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If a movie film is run backwards, all movement reversed can be seen: a falling stone will be 

replaced by a stone projected upwards. This is true because Newton’s equation of motion in a 

uniform gravitational field is unchanged when the time t is replaced by –t. However, in the 

Schrödinger picture of quantum mechanics, the simple time inversion operator tt −→  also 

changes the sign of the energy, because the energy operator is given by )/( ti ∂∂h . Thus in 

quantum mechanics, the time inversion operation has a much more drastic effect than simply 

reversing the motion. Since the idea of reversing the motion is perfectly sensible in classical 

mechanics, i.e., one which reverses directions of motion but does not change the sign of the energy. 

Here we construct such an operation, called time-reversal and denoted by Θ̂ . It will turn out that 

Θ̂  is a very unusual operator, being non-linear. 

 

KU ˆˆˆ =Θ  (Û and K̂  decomposition) 

 

where Θ̂  is an anti-unitary operator, Û  is the unitary operator, and K̂  is the complex conjugate 

operator. 

 

_____________________________________________________________________________ 

H.A. Kramers 

Hendrik Anthony "Hans" Kramers (2 February 1894 – 24 April 1952) was a Dutch physicist 

who worked with Niels Bohr to understand how electromagnetic waves interact with matter. 
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https://en.wikipedia.org/wiki/Hans_Kramers 

 

_____________________________________________________________________________ 

 

1. Classical mechanics 

The time-reversal invariance is the only one that can be discussed within the framework of 

classical theory. A symmetric principle or a conservation law is a result of an invariance property 

of the theory under a certain transformation group. Some correspondences between invariance 

properties of a system and the conservation laws resulting from them are: 

 

Transformation group  Conservation law 

translation in time  energy 

translation in space  momentum  

rotation   angular momentum 

 

The time reversal transformation is the only discontinuous transformation appearing in classical 

theory. (K. Nishijima, Fundamental particles W.A. Benjamin, 1963, p.20). 

 

For example, we consider the motion of a charged particle of charge q and mass m in an 

electric field )(tE , 

 

)()(
2

2

tqt
dt

d
m Er = . (1) 

 

If )(tr is a solution of this equations, then so is )( t−r as follows easily from the fact that the 

equations are second order in time, so that the two changes of sign coming from tt −→ cancel. 
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In other words, if we take a movie of a motion which is physically allowed according to Eq. (1) 

and run it backwards, the reversed motion is also physically allowed. However, this property does 

not hold for magnetic forces, in which case the equations of motion include first order time 

derivatives: 

 

)()()(
2

2

tt
dt

d

c

q
t

dt

d
m Brr ×= , (2) 

 

In these equations, the left-hand side is invariant under tt −→ , while the right-hand side changes 

sign. For example, in a constant magnetic field, the sense of the circular motion of a charged 

particle (clockwise or counterclockwise) is determined by the charge of the particle, not the initial 

conditions, and the time-reversed motion )( t−r  has the wrong sense. We note, however, that if 

we make the replacement BB −→  as well as tt −→ , then time-reversal invariance is restored 

to Eq.(.2). In other words, the time reversed motion is physically allowable in the reversed 

magnetic field.  

The time reversal is an odd kind of symmetry. It suggests that a motion picture of a physical 

event could be run without the viewer being able to tell something is wrong. Application of the 

time reversal operation classically requires reversing all velocities and letting time proceed in the 

reverse direction so that a system runs back through its past history. That this is a classically 

allowed symmetry follows from the fact that F = ma involves only a second derivative with 

respect to time. A similar situation holds in quantum mechanics provided that H is real, as it is 

expected to be, since it represents energy (Tinkham, Group theory and quantum mechanics). 

We consider a set S of dynamical variables - a point in phase space- which specifies the state 

of a dynamical system. For the case of a single particle, the point S is described by the particle 

co-ordinate and the momentum. 

 

),( pxSS = . 

 

Suppose the system to be initially in the state ),( iii pxS , and after a time T in the state ),( fff pxS , 

 

 
 

The system is said to be reversible if there exists a transformation R, on the collection of states S, 

with the property that to every state S there corresponds one and only one state RS , such that 

 

 
 

Thus R is seen to be a mapping of the phase space on itself, as illustrated in Fig. If R does not 

exist, the system is said to be irreversible. 

 

Si Sf
T

Sf
R

Si
R

T
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Fig. The mapping RSS →  in the phase space (x, p) for a reversible system. 

 

For example, we consider the circular motion of a particle in the presence of a certain force field. 

The particle moves from the point A to the point B after time T. Let the particle reverse its motion 

at the point B. Then the particle traverses backward along the same trajectory from the point B to 

the point A after time T. 

 

 
 

Fig. Classical trajectory of a particle undergoing the circular motion. 

 

Symbolically, we describe this fact by saying 
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and 

 

 
 

The operation R, called the time-reversal operation, is defined by 

 

rrr =→ R , and ppp −=→ R  

 

We define the time-reversed state as one which the position is the same but the momentum is 

reversed.  

 

(a) 

 

pp −=R  (R: time reversal). 

 

HH R = , 

 

and 

 

rr =R . 

 

Hamiltonian H and r are invariant under the time reversal.  

 

In addition to the rule (a), we also a set of rules of the R-operation. 

 

(b) Physical quantities that are not dynamical variables are not changed by the R operation, 

e.g., mass, charge, etc. 

 

(c) If F is a function of the dynamical variables A, ..., then  

 

,...).,(,...),( RRR BAFBAF =  

 

Here we also have the following theorems (the proof is given in K. Nishijima, Fundamental 

particles W.A. Benjamin, 1963, p.20). 

 

((Theorem-1)) 

If Q is an arbitrary dynamical variable, then  

 

0},{},{ =+ HQHQ RR  

 

T

Si rA,pi Sf rB,pf

T

Sf
R
rB, pf Si

R
rA, pi
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where { } denotes the Poisson bracket. 

 

∑ ∂
∂

∂
∂

−
∂
∂

∂
∂

=
i iiii q

v

p

u

p

v

q

u
vu )(},{  

 

((Proof)) 

 

},{

)(

)(

HQ

q

H

p

Q

p

H

q

Q

p
p

Q
q

q

Q

dt

dQ

i iiii

i

i

i

i

i

=

∂
∂

∂
∂

−
∂
∂

∂
∂

=

∂
∂

+
∂
∂

=

∑

∑ &&

 

 

After an infinitesimal time dt, Q  changes into Q’, 

 

dtHQQQ },{' +=  

 

Time-reversal invariance requires RQ'  to be changed into RQ  after time dt. 

 

2)(},{},{

},},{{},{

},'{},{

},'{'

dtOdtHQdtHQQ

dtHdtHQQdtHQQ

dtHQdtHQQ

dtHQQQ

RRR

RRRR

RRR

RRR

+++=

+++=

++=

+=

 

 

Then we have 

 

0},{},{ =+ HQHQ RR  

 

((Theorem-2)) 

 

0},{},{ =−= RRR GFGF  

 

((Theorem-3)) 

 

dt

dQ

dt

dQ RR

−=







 

 

((Theorem-4)) 

 

LLR =  
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where L is the Lagrangian of the system. 

From these three rules and four theorems, we can develop the theory of time reversal in 

classical physics.  

 

2. Approach from the Electromagnetic theory 

(i) Hamiltonian in the presence of E and B 

The Hamiltonian of a charged particle with mass m and charge q is given by 

 

)()]([
2

1 2
rrAp φq

c

q

m
H +−=  

 

where A and φ are the usual potentials of the electromagnetic field. Since pp −=R , HH R = ,and 

rr =R , we have 

 

)()( rArA −=R , 

 

and 

 

)()( rr φφ =R . 

 

Noting that 

 

AB ×∇= , 

 

φ∇−
∂
∂

−=
tc

A
E

1
. 

 

then we have 

 

EE =R , 

 

BB −=R . 

 

(ii) Maxwell's equation 

Maxwell’s equation is given by 

 













∂
∂

+=×∇

=⋅∇
∂
∂

−=×∇

=⋅∇

tcc

tc

E
jB

B

B
E

E

14
0

1
4

π

πρ

, 

 

From this, we get the expressions 
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ρρ =R  

 

and 

 

jj −=R  

 

(iii) Lorentz force on a particle of charge q 

The Lorentz force is given by 

 

)
1

( BvEF ×+=
c

q  

 

Then we get 

 

F

BvE

BvEF

=

×+=

×+=

)
1

(

)
1

(

c
q

c
q RRRR

 

 

which means that F is invariant under the time reversal, where we use 

 

v
rrr

v −=−=−=






=
dt

d

dt

d

dt

d RR

R  

 

(iv) The poynting vector S 

 

BES ×=
π4

c
 

 

So we get 

 

SBEBES −=×−=×=
ππ 44

cc RRR  

 

under R. Under the time-reversal R an electromagnetic wave reverses its direction of propagation 

leaving the polarization vector ( EE =R ) unchanged. 
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3. Summary 

In summary, there are two kinds of operators. 

 

(i) Even: Classical variables which do not change upon time reversal include: 

 

r, the position of a particle in three-space  

a, the acceleration of the particle  

F, the force on the particle  

H, the energy of the particle  

φ, the electric potential (voltage)  

E, the electric field  

D, the electric displacement  

ρ, the density of electric charge  
P, the electric polarization  

All masses, charges, coupling constants, and other physical constants, except those 

associated with the weak force  

 

(ii) Odd: Classical variables which are negated by time reversal include: 

 

t, the time when an event occurs  

v, the velocity of a particle  

p, the linear momentum of a particle  

L, the angular momentum of a particle (both orbital and spin)  

A, the electromagnetic vector potential  

B, the magnetic induction  

H, the magnetic field  

J, the density of electric current  

M, the magnetization  

S, Poynting vector  
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4. Irreversible case 

If an equation is not invariant, then the system is irreversible. 

 

A simple example is given by Ohm’s law; 

 

 

Ej σ= : irreversible on time reversal. 

 

because jj −=R  and EE =R , where σ is the conductivity. In this case Joule heat is produced so 

that the system is not reversible. 

 

5. Time-reversal in quantum mechanics 

A system is said to exhibit symmetry under the time reversal if, at least in principle, its time 

development may be reversed and all physical processes run backwards, with initial and final 

states interchanged. Symmetry between the two directions of motion in time implies that to every 

state ψ  there corresponds a time-reversed state ψΘ  and that the transformation Θ  preserves 

the value of all probabilities, thus leaving invariant the absolute value of any inner product 

between states. 

We start with the Schrödinger equation given by 

 

),(),( tHt
t

i rr ψψ =
∂
∂

h . 

 

Suppose that ),( trψ  is a solution. We can easily verify that ),( t−rψ  is not a solution because of 

the first-order time derivative. However, 

 

),(),(),( **** tHtHt
t

i rrr ψψψ ==
∂
∂

− h  

 

Here we use the reality of H. When tt −→  

 

),(),( ** tHt
t

i −=
∂
∂

rr ψψh . 

 

This means that ),(* t−rψ  is a solution of the Schrödinger equation. The time reversal state is 

defined by 

 

),(),( * ttR −= rr ψψ  

 
*

)(),()(ˆ),( tttrtR −=−Θ=−Θ= ψψψψ rrr  

 

where Θ̂  is the time reversal operator and Θ  is the same operator in the r  representation. 
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If we consider a stationary state, 

 

)0,(),( rr ψψ
Et

i

et h
−

=  

 

and 

 

)0,(),( ** rr ψψ
Et

i

et h
−

=−  

 

Then we have 

 

)0,(),(),( ** rrr ψψψ
Et

i

R ett h
−

=−=  

 

or 

 

)0,()0,( * rr ψψ
Et

i
Et

i

ee hh
−−

=Θ . 

 

When t = 0, we have 

 

)0,()0,()0,( * rrr ψψψ =Θ=R  

 

((Example-1))  Plane wave 

 

As a simple example, we consider the plane wave propagating with the momentum kh . 

 

)0,(),( )( rr rk ψψ ωω titi eet −−⋅ == , 

 

with rkr ⋅= ie)0,(ψ . Then we get 

 

)0,(][),(),( *)(*)(* rrr rkrk ψψψ ωωω tititiR eeett −+⋅−+⋅ ===−= , 

 

implying that the ),(* t−rψ  is the plane wave propagating with the momentum kh− . 

 

((Example-2))  1̂ˆˆ 1 ii −=ΘΘ −
 

Using the formula 

 

)0,()0,()0,( * rrr ψψψ =Θ=R , 

 

with the change of )0,()0,( rr ψψ i→ , we get 

 

)0,()0,()]0,([)]0,([ ** rrrr ψψψψ Θ−=−==Θ iiii , 
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For arbitrary wavefunction )0,(rψ , we have 

 

Θ−=Θ ii  

 

or 

 

ii −=ΘΘ −1 . 

