interval 7, a
measurement of Sx is carried. What is the probability that the value 7/2 will be found?

((Solution))

The spin has a spin magnetic moment.
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The spin Hamiltonian in the presence of the magnetic field B,

1—?:-;}-3=yBa-B=@&-n=lh[§j&-n=lhw0&-n
2mc 2 \mc

where n is the unit vector along the direction of B, and @, is the Larmor angular

. : 2
frequency. Note that the period 7} is expressed by 7, = il

@
Att=0, we have |l//(t:O>:|+x>.

For 0<¢<T, the magnetic field is applied along the z direction.

H= %ha)o&z
we have
v ()= exp(—%ﬂw(r = 0)) = exp(— 25 )y (e =)
and
(e =T)) =exp(-"2 6 )ly1=0) - xp(-in 6)x) =R 2l 2

where f?z (@) is the rotation operator around the z axis by the angle ¢.

For T<t<2T, the magnetic field is applied along the y direction.

~ 1 .
H= Eha)OO'y
we have
i(t-T)H
) =exp(-" == 1)
_io,(t-T

— exp( Lo lwie=1)

2
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io,T .
lw(t=2T)) = exp(—— =0, \w(t=T))

T
= exp(—mFay )| w(t= T)>

0
A T A T
=R 2r—)R.2x—)|+x
4 ( To) -( To)| )
Now we calculate

(+x|w(r=2T))=(+ x|1éy(27zT1)1%2(27zT1)|+ x)

(+x|R,(O)R.()|+x)
where

9227[1.
T

0

Using the formula

R (0)= exp(—ign &)= cos(g)i —i(n-6) sin(g) :

Rz<0)=cos(§>i—i&zsin(§)= e 01

0 e?

cose sin
5 0 =cosDi—ic sindy=| 2 2
Ry(ﬁ)—cos(z)l zaysm(z)— o Rt

sin— Ccos—
2 2

Note that

o3l
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. 6 1

<+X|‘//(f=2T)>=(T Tj , 0 8 s
2 sin— CcOS— 0 e —_—
2 2

or

1+1i

(+ x|y (t=2T)) :T(20039 —2i)

Then the probability is given by

1+i N
T(Zcos@—Zz)

1 1 T
=—[1+cos’0]=—[1+cos’ 2z —
2[ ] 2[ ( E))]

T
P@=2r—)=

24. Example-2
A particle with intrinsic spin one is placed in a constant external magnetic field B, in

the x direction. The initial spin state of the particle is |l//(0)> = |l =lm= 1> = 1,1> , that is,

a state with S, = 7. Take the spin Hamiltonian to be

H=w,J

X2

and determine the probability P(¢) that the particle is in the state
1’1>x ?

1,—1> at time ¢. Make a

plot of P(¢) as a function of time ¢ (0<@yt<2x). Hint: l,0>x, and 1,—l>x are the

eigenket of H.

((Solution))

v (©) = exp(—F0)y(0) = exp(—i T 1),

For simplicity, hereaftre we use

L) =|1L1).
Noting that
1 1 1
L1) = 5 LI) + 7 1,0) + 1-1)

we get
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(o) = exp(-i 2L
ot 51 1 1
= exp(—z7°Jx)[5 L1) + 7 1,0) + 5 1L,-1) ]
1 . 1 o
=S exp(-iay) L1) t 1,0) +explioy) 1,-1)
The probability P(¢) is given by
2 |1 : 1 1 . ’

P() =[(L-1|y )| = S exp(-iap)(L-1[L1), +$<1,—1 10), +explia)(L-1]1-1),

Then we have

P(t) =|(L-1y )

2

1 , 1 1 ,
—eXp(—1w,t) —— + —expliw,t
, p(—iwyt) >+ pliwyt)

wyt

1 2 .4
4( cosw,t)” =sin ( 5 j

P(1)
1.0+

0.8
0.6+
041

0.2r

((Note))
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11 1
2 V22
. 1 1
L=U"1) =|—= 0 -—
=071, =| 75 5
r_1 1
2 A2 2
1 0
L) =0, |L0) =|1], [L-1) =
0 0
1 1
Ly =142, 10) =——| 0
2 )
1 -1
1
1,-1) _U_n
2
1
with the unitary operator,
i1 1
2 A2 2
N 1 1 N
U=l—— 0 -—-—|, U,
N2 V2
i1 1
2 V22
25. Example-3

1 1
=—I11) +—
S+
11
V2 2

1
0 -

V2
LI
J2o2

1,o>x +

1

: 1L-1)

Let |1> and |2> be eigenstates of a Hermitian operator A with eigenvalues a; and a,,
respectively (a; # a,). The Hamiltonian operator is given by

H=§|1><2|+ §[2><I|

or

~ (0 & .
H= =00,
o 0

where J'1is just a real number.
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(a) Clearly, |1> and |2> are not eigenstate of the Hamiltonian. Write down the
eigenstates of the Hamiltonian. What are their energy eigenvalues?
(b) Suppose that the system is known to be in the state |2> at t = 0. Write down the

state vector at 0.