 

In the operator in the quantum mechanics, this can be rewritten as 

 

1̂ˆˆ 1 ii −=ΘΘ −
 

 

6. Quantum mechanical expression: analogy from classical mechanics 

Time reversal is really just reversal of motion. Under time reversal 

 

xx ˆ'ˆ = , pp ˆ'ˆ −=  

 

and we also switch initial and final states. Imagine taking a movie of some process and then 

playing the movie backwards. Does the motion in the backward played movie obey the laws of 

physics? If yes, then the process is invariant under time reversal. If not, then it is non-invariant 

under time reversal. 

 

In particular, setting t = 0,  

 

)0(ˆ)0( ψψ Θ=R ,  or  ψψ Θ= ˆR  

 

we see that Θ̂ maps the initial conditions of the original motion into the initial conditions of the 

time-reversed motion. 

 

(a) 

 

We start with the definition 

 

0(ˆ)0( =Θ== ttR ψψ  

 

The analogy from the classical mechanics shows that  

 

rr =R  
 

In quantum mechanics, this can be rewritten as 
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)0(ˆ)0()0(ˆ)0( ===== tttt RR ψψψψ rr  

 

or 

 

)0(ˆ)0()0(ˆˆˆ)0()0(ˆ)0( ====ΘΘ==== + tttttt R ψψψψψψ rrr  

 

where 

 
1ˆˆ −+ Θ=Θ  

 

Then we have 

 

rr ˆˆˆˆ =ΘΘ+
,  rr ˆˆˆˆ 1 =ΘΘ −

,  Θ=Θ ˆˆˆˆ rr  

 

We also get the similar expression for p̂ , 

 

pp ˆˆˆˆ 1 −=ΘΘ −   Θ−=Θ ˆˆˆˆ pp  

 

from the analogy of classical mechanics, pp −=R  

 

(b) 

Since 

'ˆ'''ˆ'ˆˆ'ˆˆ rrrrrrrr Θ=Θ=Θ=Θ  

 

'ˆ'''ˆ'ˆˆ'ˆˆ pppppppp Θ−=Θ−=Θ−=Θ  

 

'ˆ rΘ  is the eigenket of r̂  with the eigenvalue 'r , leading to the expression 

 

''ˆ rr =Θ , 

 

'ˆ pΘ  is the eigenket of p̂  with the eigenvalue 'p , leading to the expression 

 

''ˆ pp −=Θ . 

 

7. Wigner’s time reversal transformation 

We start with Schrödinger equation given by 

 

)(ˆ)( tHt
t

i ψψ =
∂
∂

h  (1) 
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where Ĥ  is the Hamiltonian given by 

 

)ˆ(ˆ
2

1ˆ 2
rp V

m
H +=  

 

where 

 

0]ˆ,[ =ΘH , or HH ˆˆˆˆ 1 =ΘΘ −
 

 

since 

 

pp ˆˆˆˆ 1 −=ΘΘ − ,  rr ˆˆˆˆ 1 =ΘΘ −
 

 

The application of the operator Θ̂  to both sides of the Schrödinger equation gives 

 

)(ˆˆ)(ˆ tHt
t

i ψψ Θ=
∂
∂

Θ h  

 

or 

 

)(ˆˆ)(ˆˆˆ 1 tHt
t

i ψψ Θ=
∂
∂

ΘΘΘ −
h  

 

or 

 

)(ˆˆ)(ˆ tHt
t

i ψψ Θ=Θ
∂
∂

− h  (2) 

 

If we change t into –t in Eq.(2),  

 

)(ˆ)( tHt
t

i −Θ=−Θ
∂
∂

ψψh  (3) 

 

which satisfies the original Schrödinger equation. On the time-reversal ttt −=→ ' , the state 

vector changes into a new state defined by 

 

)(ˆ)( ttR −Θ= ψψ  

 

or 
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*
)(

)(

)(ˆ)(

t

t

ttR

−=

−Θ=

−Θ=

ψ

ψ

ψψ

r

r

rr

 

 

or 

 
*

)()( ttR −= ψψ rr  

 

Here we note that 

 

∫ −=− )(''')( tdt ψψ rrr  

 

∫
∫

−=

Θ−=−Θ

*

*

)('''

'ˆ)('')(ˆ

td

tdt

ψ

ψψ

rrr

rrr
 

 

*

*

)(

'ˆ)('')(ˆ

t

tdt

−=

Θ−=−Θ ∫
ψ

ψψ

r

rrrr
 

 

8. The wave function at t = 0  

At t = 0, we have the relation 

 
*ˆ ψψ rr =Θ  

 

Here we note that 

 

∫= ψψ ''' rrrd  

 

∫∫ =Θ=Θ
**

''''ˆ''ˆ ψψψ rrrrrr dd  

 
**

'''ˆ ψψψ rrrrrr ==Θ ∫d  

 

since 

 

''ˆ)'(ˆ **
rrr ccc =Θ=Θ  

and 

 

''ˆ rr =Θ . 
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where Θ̂  is the anti-unitary operator, 

 

KU ˆˆˆ =Θ , 'ˆ)'(ˆˆ)'(ˆˆ)'(ˆ **
rrrr Θ===Θ cKUccKUc  

 

1̂ˆˆ *1 cKcK =−
,   

 

where c is a complex number. K̂  (the complex conjugate operator) is an operator which takes 

any complex number into its conjugate complex. 

 

KK ˆˆ 1 =− . 

 

KU ˆˆˆ =Θ : Û  and K̂  decomposition. 

 

((Note)) 
*ˆ ψψ pp −=Θ  

 

We also note that 

 

∫= ψψ ''' pppd  

 

∫
∫
∫

−=

−=

Θ=Θ

*

*

*

'''

'''

'ˆ''ˆ

ψ

ψ

ψψ

ppp

ppp

ppp

d

d

d

 

 
**

'''ˆ ψψψ pppppp −=−=Θ ∫d  

 

since 

 

''ˆ)'(ˆ **
ppp −=Θ=Θ ccc  

and 

 

''ˆ pp −=Θ . 

 

9. Property of the state vector under the time  

 

)0()ˆexp(),( ψψ tH
i

t
h

−= rr  
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rrr )ˆexp()0()0()ˆexp(),(),(
** tH

i
tH

i
ttrR

hh
−==−= ψψψψ  

 

We show that 

 

)0()0()0(~)0(
~

φψψφ =  

 

Rφφ =)0(
~

,  
Rψψ =)0(ˆ  

 

((Proof)) 

 

∑∑∑ ==Θ=Θ=
nnn

nnUnnUnn )0(ˆ)0(ˆ)0()0()0(~ * ψψψψψ  

 

∑∑∑ ==Θ=Θ=
nmm

mmUmmUmm )0(ˆ)0(ˆ)0()0()0(
~ * φφφφφ  

 

∑ +=
n

Umm ˆ)0(
~ *φφ  

 

)0()0(

)0()0(

)0()0(

)0()0(

)0(ˆˆ)0()0(~)0(
~

*

,

,

*

,

*

φψ

φψ

ψφ

ψδφ

ψφψφ

=

=

=

=

=

∑

∑

∑

∑ +

n

n

nm

nm

nm

nn

nn

nm

nnUUmm

 

 

where 

 

KU ˆˆˆ =Θ , 
+− =Θ UK ˆˆˆ 1
. 

 

10. Note (Sakurai and Napolitano) 

We mentioned earlier that it is best to avoid an anti-unitary operator acting on bras from the 

right. Nevertheless, we may use 

 

αβ Θ̂  
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which is to be understood always as 

 

( )( )αβ Θ̂  

 

and never as 

 

( )( )αβ Θ̂  

 

11. Time reversed state vector )(tRψ  

We apply the time reversal operator to the time-evolution operator )ˆexp(ˆ tH
i

UT
h

−= .   

 

)0()ˆexp()0()(ˆ)( ψψψ tH
i

tUt T
h

−==  

 

where )ˆexp()(ˆ tH
i

tUT
h

−=  is the time evolution operator. The time reversed state vector is given 

by 

 

)0(ˆ)(ˆ

)0(ˆ)ˆexp(

)0(ˆ]ˆˆˆˆˆexp[

)0(ˆ]ˆˆˆexp[

)0(ˆ)ˆˆˆexp(

)0(ˆˆ)ˆexp(ˆ

)0()(ˆˆ

)(ˆ)(

11

1

1

1

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψψ

Θ=

Θ−=

ΘΘΘΘΘ=

ΘΘΘ=

ΘΘΘ=

ΘΘΘ=

−Θ=

−Θ=

−−

−

−

−

tU

tH
i

Hi
t

Hi
t

tH
i

tH
i

tU

ttR

h

h

h

h

h

 

 

where 

 

1̂ˆˆ 1 ii −=ΘΘ −
,  HH ˆˆˆˆ 1 =ΘΘ −

 

 

Then we have 
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)0(ˆ)(ˆ)0(ˆ)ˆexp()(ˆ)( ψψψψ Θ=Θ−=−Θ= tUtH
i

ttR

h
 

 

We note that 

 

∫
∫

∫

−=

−Θ=

−Θ=−Θ

*

*

)('''

)('''

)('''ˆ)(ˆ

td

td

tdt

ψ

ψ

ψψ

rrr

rrr

rrr

 

 

and 
*

)()(ˆ tt −=−Θ ψψ rr  

 

12. Property of the time-reversal operator Θ̂  

 

 
 

We consider a state represented by )0(ψ  at t = 0. First, we apply Θ̂  to the state )0(ψ , and 

then let the system evolve under the influence of the Hamiltonian Ĥ . 

 

)0(ˆ)ˆ1̂( ψδ Θ− tH
i

h
 

 

(see Fig.(a)). This state is the same as 

 

)0()](ˆ1[ˆ)(ˆ ψδδψ tH
i

t −−Θ=−Θ
h

, 

 

if the motion obeys the symmetry under time reversal (see Fig.(b)). In other words, we have 
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)0(ˆ)ˆ1()0()ˆ1̂(ˆ ψδψδ Θ−=+Θ tH
i

tH
i

hh
, 

 

or 

 

)0(ˆˆ)0(ˆˆ ψψ Θ−=Θ HiHi . 

 

Since )0(ψ  is arbitrary state, we have 

 

Θ−=Θ ˆˆˆˆ HiHi . 

 

Using the property 

 

ii −=ΘΘ −1ˆˆ ,  

 

we get 

 

Hi

HiHi

Θ−=

ΘΘΘ=Θ −

ˆ

ˆˆˆˆˆˆ 1

 

 

Then we have 

 

HH ˆˆˆˆ Θ=Θ ,  or 0]ˆ,ˆ[ =ΘH  

 

((Example)) 

 

Suppose that n  is the eigenket of Ĥ  with the eigenvalue En. Then we have 

 

nEnEnHnH nn Θ=Θ=Θ=Θ ˆˆˆˆˆˆ  

 

Thus nΘ̂  is also the eigenket of Ĥ  with the eigenvalue En (degenerate state) 

 

13. Orbital angular momentum operator 

We now consider the time-reversal for the spherical harmonics given by 

 

),(, φθm

lYml =n , 

 

Using the formula 

 
*ˆ ψψ rr =Θ , 
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we get the relation 

 

),()1(),(,, **
φθφθ m

l

mm

l YYmlml −−===Θ nn , 

 

where, 

 

l

ml

ml

m

im

l

l
m

l
d

d
e

ml

mll

l
Y 2)(sin

)(cossin

1

)!(

)!(

4

)12(

!2

)1(
),( θ

θθπ
φθ φ

−

−

−
++−

= , 

 

for m≥0 and Yl

− m
(θ,φ) is defined by 

 

Yl

− m
(θ,φ) = (−1)

m
[Yl

m
(θ ,φ)]

*
. 

 

Thus we have 

 

mlml m −−=Θ ,)1(, nn  

 

This means that  

 

mlmmlLz ,,ˆ h= , (1) 

 

mlml m −−=Θ ,)1(,ˆ , 

 

and 

 

mlmmlL m

z −−−=Θ ,)1(,ˆˆ h , (2) 

 

We also have 

 

mlmlmlml mmm ,,)1()1(,ˆ)1(,ˆ 2 =−−=−Θ−=Θ −  

 

or 

 

1̂ˆ 2 =Θ . 

 

From Eqs.(1) and (2), we have 

 

mlLmlmmlmmlL z

m

z ,ˆˆ,)1(,ˆ,ˆˆ Θ−=−−=Θ=Θ hh  

 

mlLmlL zz ,ˆˆ,ˆˆˆˆ 1 Θ−=ΘΘΘ −  
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Thus we have 

 

zz LL ˆˆˆˆ 1 −=ΘΘ −  

 

More generally 

 

LL ˆˆˆˆ 1 −=ΘΘ −
 

 

14. Angular momentum Ĵ  and rotation oiperator R̂  

L̂  is odd under time reversal. It is natural to consider that for spin angular momentum, 

 

SS ˆˆˆˆ 1 −=ΘΘ −
 

 

The spin operator is odd under the time reversal. 

 

The operator Θ̂  anti-commutes with the component of the total angular momentum Ĵ  as 

 

JJ ˆˆˆˆ 1 −=ΘΘ −
 

 

Consequently it commutes with the rotation operator )]ˆ(exp[ˆ nJ ⋅−= ϕ
h

i
R  

 

RR ˆˆˆˆ 1 =ΘΘ −
,  or RR ˆˆˆˆ Θ=Θ  

 

since 

 

)]ˆ(exp[

]ˆ)ˆ)((
1

exp[

]ˆ)ˆ(ˆ)ˆˆ(
1

exp[

]ˆ)ˆ(ˆ1
exp[

ˆ)]ˆ(exp[ˆˆˆˆ

1

11

1

11

nJ

nJ

nJ

nJ

nJ

⋅−=

Θ⋅−−−=

Θ⋅ΘΘΘ−=

Θ⋅Θ−=

Θ⋅−Θ=ΘΘ

−

−−

−

−−

ϕ

ϕ

ϕ

ϕ

ϕ

h

h

h

h

h

i

i

i

i

i
R

 

 

15. Position and momentum operators 

Similar relation is valid for p̂ , 

 

pp ˆˆˆˆ 1 −=ΘΘ −  



23 

 

 

p̂  is an odd under time reversal. This implies that 

 

pppppppp Θ−=Θ−=ΘΘΘ−=Θ − ˆˆˆˆˆˆˆˆˆ 1  

 

Thus the state pΘ̂  is the momentum eigenket of p̂  with the eigenvalue (-p). 

 

pp −=Θ̂  

 

Similarly, we have the relation for r̂ , 

 

rr ˆˆˆˆ 1 =ΘΘ −
 

 

This implies that 

 

rrrrrrrr Θ=Θ=ΘΘΘ=Θ − ˆˆˆˆˆˆˆˆˆ 1  

 

Thus the state rΘ̂  is the position eigenket of r̂  with the eigenvalue ( r ). 

 

rr =Θ̂  

 

16. Commutation relation [ ] 1̂ˆ,ˆ hipx =  

We note that the relation ii −=ΘΘ −1ˆˆ  can be derived directly from the commutation relation 

[P. Stehle, Quantum Mechanics (Holden-Day, Inc., 1966)] as follows. 

 

1̂

ˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆ]ˆ,ˆ[ˆˆˆ

1111

11

h

h

i

xppx

xppx

pxi

−=

+−=

ΘΘΘΘ−ΘΘΘΘ=

ΘΘ=ΘΘ
−−−−

−−

 

 

or 

 

1̂ˆˆ 1 ii −=ΘΘ −
 

 

where 

 

[ ] 1̂ˆ,ˆ hipx = , 

 

and 
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xx ˆˆˆˆ 1 =ΘΘ −
, pp ˆˆˆˆ 1 −=ΘΘ − . 

 

17. Commutation relation zyx JiJJ ˆ]ˆ,ˆ[ h=  

 

z

yx

xyyx

xyyxyx

Ji

JJ

JJJJ

JJJJJJ

ˆ

]ˆ,ˆ[

)ˆ)(ˆ()ˆ)(ˆ(

ˆˆˆˆˆˆˆˆˆˆˆˆˆ]ˆ,ˆ[ˆ 11111

h=

=

−−−−−=

ΘΘΘΘ−ΘΘΘΘ=ΘΘ −−−−−

 

 

zzzz JiJiJiJi ˆ)ˆ(ˆˆˆˆˆˆˆˆ 111
hhhh =−−=ΘΘΘΘ=ΘΘ −−− . 

 

So we should expect that Ĵ  transforms just as i does, which changes sign under the time reversal 

 

18. Even and odd under the time reversal 

 

αααα AA ˆ~ˆˆˆ~ 1 =ΘΘ −   ( Â  is Hermite operator) 

 

When 

 

AA ˆˆˆˆ 1 ±=ΘΘ −
 [plus (+); even and minus (-): odd)] 

 

we get 

 

αααα AA ˆ~ˆ~ ±=  

 

which means that 

 

AA ˆ'ˆ ±=  

 

The expectation value taken with respect to the time-reversed state. 

 

((Note)) 

 

AA ˆˆˆˆ 1 =ΘΘ −
: the observable Â  is even under the time reversal symmetry. 

 

AA ˆˆˆˆ 1 −=ΘΘ −
: the observable Â  is odd under the time reversal symmetry. 
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(1) 1̂ˆˆ 1 ii −=ΘΘ −
 (i is a pure imaginary, 1̂  is the identity operator). 

 

(2) pp ˆˆˆˆ 1 −=ΘΘ − :  pp −=Θ̂ . 

 

(3) 212 ˆˆˆˆ pp =ΘΘ − . 

 

(4) rr ˆˆˆˆ 1 =ΘΘ −
:  rr =Θ̂ ). 

 

(5) )ˆ(ˆ)ˆ(ˆ 1
rr VV =ΘΘ − ,  ( )ˆ(rV  is a potential). 

 

(6) SS ˆˆˆˆ 1 −=ΘΘ −
   ( Ŝ  is the spin angular momentum). 

 

(7) Ĥ , when )ˆ(
2

ˆˆ
2

xV
m

p
H +=  and )ˆ(xV  is a potential energy.  

 

HH ˆˆˆˆ 1 =ΘΘ −
 

 

The relation is independent of the form of )ˆ(xV . 

 

(8) )(ˆ aTx ; translation operator 

 

)(ˆˆ)(ˆˆ 1 aTaT xx =ΘΘ −  

 

since 

 

)(ˆ

]ˆexp[

)]ˆˆˆ)(ˆˆ(
1

exp[

]ˆˆˆ1
exp[

ˆ)ˆexp(ˆˆ)(ˆˆ

11

1

11

aT

ap
i

pia

pia

ap
i

aT

x

x

=

−=

ΘΘΘΘ−=

ΘΘ−=

Θ−Θ=ΘΘ

−−

−

−−

h

h

h

h

 

 

From the above, we have 

 

Θ=Θ ˆ)(ˆ)(ˆˆ aTaT xx . 
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axaxxaT +=+Θ=Θ ˆ)(ˆˆ , 

 

axxaTxaT +==Θ )(ˆˆ)(ˆ  

 

(9) R̂ : rotation operator 

 

RR ˆˆˆˆ 1 =ΘΘ −
 or Θ=Θ ˆˆˆˆ RR . 

 

rrr ℜ==Θ RR ˆˆˆ , rrr ℜ=ℜΘ=Θ ˆˆˆ R  

 

(10) ππ ˆˆˆˆ 1 =ΘΘ −
, or Θ=Θ ˆˆˆˆ ππ . 

 

since 

 

rrr −==Θ ππ ˆˆˆ , rrr −=−Θ=Θ ˆˆˆ π  

 

19. Anti-unitary operator and anti-linear operator  

 

ψψψ Θ=→ ˆ~  

 

The time reversal operator acts only to the right because it entails taking the complex conjugate. 

If one define the time-reversal operator in terms of bras and kets, 

 

βααβαβ ==
*~~

  (fundamental property) 

 

where 

 

αα Θ= ˆ~ , 

 

and 

 

ββ Θ= ˆ~
, 

 

are the time-reversal states. The operator Θ̂  is said to be anti-unitary if 

 

βααβαβ ==
*~~

 

 

and 

 

)ˆˆ)(ˆ *

21
*

21 βαβα Θ+Θ=+Θ CCCC  
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(anti-linear operator) 

 

20. Property of Θ̂  (I) 

 

αα Θ= ˆ~ ,  ββ Θ= ˆ~
 

 

Suppose that µβ B̂= . Then we have 

 

µµµββ ~ˆˆˆˆˆˆˆˆˆˆ~ 11 −− ΘΘ=ΘΘΘ=Θ=Θ= BBB  

 

The scalar product 

 

µαβααβ ~ˆˆˆ~~~ 1−ΘΘ== B  

 

21. Property of Θ̂  (II) 

The time-reversal operator is expressed by 

 

KU ˆˆˆ =Θ  (Û  and K̂  decomposition) 

 

where Û is the unitary operator and K̂  is the complex-conjugate operator that forms the complex 

conjugate of any coefficient that multiplies a ket. 

 

*

'

'

''ˆ

''ˆˆ

ˆˆ

ˆ~

ααα

ααα

α

αα

α

α

∑

∑

=

=

=

Θ=

U

KU

KU

 

 

*

'

"

""ˆ

""ˆˆ

ˆˆ

ˆ~

βαα

βαα

β

ββ

α

α

∑

∑

=

=

=

Θ=

U

KU

KU
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*

'

",'

*

",'

",'

*

''

'"

''ˆˆ""~~

αβ

βα

βααα

ααδβα

ααααβααβ

α

αα
αα

αα

=

=

=

=

=

∑

∑

∑ +UU

 

 

22. The density operator and the expectation 

One can then show that expectation operators must satisfy the identity 

 
*1 ˆˆ~ˆˆˆ~

αββααβ AAA ==ΘΘ +−  

 

((Proof)) 

 

αγ Â= , αγγ Âˆˆ~ Θ=Θ=  

 

or 

 
+= Âαγ  

 

αβ

αβ

αβ

γβ

βγ

βγβα

~ˆˆˆ~

ˆˆˆˆ~

ˆˆ~

~~

~~

ˆ

1

1

*

−

−

+

ΘΘ=

ΘΘΘ=

Θ=

=

=

=

A

A

A

A

 

 

or 

 

αββα ~ˆˆˆ~ˆ 1−+ ΘΘ= AA  (1) 

 

For the Hermitian operator Â , we get 

 

αββα ~ˆˆˆ~ˆ 1−ΘΘ= AA   ( Â : Hermitian operator) 
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When we take the comple conjugate of Eq.(1), we get 

 
*1* ~ˆˆˆ~ˆ αββα −+ ΘΘ= AA  

 

or 

 

βααβ +−ΘΘ= )ˆˆˆ(ˆˆ 1AA  (2) 

 

((Average of the operator Â  over the density operator ρ̂ )) 

If we look at the average of a Hermitian operator Â  over the density operator ρ̂  

 

∑∑ +−ΘΘ===
nn

nAnnAnATrA
~

1 ~)ˆˆˆˆ(ˆˆˆ]ˆˆ[ ρρρ  

 

Since the ket n~  is also complete, 

 
+−−+− ΘΘΘΘ=ΘΘ= )ˆˆˆˆˆˆ()ˆˆˆˆ( 111 ATrATrA ρρ  

 

If the density operator is invariant under the time reversal, 

 

ρρ ˆˆˆˆ 1 =ΘΘ −  

 

then we have 

 

]ˆ)ˆˆˆ[()ˆˆˆˆ( 11 ++−+− ΘΘ=ΘΘ= ρρ ATrATrA  

 

Since the density operator is Hermitian operator ( ρρ ˆˆ =+ ), 

 
+−+− ΘΘ=ΘΘ= )ˆˆˆ])ˆˆˆ(ˆ[ 11 AATrA ρ . 

 

23. Property of Θ̂  (IV) 

Most operators of interest are either even or odd under the time reversal. 

 

AA ˆˆˆˆ 1 ±=ΘΘ −
. 

 

where Â  is the Hermitian operator. Suppose that AA ˆˆˆˆ 1 ±=ΘΘ −
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*

1

~ˆ~

~ˆ~

~ˆ~

~ˆˆˆ~ˆ

βα

αβ

αβ

αββα

A

A

A

AA

±=

±=

±=

ΘΘ= −

 

 

If βα =  

 

αααα ~ˆ~ˆ AA ±=  

 

This is consistent with the result expected from the classical mechanics. 