(c) What is the probability for finding the system in |1> for £>0 if the system is known to

be in state |2> at = 0?

((Solution))
(a)

Eigenvalue problem

H|+ x> = 5&x|+ x> = 5|+ x>
H —x> =00, —x>:—5|—x>
under the basis of { 1> , 2> }, where
(0 1
)= J_ﬁump)] for
IR A N SR
e B v U for
(b)
— exol—L A1) = L exn(— L A o= L
v (1)) = exp( - Ht)|2) 5 exp(—— Hb)[|+ x)—|-x)] 5
or
o) =t i)+ ) - ) -[2)
V2 2 V2
or
W)= 1e 1)+ |2 - (1)~ |2
1 —élElt B —%EZI l —%Elt _éEzt
=E(e e )1>+2(e +e ' )2)
(c)
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i i
—Et —E,t

> 1 -LEs Tk E
PO=[lly @) =" =) e —er )
_ 1[2 _ eé(E2*E| )t _ e*%(Ez*El )l]
4

or
P(t)= 1 {2- 2cos[—1 (E,-E)t]} = sinz(—1 (E,—E )tj

26. Example-4
Consider a simple harmonic oscillator in the superposition state. Given that at t = 0
the particle is in a state given by

1

) =—=(0)+11),

where |n> is the eigenket of a one-dimensional harmonic oscillator with a mass m and an

mao,
h

angular frequency ay): I:I|n> =K, n> with £, =(n +%)ha)0. B=

(a) Calculate
W (©) = exp(— Dl (e =0).

(b) Calculate the expectation value defined by

(W (O[&|w (1)) = (w (0)|z,|w (0))

Xy

v ()= (O3, |v(0).

A2
X

40

X, is the operator in the Heisenberg picture

X, = Xcosa,t + psinwyt

mao,
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0 V1 0 0 0
oo 2 0 0
o L]0 N2 0 V3o
V20 0 N3 o0 V4 [
0 0 0 4 0
0 1 0 0 0
-1 0o V2 0 o0
L _ Mo, 0 —«/5 0 \/g 0
V2l 0 0 -3 0 Va4
0 0 0 -4 0

((Heisenberg picture))

Simple harmonics

Using the equation of Heisenberg picture, we obtain

. s ..
X, = Xcos@,t + —— psin wt
mae

and

Dy = DCOS@,t — maxsin ot

What are the expectation values <w(t)|fc|w(t)> and <l//(t) p l//(t)> ?
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w(0)) = (w ()| |y (0))

= <l//(0) |)2 Cos Wyt +

x

(w()

X

|
psin a)ot| 1//(0)>
ma,

= <l//(0) |)2| 1/1(0)> cos @yt +

L wo)p

mao,

(w®|plw @) = (w(0)|py|w(0))
<w(0) |ﬁ COS W, — M@, X sin a)ot| w(0)>

= (w(0)| p|w (0)) cos @t — ma,(y (0[] (0))sin w,t

Att=0,

)=o) +[1).

The average values of x and p at¢=0 is obtained as

worse)=(s Eals of |-

\9)

and

(w(O)IﬁIW(O)F(% %j\%ﬁ(_ol (1)] 2.
2

The average values of x and p at the time ¢ is obtained as

<t//(t)|)2|t//(t)> = \/%,3 COS Wyt .

and

sin w,t .

(w@)|plw ) =- jg’ﬁ

((Schrodinger picture))
In this picture |y(¢)) is obtained as

Time evolution of system 50

1/1(0)> sin w,t

9/3/2017



) = (o)1)= e |0} + ™ [1)= %{ej

Since

<l//(t)| = %(eiEot/h iElz/h>

we have

- 1Y 1 e w0 L) e
<‘//(t)|x|‘//(t)>:(ﬁj \/—Tﬂ(eo 1 {1 OJ(Z—iEIt/hJ

_ l 1 (eiEot/h iEtlh et
2 ﬁ ,B efonz /1
1 1

(ela)ﬂt +e la)ot) —

1
cosw,t
2

e ) 01 —iEqt /T
<l//(t)|p|l//(t) =( j\/_o B | ( 1 Oj(e’Elt/hj

~%

LiEt
:l ( iEgin iEgin) € e
2 2,81 _efiEOt/h
_ l ma)o' (e—ia)ot _ eia)ot)
2 \/5,6'1
mao, .
= ———2sin @t
2