 

21. Property of Θ̂  (V) 

We can now see the invariance of the fundamental commutation relations under the time 

reversal 

 

1̂]ˆ,ˆ[ hipx =  

 

Using 

 

αββα ~ˆˆˆ~ˆ 1−ΘΘ= AA  

 

we have 

 

αβ

αβ

αββα

~]ˆ,ˆ[
~

~ˆˆˆˆˆˆˆˆˆˆˆˆ~

~ˆ]ˆ,ˆ[ˆ~
]ˆ,ˆ[

1111

1

px

xppx

pxpx

−=

ΘΘΘΘ−ΘΘΘΘ=

ΘΘ=

−−−−

−

 

 

or 

 

αβαββα ~ˆˆ~~~ 1−ΘΘ=−= hhh iii  

 

or 

 

1̂ˆˆ 1
hh ii −=ΘΘ −

 

 

]ˆ,ˆ[ˆ]ˆ,ˆ[ˆ 1 pxpx −=ΘΘ −  
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The operator 1̂hi  flips sign under the time-reversal operator. 

 

How about the commutation relation of the angular momentum? 

 

zyx LiLL ˆ]ˆ,ˆ[ h= ? 

 

]ˆ,ˆ[ yx LL  is not Hermitian. using the formula αββα ~ˆˆˆ~ˆ 1−+ ΘΘ= AA  

 

αβ

αβ

αββα

~]ˆ,ˆ[
~

~ˆˆˆˆˆˆˆˆˆˆˆˆ~

~ˆ]ˆ,ˆ[ˆ~
]ˆ,ˆ[

1111

1

yx

xyyx

yxyx

LL

LLLL

LLLL

=

ΘΘΘΘ−ΘΘΘΘ=

ΘΘ=

−−−−

−+

 

 

αβ

αββα

~ˆ)ˆ(ˆ~

~ˆ~ˆ

1−ΘΘ=

=−

z

zz

Li

LiLi

h

hh

 

 

or 

 

zz LiLi ˆˆ)ˆ(ˆ 1
hh =ΘΘ −  

 

]ˆ,ˆ[ˆ]ˆ,ˆ[ˆ 1

yxyx LLLL =ΘΘ −  

 

since 

 

zyx LiLL ˆ]ˆ,ˆ[ h=  

 

Finally we now consider the raising and lowering operator for the simple harmonics. These 

operators are even under the time reversal. 

 

aa ˆˆˆˆ 1 =ΘΘ −
, and 

+−+ =ΘΘ aa ˆˆˆˆ 1
 

 

where 

 









+=

0

ˆ
ˆ

2
ˆ

ω
β

m

pi
xa  

 









−=+

0

ˆ
ˆ

2
ˆ

ω
β

m

pi
xa  
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The Hamiltonian are usually invariant under the time reversal. 

 

HH ˆˆˆˆ 1 =ΘΘ −
. 

 

Here we list a few terms which might appear in a Hamiltonian and discuss whether they violate 

the time reversal or parity. 

 

1. 
m2

ˆ 2
p

 is invariant under both 

 

2. rp ˆˆ ⋅  is invariant under parity but not time reversal. 

 

3. pL ˆˆ ⋅  is invariant under time reversal but not parity. 

 

4. BS ⋅  and Ap ˆˆ ⋅  is invariant under both 

 

5. Quenching of the orbital angular momentum 

 

22. Property of K̂  (I): 1ˆ 2 =K , 1ˆˆ =+ KK , 1ˆˆˆ −+ == KKK  

We start from the following equation 

 

∑∑ ==
'

*

'

''''ˆˆ

αα

ψααψααψ KK  

 

where 

 

1̂''
'

=∑
α

αα   (closure relation) 

 

Then we get 

 

ψψααψααψψ
αα

==== ∑∑
''

*2 ''''ˆˆˆˆ KKKK  

 

leading to the relation 

 

1ˆ 2 =K  

 

We also have the relation 
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ψψ

ψααψ

ααψααψ

ψαααψαψψ

α

αα

αα

=

=

=

=

∑

∑

∑∑+

'

"',

"

*

'

''

"''"

)"")(''(ˆˆ KK

. 

 

leading to the relation 

 

1̂ˆˆ =+ KK , 

 

since 

 

∑∑ ==
"

*

"

"")""(ˆˆ

αα

ψααψααψ KK  

 

∑=+

"

""ˆ

α

ψααψ K  

 

In conclusion, we have 

 

1ˆ 2 =K , 1ˆˆ =+ KK , KKK ˆˆˆ 1 == −+ . 

 

23. Property of K̂  (II): 
*ˆˆ cKcK =  

Here we use the formula 

 

1̂ˆ 2 =K . 

 

For arbitrary state vector ψ , we have 

 

ψψ **2 )(ˆ ccK =  

 

or 

 

ψ

ψψ

cKK

cKKcK

ˆ

ˆˆˆ **2

=

=
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Then we get the relation 

 

*ˆˆ cKcK = , or 
*1ˆˆ cKcK =−
 

 

24. Property of K̂  (III): *ˆˆˆˆ AKAK =  

Suppose that Â  is an arbitrary operator. Then we get 

 

∑

∑

∑

∑

=

=

=

=

mn

mn

n

n

nnAmm

nnAmmK

nnAK

nnKAKKAK

,

*

,

*

*

ˆ

ˆˆ

ˆˆ

ˆˆˆˆˆˆ

ψ

ψ

ψ

ψψ

 

where mnmn ,δ= . We note that 

 

( )TAA *ˆˆ =+  

 

or 

 

( )TAA += ˆˆ * , 

 

So we have 

 

( ) nAmmAnmAn
T ++ == ˆˆˆ*  

 

Then we get 

 

ψ

ψ

ψψ

*

,

*

,

ˆ

ˆ

ˆˆˆˆ

A

nnAmm

nmAnmKAK

mn

mn

=

=

=

∑

∑ +

 

 

or 

 
*ˆˆˆˆ AKAK =  
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where we use the closure relation. 

 

25. Note on the property of K̂  

 

∑∑ ==
nn

nnKnnKK
*ˆˆˆ ψψψ  

 

We choose a basis that nnK =ˆ . Then we get  

 

∑=
n

nnK
*ˆ ψψ . 

 

Note that this definition is basis-dependent. But our definition of the time reversal operator is also 

basis-dependent, so the dependency actually cancels and there is no problem. In general, we can 

always write an anti-unitary operator in to the product of a unitary operator with K̂ ; 

 

26 Schrödinger equation for the time-reversed state (using operator) 

We start with the Schrödinger equation  

 

ψψ H
t

i ˆ=
∂
∂

h  

 

When ttt −=→ ' ,  Rψψ →  

 

)(ˆ)( tHt
t

i ψψ =
∂
∂

h , RR H
t

i ψψ ˆ
'

=
∂
∂

h  

 

)(ˆˆˆˆ)(ˆˆˆˆˆ 111 tHt
t

i ψψ ΘΘΘ=ΘΘ
∂
∂

ΘΘΘ −−−
h  

 

We use 

 

KU ˆˆˆ =Θ  

 

)(ˆˆˆˆ)(ˆˆˆˆˆˆˆ)ˆˆ(ˆ 11111 tHtKUUK
t

KUUKiKU ψψ ΘΘΘ=
∂
∂ −−−−−

h  

 

Using the relations 
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hh iKiK −=−1ˆˆ , 

 

we get 

 

)(ˆˆˆˆ)(ˆˆˆˆˆˆˆ 1111 tHtUK
t

KUUUi ψψ ΘΘΘ=Θ
∂
∂

− −−−−
h  

 

or 

 

)(ˆˆˆˆ)(ˆˆˆˆˆ 111 tHtUK
t

KUi ψψ ΘΘΘ=Θ
∂
∂

− −−−
h  

 

or 

 

)(ˆˆˆˆ)(ˆ 1 tHt
t

i ψψ ΘΘΘ=Θ
∂
∂

− −
h  

 

)'(ˆˆˆˆ)'(ˆ
'

1 tHt
t

i −ΘΘΘ=−Θ
∂
∂ − ψψh  

 

Using the relation 

 

HH ˆˆˆˆ 1 =ΘΘ −  

 

we have 

 

)'(ˆˆ)'(ˆ
'

tHt
t

i −Θ=−Θ
∂
∂

ψψh  

 

Switching tt →'  

 

)(ˆˆ)(ˆ
'

tHt
t

i −Θ=−Θ
∂
∂

ψψh  

 

This means that the time-reversed state is defined by 

 

)(ˆ)( ttR −Θ= ψψ . 
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When t = 0, 

 

)0(ˆ ψψ Θ=R  

 

27. Spin-less particle (I) 

We state an important theorem on the reality of the energy eigenfunction of a spinless particle. 

 

((Theorem)) 

Suppose that the Hamiltonian is invariant under time reversal and the energy eigenkets nφ  is 

nondegenerate. Then the corresponding energy eigenfunction is real (or more generally, a real 

function times a phase factor independent of r). 

 

((Proof)) 

The Hamiltonian Ĥ  is invariant under the time reversal. 

 

Θ=Θ ˆˆˆˆ HH  

 

nnnn EHH φφφ Θ=Θ=Θ ˆˆˆˆ  

 

Thus nn φφ Θ= ˆ~
 and nφ  have the same energy. The non-degeneracy assumption prompts us to 

conclude that nφΘ̂  and nφ  must have the same state. 

 

nnn φφφ =Θ= ˆ~
 

 

We have 

 

,~ rrr =Θ=  )(
~~ **

rrr nnn φφφ ==  

 

We note that 

 

)(
~~ rrr nnn φφφ ==  

 

Then we have 

 

)()(
*

rr nn φφ =  

 

The wave function )(rnφ  is real. 

 

28. Spin-less particle (II): Quenching of orbital angular momentum 
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Theorem: quenching of orbital angular momentum 

 

When Ĥ  is invariant under time reversal and nφ  is nondegenerate state, the orbital angular 

momentum is quenched;  

 

0ˆ =nn φφ L  

 

((Proof-1)) 

 

nnnnnnnn φφφφφφφφ LLLL ˆ~ˆ~~ˆˆˆ~ˆ 1 −=−=ΘΘ= −  

 

since  

 

nnn φφφ =Θ= ˆ~
 

 

Then we have 

 

0ˆ =nn φφ L  

 

((Proof-2)) 

 

From the definition 

 

nnnnnn φφφφφφ LLL ˆˆˆ *
== +  

 

When )()(
*

rrr nnn φφφ ==  is real, 

 

∫∫ ∇×=∇×= rrrrrrrrL d
i

d
i

nnnnnn

*****
])([])([ˆ φφφφφφ

hh
 

 

or 

 

nnnnnn d
i

φφφφφφ LrrrrL ˆ)]([ˆ *
−=∇×−= ∫

h
 

 

Therefore we have 

 

0ˆ =nn φφ L . 

 

The expectation value of L for any non-degenerate state is zero. If the crystal field has sufficiently 

low symmetry to remove all the orbital degeneracy, then, to lowest order, the orbital angular 
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momentum is zero and we say that the crystal field has completely quenched it. For this reason, 

the static susceptibility of iron-group is found experimentally to arise predominantly from the 

spin. 

 

((Note)) Curie law 

The Curie law indicates that the ground state in the absence of the magnetic field is 

degenerate. 

 

 

29. Real-space wave function at t = 0 of the time-reversal state 

Real-space wave function of the time reverse state is obtained as follows. 

 

)(
~~

ˆ~

~

**
rrr

rrr

nnn

nn

φφφ

φφ

==

Θ=

=Θ=

 

 

from the definition. Since rr =ˆ , we have 

 

)(
~~~ *

rrr nnn φφφ ==  

 

In summary, the real-space wave function of the time reversed state: 

 

)(
~ *

rr nn φφ =  

 

((Example)) 

),( φθm

lY  is complex because the states ml ±,  are degenerate. Wavefunction of a plane wave 

)exp(
h

rp ⋅i
 for the state p is complex. It is degenerate with )exp(

h

rp ⋅
−

i
 for the state p− . 

 

 

30. Momentum-space wave function at t = 0 of the time-reversal state 

It is apparent that the momentum-space wave function of the time-reversed state is not just 

the complex conjugate of the original momentum-space wave function. 

 

)(
~~

ˆ~

,
~

**
kkk

kkk

nnn

nn

φφφ

φφ

==

Θ=

−=Θ=

 

 

Since 
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kk −=
~

 

 

we have 

 

)(
~ *

kk nn φφ =−  

 

When kk −→ , we have the momentum-space wave function of the time reversed state as 

 
**

)(
~

nnn φφφ kkk −=−=  

 

31. Degeneracy of Bloch states:  )()( kk −= EE  

We would expect the relation )()( kk −= EE  for the energy dispersion relation, to hold only 

when the direct (and hence the reciprocal) lattice admits of a center of inversion. A rather 

surprising result is that 

 

)()( kk −= EE  

 

always, whether or not the crystal is centro-symmetric.  

We start with a Bloch eigenfunction (one-dimensional case), which is defined as 

 

)()( xuex k

ikx

k =ψ  

 

and 

 

)()( xExH kkk ψψ =  

 

where )(xuk  satisfies the periodic boundary condition.  

 

)()( xuaxu kk =+  

 

)(xkψ  is the energy eigenfunction of the Hamiltonian H with the energy. 
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)(

)(
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k

ikxika

k
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k

ikx

xkx

ψ

ψ

=

=

+=

=
+
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where )(aTx  is the translation operator. We now consider the time-reversed state at t = 0, which 

is defined as 

 

)()()(
**

xuexx k

ikx

k

R −==ψψ  

 

We note that 

 

)()(
**** xExH kkk ψψ =  

 

Both the Hamiltonian H and the energy eigenvlalue kE  are real. Thus we have 

 

)()(
**

xExH kkk ψψ =  

 

So it follows that )(xkψ  and )(
*

xkψ  are wave functions with degenerate energy eigenvalue. 

Since 

 

)(

)(

)(

)]()[()()(

*

*

*)(

**
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axue

xueaTxaT

k

ika

k

ikxika

k

axik

k

ikx

xkx

ψ

ψ

−

−−

+−

−

=

=

+=

=

 

 

The wave function )(
*

xkψ  belongs to an eigenvalue with –k. 

 

)()(
*

xx kk −=ψψ .  

 

while )(xkψ  belongs to an eigenvalue with k. Thus )(xkψ  and )(
*

xkψ  are degenerate energy 

eigenstate with different k. The change of kk −→  in the relation given by )()( xExH kkk ψψ =  

leads to 

 

)()( xExH kkk −−− = ψψ , or )()(
**

xExH kkk ψψ −=  

 

Then we have 

 

kk EE =− . 
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So we can say that the property of kk EE =−  can be derived from the time reversal property. 

 

((The relation, kGk EE =+ )) 

This relation can be derived directly from the Bloch theorem. 

 

From the Bloch theorem 

 

)()( xuex k

ikx

k =ψ , 

 

we get the relation 

 

)()( xeax k

ika

k ψψ =+ . 

 

since 

 

)()()()( 1)( xexueeaxueax k

ka

k

ikxika

k

axik

k ψψ ==+=+ +  

 

We know that the reciprocal lattice G is defined by 

 

n
a

G
π2

= , (n: integer). 

 

When k is replaced by k + G, 

 

)()()( )( xexeax Gk

ika

Gk

aGki

Gk ++
+

+ ==+ ψψψ , 

 

since 12 == niiGa ee π . This implies that )(xGk +ψ  is the same as )(xkψ . 

 

)()( xx kGk ψψ =+ . 

 

or the energy eigenvalue of )(xGk +ψ is the same as that of )(xkψ , 

 

kGk EE =+ . 

 

32. Wave function at t = 0 for the free particle; Symmetry of the energy dispersion with

kk −= EE  

 

We assume that 

 

HH ˆˆˆˆ 1 =ΘΘ −
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The energy eigenvalue problem 

 

kk kEH =ˆ  

 

kk kEH Θ=Θ ˆˆˆ  

 

Then we have 

 

kk kEH Θ=ΘΘΘ − ˆˆˆˆˆ 1  

 

or 

 

kk kΘ=Θ ˆˆˆ EH  

 

since HH ˆˆˆˆ 1 =ΘΘ −
. Here we note that 

 

kk −=Θ̂  

 

Then we have 

 

kk k −=− EĤ  

 

When k is changed into –k, we get 

 

kk k−= EĤ  

 

leading to the property 

 

kk EE =− . 

 

33. Time reversal operator for spin 1/2 system (I) 

We show that the time reversal operator for the spin 1/2 system is given by 

 

Ki y
ˆˆˆ σ−=Θ  

 

((Proof)) 
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xxxxx UUUUUKKU σσσσσ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ *11 −====ΘΘ +++−−  

 

yyyyy UUUUUKKU σσσσσ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ *11 −=−===ΘΘ +++−−  

 

zzzzz UUUUUKKU σσσσσ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ *11 ====ΘΘ +++−−  

 

or 

 

xxUU σσ ˆˆˆˆ −=+  

 

yyUU σσ ˆˆˆˆ =+  

 

zzUU σσ ˆˆˆˆ =+  

 

We assume that the unitary operator is expressed by 

 

1̂ˆ δγσβσσ +++= zyxaU  

 

where a, b, g, and d are complex numbers. Using the Mathematica, we find that  

 

yy iU σβσ −==ˆ  

 

Ki y
ˆˆ σ−=Θ  

 

Note that 

 

1̂ˆˆ)ˆ(ˆ)ˆˆˆ(ˆ)ˆˆ)(ˆˆ(ˆ **2 −==−==−−=Θ yyyyyyyy iiKiKiKiKi σσσσσσσσ  

 

34. The time reversal operator for spin 1/2 system (II) 

We show that Θ̂ for the spin 1/2 system is given by 

 

KiKS
i

yy
ˆˆˆ)ˆexp(ˆ σηπη −=−=Θ

h
 

 

We start with the relations 
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zz SS ˆˆˆˆ 1 −=ΘΘ −  

 

Θ−=Θ ˆˆˆˆ
zz SS  

 

zzSzS zz +Θ−=+Θ−=+Θ
2

ˆˆˆˆ h
 

 

The time reverse state z+Θ̂  is the eigenket of 
zŜ  with an eigenvalue

2

h
− . Then we have 

 

zz −=+Θ ηˆ  

 

where η  is a phase factor (a complex number of modulus unity). Similarly, we have 

 

zz +=−Θ ηˆ . 

 

In general, for the rotation operator )ˆexp()ˆexp(ˆ θφ yz S
i

S
i

R
hh

−−= , 

 

zS
i

S
i

zR yz +−−=+=+ )ˆexp()ˆexp(ˆ θφ
hh

n  

 

zS
i

S
i

yz +ΘΘ−ΘΘ−Θ=+Θ −− ˆˆ)ˆexp(ˆˆ)ˆexp(ˆˆ 11 θφ
hh

n  

 

We note that 

 

)ˆexp(ˆ)ˆexp(ˆ 1 φφ zz S
i

S
i

hh
−=Θ−Θ −  

 

)ˆexp(ˆ)ˆexp(ˆ 1 θθ yy S
i

S
i

hh
−=Θ−Θ −  

 

SS ˆˆˆˆ 1 −=ΘΘ −
 

 

and 

 

1̂ˆˆ 1 ii −=ΘΘ −
. 

 

Thus we have 

 

RR ˆˆˆˆ 1 =ΘΘ −
, or Θ=Θ ˆˆˆˆ RR  
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and 

 

n

n

−=

−=

+Θ=

+Θ=+Θ

η

η zR

zR

zR

ˆ

ˆˆ

ˆˆˆ

 

 

Here we note that 

 

zS
i

S
i

yz −−−=− )ˆexp()ˆexp( θφ
hh

n  

 

zS
i

z y +−=− )ˆexp( π
h

 

 

where 
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=

−=

−=
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2
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2
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2
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2
cos

2
sinˆ1̂

2
cos

)
2

ˆexp(

)ˆ1
exp()(ˆ

θθ

θθ

θ
σ

θ

θ
σ
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y

y
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i

i

SR
h

 

 

Then  

 

zS
i

S
i

zS
i

S
i

zR

yz

yz

++−−=

−−−=

−=

+Θ=+Θ

)](ˆexp[)ˆexp(

)ˆexp()ˆexp(

ˆˆˆ

πθφη

θφη

η

hh

hh

n

n

 

or 

 

zS
i

S
i

zS
i

S
i

yzyz ++−−=+Θ−− )](ˆexp[)ˆexp(ˆ)](ˆexp[)ˆexp( πθφηθφ
hhhh
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zS
i

z y +−=+Θ )ˆexp(ˆ πη
h

 

 

Therefore we have 

 

KiKS
i

yy
ˆˆˆ)ˆexp(ˆ σηπη −=−=Θ

h
 

 

with 

 

y

y

yy

i

i

i
S

i

σ

πσ

πσπ

ˆ

)ˆ
2

exp(

)ˆ
2

exp()ˆexp(

−=

−=

−=−
h

hh

 

 

and 

 

yy ii σ
θθ

θθ

θθ
θ

σ ˆ
2

sin
2

cos1̂

2
cos

2
sin

2
sin

2
cos

)
2

ˆexp( −=














 −
=−  

 

K̂  is an operator which takes the complex conjugate and 
yiσ̂−  is a unitary operator. We now 

calculate 

 

zCzC −++= −+ψ  

 

)(

)ˆˆ(

)(ˆ

)(ˆˆˆ

**

**

**

zCzC

zCzCi

zCzCi

zCzCKi

yy

y

y

+−−=

−++−=

−++−=

−++−=Θ

−+

−+

−+

−+

η

σση

ση

σηψ

 

 

since 

 

zizy −=+σ̂ , and zizy +−=−σ̂  

 

Let us apply Θ̂  to ψ , again 
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ψ

σσ

ηση

ηση

ηψ

−=

−++−=

+−+−−=

+−−−=

+−−−=

+−−−=

+−−Θ=Θ

−+

−+

−+

−+

−+

−+

)(

)])([(

)]ˆˆ[(

)]([ˆ

)]([ˆˆ

)]([ˆˆ

*

**

**2

zCzC

ziCziCi

zCzCi

zCzCi

zCzCKi

zCzC
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y

y

 

 

or 

 

1̂ˆ 2 −=Θ  

 

This is an extraordinary result. 

 

((Note)) 

 

Θ−=Θ− ˆˆ 1
 

 

We show that 

 

xx σσ ˆˆˆˆ 1 −=ΘΘ − ,  

yy σσ ˆˆˆˆ 1 −=ΘΘ −  

zz σσ ˆˆˆˆ 1 −=ΘΘ −  

 

(a) 

 

))(ˆˆ(ˆ)ˆˆ(

)(ˆˆˆˆˆˆ 1

zCzCKiKi
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yxy
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or 

 

xx σσ ˆˆˆˆ 1 −=ΘΘ −  

 

(b) 
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yy σσ ˆˆˆˆ 1 −=ΘΘ −  

 

(c) 
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or 

 

zz σσ ˆˆˆˆ 1 −=ΘΘ −  

 

Finally we show that ψ  and ψψ Θ= ˆ~  are orthogonal. 
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Suppose that 0̂]ˆ,ˆ[ =ΘH . In this case, ψ  and ψψ Θ= ˆ~  are the eigenkets of Ĥ  with the same 

energy eigenvalue. Since ψ  and ψψ Θ= ˆ~  are orthogonal to each other, these two states are 

degenerate. (Kramers’ theorem). 

 

35. Time reversal state: general case 