27. Example-5: Cohen-Tannoudji (4-2)

Consider a spin 1/2 particle.

a. At time ¢ = 0, we measure Sy and find +7%/2. What is the state vector |1//(O)>
immediately after the measurement?
b. Immediately after this measurement, we apply a uniform time-dependent field

parallel to the z axis. The Hamiltonian operator of the spin H(¢) is then written:

H(t)=w,(1)S. .
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Assume that @,(¢) is zero for <0 and £>T and increases linearly from 0 to @,

when 0<¢<T (T is a given parameter whose dimensions are those of time).
Show that at time ¢ the state vector can be written as

lw ()= %[e”m [+ z)+ie” |- 2)],

where 6(¢) is a real function of 7.

C. At a time ¢ = 7. we measure Sy. What results can we find, and with what
probabilities? Determine the relation which must exist between an and 7 in order
for us to be sure of the result. Give the physical interpretation.

((Solution))

(a)
=0 =|+ )=l +2)+-2)

V2

(b)

H(t) = 0,(1)S.

Schrodinger equation

ih < |y @) = A0l ) = 05y ©).

Suppose that

v () =U@)|y@=0)).

U (¢) satisfies the differential equation

ihgﬁ(z) =HOU®) = o()SU(1) .

The solution is

Ut) = exp(—% j A(t)dr")
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H (#) is time-dependent but H (#)'s at different times commute.

00 =expl-iS. - [ 0,(¢)dt'| = expl-i-6,()3.)
0

where
0,(0) = [ (1)t
0
Then we get
N 5
[y(0) = expl-i— 6,03,y (1 =0)
1 A
= eXp[—lgﬁo(t)Sz] +7)
:Lexp[—il 0,()S. 1l +z)+i|-z)]
V2 h
1 [e_%%(t)| eo)s iei%90<r)| )
= — z —Z
V2
1 i0(1) 0]
=—[e""|+z)+ie -z
L2} 0]
where
o(t)= —19 )= —ljm (t")dt'
27 2477 '
,(t") =Dy for 0<r<T ,
T
w,(t')=0.  for <0 and #>T.
(c)
Att=7>T,

o(t) ——lJT'a) (t')dt'——lj'&t'dt'——la) T
29" 24T 4"

0

Now we measure S , att.
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1 o100
. 1 —. . 1 i0(1) 1 0
<iy|l//(t)>——(1 Fi =—e"t—e

N7
2 Le—ie(x) 2 2
V2

The probability
2 1 1 a,T
P =[(+ ylw @) =1+ cos@B0)]= 11+ cos(E)]
2 1 1 a,T
P == y|y (@) = [1-cos20(1))]=—{1-cos(—)]
2 2 2
When oI =2r, P =0, P =1.
When o, =4r, P =1, P =0.
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APPENDIX-I

Calculation of exponential of matrix

Al

Example-1
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~

Calculate eXp(mTA) ,
where

0 —

~. o Ql“‘
) .

V2
1),12),[3) .

We use the Mathematica to calculate the eigenvaluse and eigenvectors of A.

0
R
V2
0

i
V2
0

in the basis of

Eigensystem|[ A ]

The eigenvalues and eigenkets are obtained as

1
2
1> = % for the eigenvalue 1 =1

|‘//1>:U

[\

1
2

Iy

|‘//0>=U

for the eigenvalue 41 =0

[\9]

~—

Il
Sl—o5 -

for the eigenvalue 4 = -1

Qlelv—‘
N

va) =U3)=| -

| =
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r i1+ 1
2 2 2
. i i
U=|— 0 ——
V2 NG
I S §
2 2 2
r ¢« 1
2 J2o2
. 1 1
Ut=|—— 0 ——
V2 V2
r ¢« 1
2\ 2

The calculation is as follows.

exp() = exp N o+l v+ v
= exp v |+ exp S 0w Jos |+ exo- Dl

= UlexpC1)1]+ exp( 0)2)(2| + exp(-S)B)(30

r -t 1

e 00 2 V2 2

~ A 1 1
=U| 0 1 0 U= -— 0 I
—m/2 \/E \/E

0 0 e 1 1 1

2 2 2

since
A|'//1>:1|‘//1>9 A|V/2>:O|V/2>: A|‘//3>:(_1)|‘//3>

The above result can be also obtained using the Mathematica.