More generally 

 

egerhalfjegerhalfj intintˆ 2 −=−=−=Θ  

 

egerjegerj intintˆ 2 ===Θ  

 

or 

 

mjmj j ,)1(,ˆ 22 −=Θ  

 

((Proof)) 

 

We first note that 

 

KJ
i

y
ˆ)ˆexp(ˆ

h

π
η −=Θ   (generalization) 

 

We now consider a state 

 

∑=
m

mjmj αα ,,  
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where 

 

mjmjRmjJ
i j

yy ,)1(,)2(ˆ,)ˆ2
exp( 2−==− π

π
h

 (in general) 

 

Then we have 

 

αα j22 )1(ˆ −=Θ  

 

or 

 

1̂)1(ˆ 22 j−=Θ  

 

((Note)) 

Obviously, a double reversal of time, corresponding to the application of 
2Θ̂  to all states, has 

no physical consequence. 

 

ψψ C=Θ2ˆ , 
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for all ψ  ( )1=C , where C is a phase factor. When the replacement of ψψ Θ→ ˆ  is made in 

the above equation, we get 

 

ψψψψψψ Θ=Θ=ΘΘ=Θ=ΘΘ=Θ ˆˆˆˆˆ)ˆ(ˆ)ˆ( *232 CCC  

 

Then we have 

 
*CC =  

 

So C is real. 

 

C = 1 or -1, depending on the nature of the system. 

 

36. Kramers’ Degeneracy (I) 

 

For 1̂ˆ 2 −=Θ , ψ  and its time reversed state ψΘ̂ ) are orthogonal to each other. 

 

((Proof)) 

We use the formula 

 
*~~

αββααβ ==  

 

where 

 

ψα Θ= ˆ ,  ψψαα 2ˆ)ˆ(ˆˆ~ Θ=ΘΘ=Θ=  

 

ψβ = ,  αψβ =Θ= ˆ~
 

 

αβ =
~

 

 

Since ψψ C=Θ2ˆ  with 1±=C  

 

ψψα C=Θ= 2ˆ~  

 

Then we have 

 

ψαψααβ CC ==~~
 

 

and from definition 
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ψαβααβ ==~~
 

 

since αβ =
~

. In the case C = -1,  

 

0=ψα  

 

showing that for such systems, time-reversed states ( ψ  and ψα Θ= ˆ ) are orthogonal. 

 

((Kramers’ theorem)) 

As a corollary, if C = -1 and the Hamiltonian is invariant under time reversal, the energy 

eigenstates may be classified in degenerate time reversed pairs (Kramers doublet or Kramers 

degeneracy) 

 

((Proof)) 

Since Ĥ  is invariant under time reversal, 

 

0̂]ˆ,ˆ[ =ΘH . 

 

Let nφ  and nn φφ Θ= ˆ~
 be the energy eigenket and its time-reversed states, respectively. 

 

nnnnnn EEHH φφφφ Θ=Θ=Θ=Θ ˆˆˆˆˆˆ  

 

nφΘ̂  and nφ  belong to the same energy eigenvalue. When 1̂ˆ 2 −=Θ  (half-integer), nφΘ̂  and 

nφ  are orthogonal. This means that nφΘ̂  and nφ  (having the same energy) must correspond 

to distinct states (degenerate states). 

 

 

 
 

When the magnetic field B is applied, Ĥ may then contain terms like 
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PAAP

BS

ˆˆˆˆ

ˆ

⋅+⋅

⋅
 

 
PS ˆ,ˆ  are added under time reversal, we have 0̂]ˆ,ˆ[ ≠ΘH  

 

((Note)) Suppose that there are N electrons. N is an even or an odd integer number. 

We use η = 1. 
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1

 

 

zzKi y −=+− ˆσ̂ , 

 

and 

 

zzKi y +−=−− ˆσ̂  

 

])1(1[
~ *

2

*

1

N
Nuu −+=ΦΦ  

 

When N is odd, .0
~

=ΦΦ  

 

37. Kramers degeneracy (II) 

We use this formula 

 

φψψφ
~~=  

 

Suppose that 

 

ψψφ ~ˆ =Θ= , ψφ 2ˆ~
Θ=  

 

Then we get 
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ψψψψ 2ˆ~~ Θ=  

 

For 1̂ˆ 2 −=Θ , we get 

 

0~~ =−= ψψψψ  

 

Thus, for odd system, the time reversal converts a state ψ  into an independent state. This is the 

basis for the Kramers’ degeneracy.  

All energy levels of s system containing an odd number of electrons must be at least doubly 

degenerate regardless of how low the symmetry is, provided that there are no magnetic fields 

present to remove the time-reversal symmetry. This theorem follows from the fact that, if  

 

ψψ −=Θ2ˆ  

 

then ψΘ̂  is orthogonal to ψ . 

 

38. Physical explanation of the Kramers theorem (III) 

Under the time reversal procedure, the spin state changes from z±  to zm . 

 

zz −=+Θ ηˆ , zz +=−Θ ηˆ  

 

The spin Hamiltonian is invariant under the time reversal. 

 

HH ˆˆˆˆ Θ=Θ , or HH ˆˆˆˆ 1 =ΘΘ −
 

 

Then the energy of the reversed spin state is the same as that of the original spin state before the 

time reversal. Since 

 

zzSz +=+
2

ˆ h
, zzSz −=−

2
ˆ h

. 

 

Since 0=−+ zz , z+  and zz −=+Θ ηˆ  are different states with the same energy 

eigenvalue. In other words, these two states are degenerate states with the same energy eigenvalue, 

forming the Kramers doublet. We note that the magnetic moment µ̂  is given by 
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z
B

z Ŝ
2

ˆ
h

µ
µ −= . 

 

So the magnetic moments are different for the two states z+  and z+Θ̂ . 

 

zzSz Bz

B

z ±=±−=± µ
µ

µ m
h

ˆ2
ˆ  

 

39. Example of the Kramers theorem for spin systems 

In the absence of an external magnetic field, there exists at least one doublet state (with 

double-degeneracy) among the energy levels of spin of odd number of electrons in the crystal 

field. This doublet is called the Kramers doublet. This theorem in general holds for any spin 

systems. Here we explain this theorem for the spin Hamiltonina given by 

 
2ˆˆ

zSDH =  

 

with spin S = 1, 1/2, 1, 3/2, and 2. When an external magnetic field is applied, the Kramers doublet 

is split. 

We consider the spin-orbit coupling 

 

SL ˆˆˆ ⋅= sosoH λ  

 

Because both angular momenta are odd, the Hamiltonian is even and symmetric under time-

reversal. When there is no spin-orbit coupling, we know that the hydrogen atom has 2s + 1 = 2 

degeneracy, but with spin-orbit coupling there is still 2-fold degeneracy because of the Kramer's 

degeneracy. 

 

(a) Spin 1/2 

There is one doublet (Kramers doublet) with 2/1,2/1 ±== mS  (having an energy level 

4

2
hD

). 
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(b) Spin S = 1. 

The energy level (energy 0) for the state )0,1 == mS  is singlet (the ground state). The 

energy level (energy 2
hD ) for the state 1,1 ±== mS  is doublet. 

 

 
 

S 1 2

m
1

2

0

D
2

4

E

S 1

m 0

m 1

0

D
2

E
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Suppose that the spin Hamiltonian is given by 

 

)ˆˆ(ˆˆ 222

yxz SSESDH −+=  with S = 1. 

 

We note that 0]ˆ,ˆ[ =ΘH  

 

The Hamiltonian is given by 

 

















=

DE

ED

H

0

000

0

ˆ 2
h  

 

]1,11,1[1,1ˆ 2 −+= BAH h  (1) 

 

00,1ˆ =H  ( 0,1  is the eigenstate of Ĥ  with the eigenvalue 0) 

 

]1,11,1[1,1ˆ 2 −+=− ABH h  (2) 

 

In the subspace of { 1,1  and 1,1 − }, the Hamiltonian can be written as 

 

)ˆ1̂(

01

10

10

01

ˆ

2

22

2

x

sub

ED

ED

DE

ED
H

σ+=









+








=









=

h

hh

h

 

 

xEDxEDxH xsub ±±=±+=± )()ˆ1̂(ˆ 22
hh σ  

 

with 

 









=+

1

1

2

1
x  (eigenvalue: 2)( hED + ) 

 










−
=−

1

1

2

1
x  (eigenvalue: 2)( hED − ) 

 

In summary we have three states 
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0,11 =φ    (energy eigenvalue, 0) 

 

]1,11,1[
2

1
2 −+=φ  (energy eigenvalue: 2)( hED + ) 

 

]1,11,1[
2

1
3 −−=φ  (energy eigenvalue: 2)( hED − ) 

 

The time reversal states: 

 

0,10,1ˆˆ
1 =Θ=Θ φ  

 

2

1

2 ]1,1)1(1,1)1[(
2

1
]1,11,1[ˆ

2

1ˆ φφ −=−+−−=−+Θ=Θ −  

 

3

1

3 ]1,1)1(1,1)1[(
2

1
]1,11,1[ˆ

2

1ˆ φφ =−−−−=−−Θ=Θ −  

 

(c) Spin S = 3/2 

The energy level (energy 4/2
hD ) for the state )

2

3
,

2

3
±== mS  is Kramers doublet (the 

ground state). The energy level (energy 
4

9 2
hD

) for the state )
2

1
,

2

3
±== mS  is Kramers 

doublet. 
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(d) Spin 2 

 

There are two energy levels. The energy level (energy 24 hD ) for the state )2,2 ±== mS  is 

doublet, and the energy level (energy 2
hD ) for the state )1,2 ±== mS  is also doublet. The 

energy level (energy 0 ) for the state )0,2 == mS  is singlet. 

 

S
3

2

m
1

2

m
3

2

0

D 2

4

9D 2

4

E
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40. 1̂ˆ 2 ±=Θ  

 

Suppose that 

 

1̂ˆ 2 η=Θ  

 

Using the definition of Θ̂  )ˆˆ( KU= , we have 

S 2

m 0

m 1

m 2

0

D
2

4D 2

E
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*2 ˆˆˆˆˆˆˆ UUKUKU ==Θ  

 

We note that 

 
TT UUUU )ˆ()ˆ(ˆˆ **1 === +−  

 

or 

 
11* ˆˆˆ −− == TT

UUU  

 

Then we get 

 

1̂ˆˆˆˆˆ 1*2 η===Θ
−TUUUU  

 

From this we have 

 
TUU ˆˆ η= , or ηUU T ˆˆ = . 

 

Then we get 

 

UUUU T ˆˆˆˆ 2ηηηη ===  

 

leading to 

 

12 =η ,  or 1±=η  

 

We may also write 

 

1̂ˆ 2 ±=Θ  

 

The sign of 
2Θ̂  is determined by the properties of Û , which in turn are governed by the nature 

of the complete set of kinematic variables required by the definition of a given physical system. 

Therefore these are two classes of quantum mechanical systems, even systems and odd systems. 

 

41. )ˆ(ˆ
yiU ση −=  for spin 1/2 system 
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We consider the expression of the unitary operator Û  for the spin 1/2 system. We start with 

the relation 

 

σσ ˆˆˆˆ 1 −=ΘΘ −
 

 

with 

 

+

+−

−−

−−

=

=

=

=ΘΘ

UU

UKKU

UKKU

KUKU

ˆˆˆ

ˆˆˆ

ˆˆˆ

)ˆ(ˆˆˆˆˆ

*

1

11

11

σ

σ

σ

σσ

 

 

Then we have 

 

xxxx UUUU σσσσ ˆˆˆˆˆˆˆˆˆˆ *1 −===ΘΘ ++−  

 

yyyy UUUU σσσσ ˆˆˆˆˆˆˆˆˆˆ *1 −=−==ΘΘ ++−  

 

zzzz UUUU σσσσ ˆˆˆˆˆˆˆˆˆˆ *1 −===ΘΘ ++−  

 

where 

 









==

01

10
ˆˆ

*

xx σσ , 






 −
=−=

0

0
ˆˆ

*

i

i
yy σσ , 








==

01

10
ˆˆ

*

zz σσ  

 

Hence we find that the unitary operator Û  anti-commutes with xσ̂ ; 

 

0ˆˆˆˆ}ˆ,ˆ{ =+= UUU xxx σσσ  

 

It also anti-commutes with zσ̂ ; 

 

0ˆˆˆˆ}ˆ,ˆ{ =+= UUU zzz σσσ . 

 

In contrast, Û  commutes with 
yσ̂ ; 
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0ˆˆˆˆ]ˆ,ˆ[ =−= UUU yyy σσσ . 

 

These commutation relations suggest that Û  is a function of 
yσ̂ .We assume that 

 

)ˆ(ˆ
yiU ση −= , 

 

where η  is a phase factor with 1=η . Since 

 

yy iiU σηση ˆ)ˆ(ˆ ** == ++  

 

so we have 

 

1̂ˆˆ)ˆ(ˆˆ 22* ==−=+
yyy iiUU σησηση  

 

((Note)) The commutation relations 

 

zxyyx iσσσσσ ˆˆˆˆˆ =−= , 

xyzzy iσσσσσ ˆˆˆˆˆ =−= , 

yzxxz iσσσσσ ˆˆˆˆˆ =−=  

 

_________________________________________________________________________ 

42. Spin 1/2 system 

 

KKU y
ˆ)ˆ(ˆˆˆ ση −==Θ  

 

where Û  is the unitary operator, and 1̂ˆ 2 =K . 

 








 −
=−=

01

10
)ˆ(ˆ ηση yiU  

 

1̂
10

01

01

10

01

10
ˆˆ 2

=







=







 −









−
=+ ηUU  

 

1̂
10

01

01

10

01

10
ˆˆˆˆˆˆˆ 2*2 −=








−=







 −







 −
===Θ ηUUKUKU  
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We assume that 

 








 −
==

0

0
ˆˆ

i

i
eeU i

y

i φφσ , 1ˆ 2 =K  

 

KU ˆˆˆ =Θ  

 

1̂
0

0

0

0
ˆˆˆˆˆˆˆ *2 −=









−






 −
===Θ −

i

i
e

i

i
eUUKUKU ii φφ  

 

((Note)) 

 

Ki y
ˆˆ)(ˆ σ−=Θ  

 

iKiKiKKi yyyy σσσσ ˆˆˆˆ)(ˆˆ]ˆˆ)[(ˆ 11111 ==−=−=Θ +−−−−−  

 

1̂ˆ)(ˆˆˆ)(ˆˆˆˆ)(ˆˆ 221 =−=−=−=ΘΘ − iiiKiiKKi yyyyy σσσσσ  

 

1̂ˆˆˆˆˆˆ)(ˆˆˆˆ 221 ===−=ΘΘ− KKKKiiK yyy σσσ  

 

1̂ˆˆˆˆ)(ˆ)(ˆˆ)(ˆˆ)(ˆ 2***2 −=−==−−=−−=Θ yyyyyyy iiKiKi σσσσσσσ  

 

since 

 

yy σσ ˆˆ
* −=  

 

_________________________________________________________________________ 

43. N spin (1/2) particles system ( 2≥N ) 

For simplicity we choose 1=η . The time-reversal operator for the N spin (1/2) particles 

system can be expressed by 

 

Ki Nyyyy

N ˆˆˆˆˆ)(ˆ
321 σσσσ ⊗⋅⋅⋅⋅⊗⊗⊗−=Θ  

 

using the Kronecker product. 
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(a) For the 2-electrons system 

 

KKii yy



















−

−
−=−⊗−=Θ

0001

0010

0100

1000

ˆˆ)(ˆ)(ˆ
21 σσ  

 

1̂

0001

0010

0100

1000

0001

0010

0100

1000

ˆ 2

=



















−

−



















−

−
=Θ KK

 

 

(Identity matrix with 4 x 4) 

 

(b) For the 3-electrons system 

 

KKiii yyy

































−

−

−

−

=−⊗−⊗−=Θ

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

ˆˆ)(ˆ)(ˆ)(ˆ
321 σσσ  

 

1̂

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

00000001

00000010

00000100

00001000

00010000

00100000

01000000

10000000

ˆˆ)(ˆ)(ˆ)(ˆˆ)(ˆ)(ˆ)(ˆ
321321

2

−=

































−

−

−

−

































−

−

−

−

=

−⊗−⊗−−⊗−⊗−=Θ

KK

KiiiKiii yyyyyy σσσσσσ

 



68 

 

 

(Identity matrix with 8 x 8) 

 

((Note)) 

 

2121
ˆˆ))(ˆˆ( ψψψψ BABA ⊗=⊗⊗ . 

 

44. Property of 
2Θ̂  

Two successive applications of the time reversal operator, i.e., two reversals of motion, leave 

the physical situation unchanged. 

 

ψψ c=Θ2ˆ  (1) 

 

with 1=c  (c is a complex number). The change in ψψ Θ→  of Eq.(1) leads to 

 

ψ

ψ

ψψ

Θ=

Θ=

ΘΘ=ΘΘ

ˆ

(ˆ

)ˆ(ˆ)ˆ(ˆ

*

22

c

c  (2) 

 

From Eqs.(1) and (2). we get 

 

)

)ˆˆ)ˆ(ˆ

*

322

ψψ

ψψψψ

Θ+=

Θ+Θ=Θ+Θ

cc
 (3) 

 

Equation (1) must hold for any state vector, 

 

)(')(ˆ 2 ψψψψ Θ+=Θ+Θ c  

 

for some c’, Then we have 

 

ψψψψψψ Θ+=Θ+=Θ+Θ '')(')ˆˆ 32 ccc  (4) 

 

Comparing Eq.(3) with Eq.(4), we get 

 

'cc = , *' cc = , 
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cc =*  

 

which means that c is real and 

 

1±=c . 

 

ψψ )1(ˆ 2 ±=Θ  

 

45. 1ˆ 2 ±=Θ  

We start with the definition of the time reversal operator 

 

KU ˆˆˆ =Θ  

 

Then we have 

 

cUUKUKU ===Θ *2 ˆˆˆˆˆˆˆ  

 

This can be rewritten as 

 

*2** ˆ)ˆ()ˆ(ˆˆ UcUccUcUcU TT ==== ++  

 

where we use the relation += UcU ˆˆ *  twice. So we get  

 

12 =c  

 

Note that c is real. This can be shown as follows.  

 
***)ˆˆ( cUU = ,  or ** ˆˆ cUU =  

 

Since += UcU ˆˆ * , we get 

 

cUUcUU == + ˆˆˆˆ * , 

 

or *cc =   (c is real) 

 

So that we have 

 

1±=c  
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46. The matrix expression of the unitary operator Û  

 

JJ ˆˆˆˆ 1 −=ΘΘ −
 

 

xx JJ ˆˆˆˆ 1 −=ΘΘ − , yy JJ ˆˆˆˆ 1 −=ΘΘ − , 
zz JJ ˆˆˆˆ 1 −=ΘΘ −  

 

)ˆˆ(ˆ)ˆˆ(ˆ 1

yxyx JiJJiJ −−=Θ+Θ − , −
−

+ −=ΘΘ JJ ˆˆˆˆ 1  

 

)ˆˆ(ˆ)ˆˆ(ˆ 1

yxyx JiJJiJ +−=Θ−Θ − , +
−

− −=ΘΘ JJ ˆˆˆˆ 1  

 

Note that 

 

m
JUJUUJUUKJKUJ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ 11*111 −====ΘΘ −

±
−

±
−−

±
−

±  

 

zzzzz JUJUUJUUKJKUJ ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ 11*111 −====ΘΘ −−−−−  

 

where the matrix elements of ±Ĵ  and are real; 

 

±± = JJ ˆˆ *
, 

zz JJ ˆˆ * =  

 

So we have 

 

0ˆˆˆˆ =+± UJJU
m

, 0ˆˆˆˆ =+ UJJU zz
 

 

From these relations, we get the commutation relation 

 

UU ˆˆˆˆ 22
JJ =  

 

with 

 

)ˆˆˆˆ(
2

1ˆˆ 22

+−−+ ++= JJJJJ zJ  

 

Note that 
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2

2

111111

1212

ˆ

)ˆˆˆˆ(
2

1ˆ

)ˆˆˆˆˆˆˆˆˆˆˆˆ(
2

1ˆˆˆˆˆˆ

ˆ)]ˆˆˆˆ(
2

1ˆ[ˆˆˆˆ

J

J

=

++=

++=

++=

+−−+

−
+

−
−

−
−

−
+

−−

−
+−−+

−

JJJJJ

UJUUJUUJUUJUUJUUJU

UJJJJJUUU

z

zz

z

 

 

Following the procedure introduced by Sachs, we determine the matrix element of Û . 

 

(a) 0ˆˆˆˆ =+ UJJU zz
 

 

0',ˆ,)'(',ˆˆˆˆ, =+=+ mjUmjmmmjUJJUmj zz h  

 

leading to 

 

0',ˆ, ≠mjUmj  only if 0'=+ mm , 

 

(b) 0ˆˆˆˆ =+ −+ UJJU  

 

0

',ˆ1,1,ˆ,',ˆ1',1',ˆ,

]',ˆ",",ˆ,',ˆ",",ˆ,[',ˆˆˆˆ,
"

=

+++++=

+=+

−+

−+−+ ∑

mjUmjmjJmjmjJmjmjUmj

mjUmjmjJmjmjJmjmjUmjmjUJJUmj
m

 

 

For mm −=+1' , we have 

 

01,ˆ1,1,ˆ,1,ˆ,,ˆ, =−−+++−−−− −+ mjUmjmjJmjmjJmjmjUmj  

 

or 

 

1
1,ˆ,

1,ˆ,

,ˆ,

1,ˆ1,
−=

+

−−−
−=

−

−−+

−

+

mjJmj

mjJmj

mjUmj

mjUmj
 (1) 

 

since 

 

1,)1)((,ˆ +++−=+ mjmjmjmjJ  
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1,)1)((,ˆ −+−+=− mjmjmjmjJ  

 

mjmjmjmjJ −−++=−−+ ,))(1(1,ˆ  

 

mjmjmjmjJ ,))(1(1,ˆ −++=+−  

 

leading to 

 

1
1,ˆ,

1,ˆ,
=

+

−−−

−

+

mjJmj

mjJmj
. 

 

From Eq.(1), we get 

 

)'(2')1(
,ˆ,

',ˆ', mmmm i
mjUmj

mjUmj −− =−=
−

−
 

 

Since 'mm −  is an integer, we have the relation; '' )1()1( mmmm −− −=− . The change of '' mm −→  

and mm −→  

 

)'(2')1(
,ˆ,

',ˆ', mmmm i
mjUmj

mjUmj −− =−=
−

−
 

 
mimjUmj 2,ˆ, =−  

 

Therefore, we have 

 

mji

mjUmjmj

mjUmjmj

mjKUmj

m

m

−=

−−=

=

=Θ

∑

,

,ˆ,,

,ˆ',',

,ˆˆ,ˆ

2

'  

 

or 
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mjimj m −=Θ ,,ˆ 2 . 

 

where m is either an integer or a half-integer. We note that 

 

mjimjimj mm −Θ=−Θ=Θ − ,ˆ,ˆ,ˆ 222  

 

Thus we have 

 

mjimj m ,ˆ,ˆ 42 Θ=Θ −  

 

47. The expression of U for j = 1 

Here we show that for j =1, Θ̂  is given by 

 

KU ˆˆˆ =Θ  

 

where 
















−=

001

010

100

Û  

 

((Proof)) 

 

0ˆˆˆˆ =+ UJJU xx , 0ˆˆˆˆ =− UJJU yy , 0ˆˆˆˆ =+ UJJU zz  

 

where 

 

















=

010

101

010

2
ˆ h

xJ ,  
















−

−

=

00

0

00

2
ˆ

i

ii

i

J y

h
, 

















−

=

100

000

001

ˆ hxJ  

 

We assume that the unitary operator is given by 

 

















=

333231

232221

131211

ˆ

UUU

UUU

UUU

U  

 

We note that 
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0

20

0

02

ˆˆˆˆ

3332

2321

1211

=
















−−

−=+

UU

UU

UU

UJJU zz h  

 

leading to 0333223211211 ====== UUUUUU  

 

0

0
2

0

2
0

2

0
2

0

ˆˆˆˆ

3122

22133122

2213

=























+

++

+

=+

UU

UUUU

UU

UJJU xx h  

 

leading to 223113 UUU −== .From the condition of 1̂ˆˆ =+UU , we have 

 

















−

−

=

001

010

100

Û  

 

This form of Û  satisfies the relation 0ˆˆˆˆ =− UJJU yy . We note that 

 

1,1

1

0

0

0

0

1

001

010

100

1,1ˆˆ1,1ˆ −−=
















−=
































−

−

==Θ KU  

 

0,1

0

1

0

0

1

0

001

010

100

0,1ˆˆ0,1ˆ =
















=
































−

−

==Θ KU  

 

1,1

0

0

1

1

0

0

001

010

100

1,1ˆˆ1,1ˆ −=
















−=
































−

−

=−=−Θ KU  

 

1̂ˆˆˆˆˆˆˆ *2 ===Θ UUKUKU  
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48. Evaluation of Θ̂  and 
2Θ̂  for electrons with spin 1/2 

(a) One particle with spin 1/2 

 

2/1=j  with 2/1±=m  

2/1=m   1
1
2

24 −=== −−

i
ii m  

2/1−=m   124 −==− ii m  

 

mjmj −−=Θ ,,ˆ 2  

 

(b) Two particles with spin 1/2 

 

012/12/1 DDDD +=×  

 

1=j  

1=m   1
1
4

44 === −−

i
ii m  

0=m   14 −=− mi  

1−=m  144 ==− ii m  

 

0=j  

0=m   14 =− mi  

 

mjmj −=Θ ,,ˆ 2  

 

(c) Three particles with spin 1/2 

 

2/12/32/1012/12/12/1 2)( DDDDDDDD +=×+=××  

 

2/3=j  

2/3=m   1
1
6

64 −=== −−

i
ii m  

2/1=m   124 −== −− ii m  

2/1−=m   124 −==− ii m  

2/3−=m   164 −==− ii m  

 

2/1=j  
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2/1=m   1
1
2

24 −=== −−

i
ii m  

2/1−=m   124 −==− ii m  

 

mjmj −−=Θ ,,ˆ 2  

 

49. Rotation operator as a unitary operator 

The unitary operator is given by )ˆexp(ˆ πyS
i

U
h

−=  which is the rotation operator for spin S 