((Mathematica))
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Calculate the exponent of the Matrix

Clear["Global +"];

*

exp *:i=exp /- {Complex[re , im ] Complex[re, -im]};

1
A=_ {{O, —fl_, 0}1 {]ll’ O’ _i}s {01 _'fl_, 0}};

V2
eql = Eigensystem[A]
[(-1,1,0y, {{-1,iv2,1}, {-1, -i~2, 1}, (1,0, 1}}}
al=eql[[1l, 2]];a2=eql[[1, 3]]; a3 =eql[[1, 1]1;

¥l = -Normalize[eql[[2, 2]1]
i i1

{2’ NC _2}

¥2 = Normalize[eql[[2, 3]1]

{%’0’ %}

Y3 = -Normalize[eql[[2, 1]1]]

1 i 1

{2 _\/5’_2}

eq2 = {(Y1*. Y2, Y2*_ Y3, Y3*. Y2} // Simplify
{0, 0, O}

UT = (Y1, ¢¥2, ¥y3}; U=Transpose[UT]; UH = UT*;

Al =UH.A_U
{{17 01 0}1 {01 O, O}! {01 0, 71}}

R = {{Exp[”al] 0, 0}, {o, Exp[“az] o}, {o, o, Exp[“as]}}//

Simplify
{{1, 0,0}, {0, 1,0}, {0O,0, -1}}
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Al =U.R.UH // Simplify; Al // MatrixForm

o Syll—‘

N - s"l—\ N -

1
2
1
V2
1
2

S

Direct calculation for comparison

i A
A2 = MatrixExp[%] // Simplify; A2 // MatrixForm

N

N

1
0

1
V2

N = N =
S

1
2
1
75

N

1
2

A.2  Example-2

¢

Calculate the matrix exp(l? G.)

with
. 0 1
o =
1o
Eigensystem[ & ]
1
wi)=| 2
V2
b
p)=| V2
V2

The unitary operator is

Time evolution of system

for the eigenvalue 41 =1

for the eigenvalue 4 = -1
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V2 2
R
T+ _ 2 \/5
YUl T
V22
ig
A A 2
U’ exp(—¢&x)U=exp(%U+&xU)= € ()i¢
2 0 -
e
or
i X % 0 |r cos(ﬁ isin(g
exp(—36,)=U|° U (UT = 2¢ ;
2 0 e? isin(a COS(E

((Mathematica)) Example-2
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Clear["Global +"];

*

exp_ *:i=exp /. {Complex[re , im ] = Complex[re, -im]};

ox = {{0, 1}, {1, 0}};

eql = Eigensystem[ox]

{{_1! 1}, {{_1, 1}1 {1! 1}}}

al=eql[[1, 2]]; a2=eql[[1, 1]1]; ¥1 =Normalize[eql[[2, 2]]1];
Y2 = -Normalize[eql[[2, 1]1];

Y1t y2

0
UT = {¥1, ¢2}; U=Transpose[UT]; UH = UT*;

W1l =UH.ox.U

{{1, 0}, {0, -1}}
aL={{Exp[ar 7 |. o}, {o. Exp[azi £ ]}} /7 simprity;
Al // MatrixForm

i¢

e 2 0]
_i¢

0O e 2

A2 =U.A1.UH // ExpToTrig // Simplify; A2 // MatrixForm

Cos[%’} jSin[%]

jSin[g] Cos[%’]

Direct cxalculation for comparison

A3 = MatrixExp[:'l g oX] // Simplify; A3 // MatrixForm

Cos[%} jSin[g]

jSin[%] Cos[%’]
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B. 2D rotation matrix
Suppose that the vector r is rotated through & (counter-clock wise) around the z axis.
The position vector r is changed into 7' in the same orthogonal basis {e1, e2}.

In this Fig, we have

e -e'=cosg e,-e'=sing

e -e'=—sing’ e,-e,'=cosg
We define r and r' as

r'=x'e +x,'e, = x,e,'"+x,e,’' ’
and

r=xe +xe,
Using the relation

e -r'=e-(x'e+x'e,)=¢-(xe'+xe,')

' ' ' —_ 1 1
e, r'=e,-(x'e, +x,'e;) = e, - (x¢,+x,e,")
we have

x,'=e -(xe'+x,e,") = x,cos¢d—x,sing

x,'=e, - (xe'+x,e,") = x,sin@ + x, cos¢
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or

6 x| (cosg —sing| x
[xz 'J - ER(¢)[XJ - (sin¢ cos¢ j(xzj

C. Evaluation of cyclotron frequency
Electron:
eB
f,=——=27.9925 B[T]  [GHz]
m,c
Muon:
eB
f,, =——=0.13538 B[T] [GHz]
m,c
Proton:
eB
f,=——=0.015245 B[T] [GHz]
m,c
where

me = 0.510998928(11) MeV/c?
my = 105.6583715(35) MeV/c?

mp = 938.272046(21) MeV/c?
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