(=1/2, 1, 3/2, …). 

 

(a) Spin 1/2 

 








 −
=−=−=

01

10
ˆ)ˆexp(ˆ

yy iS
i

U σπ
h

,  

 









−====Θ

10

01
ˆˆˆˆˆˆˆˆ 2*2 UUUKUKU  

 

where we use the formula 

 

yyy i
i

S
i

σ
θθ

θσθ ˆ
2

sin
2

cos)ˆ
2

exp()ˆexp( −=−=−
h

 

 

(b) Spin 1 

 

















−=−=

001

010

100

)ˆexp(ˆ πyS
i

U
h

,  

 

















====Θ

100

010

001

ˆˆˆˆˆˆˆˆ 2*2 UUUKUKU  

 

(c) Spin 3/2 
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−

−

=−=

0001

0010

0100

1000

)ˆexp(ˆ πyS
i

U
h

,  

 



















−====Θ

1000

0100

0010

0001

ˆˆˆˆˆˆˆˆ 2*2 UUUKUKU  

 

or 

 

1̂1̂)1(1̂)1(ˆ 322 −=−=−=Θ j  

 

(d) Spin 2  )2( =j  

 























−

−

=−=

00001

00010

00100

01000

10000

)ˆexp(ˆ πyS
i

U
h

, 

 























====Θ

10000

01000

00100

00010

00001

ˆˆˆˆˆˆˆˆ 2*2 UUUKUKU  

 

or 

 

1̂1̂)1(1̂)1(ˆ 422 =−=−=Θ j  

 

(e) Spin 5/2 )2/5( =j  
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−

−

−

=−=

000001

000010

000100

001000

010000

100000

)ˆexp(ˆ πyS
i

U
h

, 

 



























−====Θ

100000

010000
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ˆˆˆˆˆˆˆˆ 2*2 UUUKUKU  

or 

 

1̂1̂)1(1̂)1(ˆ 522 −=−=−=Θ j  

 

Many particle systems 

 

We consider the time reversal operator Θ̂  for N spins (spin 1/2). 

KN

y

N

yyy
ˆ)ˆˆ.....ˆˆ(ˆ 121 σσσσ −=Θ  

 

We note that 

 

21111211121

1211212

ˆ)ˆˆˆˆˆˆ....ˆˆˆˆˆˆ)ˆˆ.....ˆˆ(

ˆ)ˆˆ.....ˆˆ(ˆ)ˆˆ.....ˆˆ(ˆ

KKKKKKKKK

KK

N

y

N

yyy

N

y

N

yyy

N

y

N

yyy

N

y

N

yyy

−−−−−−

−−

=

=Θ

σσσσσσσσ

σσσσσσσσ
 

 

Using the relation, 

 
1*111 ˆ)ˆ(ˆˆˆ
yyy KK σσσ −==− , 1̂ˆ 2 =K  

 

we have 
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N

N

yyy

N

N

y

N

yyy

N

y

N

yyy KK

)1(

)ˆ....()ˆ()ˆ()1(

ˆ)ˆˆ.....ˆˆ(ˆ)ˆˆ.....ˆˆ(ˆ

22221

1211212

−=

−=

=Θ −−

σσσ

σσσσσσσσ

 

 

For N = even  1ˆ 2 =Θ  

 

For N = odd  1ˆ 2 −=Θ  

 

(a) N = 2 

 

012/12/1 DDDD +=×  

 

leading to the total spin with S = 1 and 0 (integer) 

 

(b) N=3 

 

2/12/3012/12/12/12/1 2)( DDDDDDDD +=+×=××  

 

leading to the total spin with S = 3/2 and 1/2 (integer) 

 

50. Rotation operator for many spin systems 

 

(a) 

 








 −
=−=

01

10
ˆˆ

1 yiA σ  

 

 

2
sinˆ1̂

2
cos)ˆ

2
exp()(ˆ
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When πθ = , 

 








 −
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2
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1̂ˆ 2 −=Θ  
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_____________________________________________________________________________ 

(b) 
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1̂ˆ 2 =Θ  

_____________________________________________________________________________ 

(c) 
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51. Mathematica for the case of j = 3/2 
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52. Spherical tensor under the time reversal 

Suppose that the operator Â  is either even or odd. 

 

AA ˆˆˆˆ 1 ±=ΘΘ −
 

 

So we see that we have 

 

αααα AA ˆ~ˆˆˆ~ 1 =ΘΘ −  

 

αααα ~ˆ~ˆ AA ±=  

 

In an eigenstate of the angular momentum ( mj,,α , we have 

 

ψψψψ ~ˆ~ˆ AA ±=  

 

with 
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mj,,αψ =  

 

mjimj m −=Θ= ,,,,ˆ~ ααψ , ( ) mji
m

−= ,,~ * αψ  

 

Then we have 

 

( )
( )

mjAmj

mjAmji

mjAmjiimjAmj

m

mm

−−±=

−−±=

−−±=

,,ˆ,,

,,ˆ,,

,,ˆ,,,,ˆ,,

2

*

αα

αα

αααα

 

 

Let Â  be a component of a spherical tensor 

 
)(

0
ˆˆ k

qTA ==  

 

which is Hermitian operator. )(

0
ˆ k

qT ≠  is not Hermitian operator. 

___________________________________________________________________________ 

((Note)) 

For example, the spherical components of r̂  are 

given by 

 

)ˆˆ(
2

1)1(

1 yixT +−= ,  zT ˆ)1(

0 = , )ˆˆ(
2

1)1(

1 yixT −=−  

 

)ˆˆ(
2

1)1(

1 yixT −−=
+

,  zT ˆ)1(

0 =
+

, )ˆˆ(
2

1)1(

1 yixT +=
+

−  

 

where 

 

)1(

1

1)1(

1

)ˆˆ(
2

1

)]ˆ(ˆˆ[
2

1

)ˆˆ(ˆ
2

1ˆˆ
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−−=

Θ+Θ−=

+Θ−=ΘΘ

T

yix
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yixT
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zzT ˆˆˆˆˆ 1)1(

0 =Θ=ΘΘ −  

 

)1(

1

1)1(

1

)ˆˆ(
2

1

)]ˆ(ˆˆ[
2

1

)ˆˆ(ˆ
2

1ˆˆ

T

yix

yix

yixT

−=

+=

Θ−Θ=

−Θ=ΘΘ −
−

 

___________________________________________________________________________ 

We define )(

0

k

qT =  to be even (sign: +) or odd (sign: -) under the time reversal 

 
)(

0

1)(

0
ˆˆ k

q

k

q TT =
−

= ±=ΘΘ . 

 

Then we have 

 

mjTmjmjTmj k

q

k

q −−±= == ,,,,,,,, )(

0

)(

0 αααα  (1) 

 

The state mj −,,α  is obtained by rotation 

 

mjemjR i

y −== ,,,,)(ˆ ααπθ ϕ  

 

We also know the formula given by 

 

∑
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+ =
k

kq

k

qyy

k

qy TqkRqkRTR
'

)(

'

*)( ˆ',)(ˆ,)(ˆˆ)(ˆ θθθ  

 

So we get 
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∑

∑
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ˆ',)(ˆ0,ˆ0,)(ˆ0,
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where 
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k

ky PkRk )1()(cos0,)(ˆ0, −== ππ  

 

We note that 

 

0,,ˆ,, =mjTmj k

q αα  for 0≠q  (from the m-selection rule) 

 

So we get 

 

mjTmjmjRTRmj kk

y

k

qy ,,ˆ,,)1(,,)(ˆˆ)(ˆ,, 0

)(

0 αααππα −==
+

 

 

or 

 

mjTmj

mjRTRmjmjTmj
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+

,,ˆ,,)1(
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or 

 

mjTmjmjTmj kkk

q ,,ˆ,,)1(,,ˆ,, 0

)(

0 αααα −=−− =  (2) 

 

since 

 

mjemjR i

y −== ,,,,)(ˆ ααπθ ϕ , mjeRmj i

y −== −+
,,)(ˆ,, απθα ϕ  

 

From Eqs.(1) and (2), we get 

 

mjTmjmjTmj k

q

kk

q ,,,,)1(,,,, )(

0

)(

0 αααα == −±=  

 

((Note)) Wigner-Eckart theorem. 

 

jTjmjkjqmkjmjTmj kk

q αααα )()( ˆ''',';,,;,,;ˆ',';' =  

 

with the selection rule, 

 

qmm +=' , ||,...,1,' kjkjkjj −−++= . 
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53. Electric dipole moment of neutron 

In the accepted time-reversal invariant theory of the electromagnetic interaction. The 

electric dipole moment, the electric dipole moment ( )ˆˆ reD =  with a charge e is even under the 

time reversal. This is consistent with the fact that no electric dipole moment has been observed 

for any particle. 

 

mjTmjmjTmj qq ,,,,,,,, )1(

0

)1(

0 αααα == −=  

 

with 

 

zq DeT ˆ)1(

0 ==  (which is even under the time-reversal) 

 

Then we get 

 

0,,ˆ,,,,,, )1(

0 === mjDemjmjTmj zq αααα  

 

which implies that no electric dipole moment. 

At the present time very accurate measurements are being made on the neutron to see if even 

a very small electric dipole moment exists, Any such observation would indicate a breakdown of 

time-reversal symmetry in the theory. It would also indicate a breakdown of space inversion 

symmetry because accepted space inversion theory has the electric dipole moment as an odd 

parity operator. Thus if the particle has definite parity, the diagonal matrix elements of the dipole 

would also vanish for this reason. 

 

((Note)) 

The neutron electric dipole moment (EDM) is a measure for the distribution of positive and 

negative charge inside the neutron. A finite electric dipole moment can only exist if the centers 

of the negative and positive charge distribution inside the particle do not coincide. So far, no 

neutron EDM has been found. The current best upper limit amounts to 

 
26109.2 −×<nd  e⋅cm. 
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APPENDIX Formula 

 

ψψ Θ= ˆR  

 

1. KU ˆˆˆ =Θ , 
+− =Θ UK ˆˆˆ 1
, (Û ; unitary operator, K̂ ; complex conjugate operator) 

++++ ==Θ UKUK ˆˆˆˆˆ . 
+− Θ=Θ ˆˆ 1

. 1̂ˆˆˆˆˆ 21 ==ΘΘ +− UKU .  

2. 1ˆ 2 =K , 1ˆˆ =+ KK , KKK ˆˆˆ 1 == −+ . 

3. 
*1ˆˆ cKcK =−
 where c is a complex 

4. *1 ˆˆˆˆ AKAK =−  where Â  is any operator. 

5. KJ
i

y
ˆ)ˆexp(ˆ

h

π
η −=Θ     for spin j 

6. KiK
i

yy
ˆ)ˆ(ˆ)ˆ

2
exp(ˆ σησ

π
η −=−=Θ   for spin 1/2 

7. mlml m −−=Θ ,)1(,ˆ     for orbital angular momentum 

8. mjimj m ,ˆ,ˆ 42 Θ=Θ −  

9. mjimj m −=Θ ,,ˆ 2  
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10. Ki Nyyyy

N ˆˆˆˆˆ)(ˆ
321 σσσσ ⊗⋅⋅⋅⋅⊗⊗⊗−=Θ . 

11. 
*~~

αββααβ ==  

12. 
*1 ˆˆ~ˆˆˆ~

αββααβ AAA ==ΘΘ +−  

13. αααα +− =ΘΘ AA ˆ~ˆˆˆ~ 1  

14. αααα AA ˆ~ˆˆˆ~ 1 =ΘΘ −   ( Â  is Hermite operator) 

15. For AA ˆˆˆˆ 1 =ΘΘ −
,  αααα AA ˆ~ˆ~ =  

16. For AA ˆˆˆˆ 1 −=ΘΘ −
,  αααα AA ˆ~ˆ~ −=  

17. ),()()(),( **
tttt RR −=−== rrrr ψψψψ  

18. )0,()0,()0,( * rrr ψψψ =Θ=R  

19. )(ˆ)( ttR −Θ= ψψ . )0(ˆ)0( ψψ Θ=R  

20. 
**

)(
~

nnn φφφ rrr −=−=  

21 
**

)(
~

nnn φφφ kkk −=−=  

22. 1̂ˆˆ 1 ii −=ΘΘ −
 

23. HH ˆˆˆˆ 1 =ΘΘ −
  ( Ĥ : Hamiltonian) 

24. pp ˆˆˆˆ 1 −=ΘΘ −  

25. rr ˆˆˆˆ 1 =ΘΘ −
 

26. JJ ˆˆˆˆ 1 −=ΘΘ −
  ( Ĵ ; angular momentum 

27. RR ˆˆˆˆ 1 =ΘΘ −
  ( R̂ , rotation operator) 

28. )(ˆˆ)(ˆˆ 1 aTaT xx =ΘΘ −  ( )(ˆ aTx ; translation operator) 

29. ππ ˆˆˆˆ 1 =ΘΘ −
  (π̂ ; parity operator) 

30. ''ˆ rr =Θ  

31. ''ˆ pp −=Θ  

32. jTjmjkjqmkjmjTmj kk

q αααα )()( ˆ''',';,,;,,;ˆ',';' =  

33. 2121
ˆˆ))(ˆˆ( ψψψψ BABA ⊗=⊗⊗  

 


