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1. Introduction ((Feynman)) 

We consider a simpler example to illustrate the generality of the notion: a particle in a 

periodic potential. )cos(1)( GxxV   with 
a

G
2

  (reciprocal lattice) for the one dimensional 

chain with a lattice constant a. The minima are at max  , where m is any integer. The symmetry 

of the problem is the discrete translation annax )1(  . The approximate states, n , which 

are Gaussians centered around the classical minima, break the symmetry and are converted to 

each other by )(ˆ aTx , the operator that translates annax )1(   

 

1)(ˆ  nnaTx . 

 
However, adjacent classical minima are connected by a nonzero tunneling amplitude of the type 

we just calculated and the Hamiltonian Ĥ  has off-diagonal amplitudes between n  and. (There 

are also solutions describing tunneling to next-nearest-neighbor minima, but these have roughly 
double the action as the nearest-neighbor tunneling process and lead to an off-diagonal matrix 
element that is roughly the square of the one due to nearest-neighbor tunneling.) Suppose the 
one-dimensional world were finite and forms a closed ring of size N, so that there were N 
degenerate classical minima. These would evolve into N nondegenerate levels due to the mixing 
due to tunneling.  
 

The content of this topics can be found in the Feynman’s lecture on physics.  
 



 
 
Fig. The base states of an electron in a one dimensional crystal. 
 
2. Electron dispersion 

We consider a periodic lattice with a lattice constant a. The translation operator commutes 
with the Hamiltonian 
 

0]ˆ),([ HaTx . 

 

The operator )(ˆ aTx  is unitary (a; lattice constant) and hence its eigenvalues need not be real. Let 

us suppose that the potential barrier between the lattice points is infinitely high. Let n  be the 

state localized in the lattice cell n, i.e. 
 

0nx   only if nax  . 

 

Obviously n  is a stationary state. Because all lattice cells are exactly alike we must have 

 

nEnH 0
ˆ  ,  for any n. 



 

Thus the system has countably infinite number of ground states | n , n = −1, . . . , ∞. 

Now 
 

1)(ˆ  nnaTx  

 

so the state n  is not an eigenstate of the translation (a). Let’s try 
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where   is a real parameter and 
 

  . 
 
Obviously we have 
 

 0
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Furthermore we get 
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Thus every state corresponding to a value of the continuous parameter   has the same energy, i.e. 
the ground state of the system infinitely degenerate. 

Let us suppose further that n  is a state localized at the point n so that 

 

1)(ˆ  nnaTx , 

 
with 
 



0nx  (but small),  when anax  . 

 

Due to the translational symmetry the diagonal elements of the Hamiltonian Ĥ  in the basis }{ n  

are all equal to each other: 
 

0
ˆ EnHn  . 

 
Let us suppose now that 
 

0ˆ' nHn ,  only if nn ' , or 1'  nn  

 
We are dealing with the so called tight binding approximation. When we define 
 

 nHn ˆ1 , 

 
we can write 
 

11ˆ
0  nnnEnH , 

 

where we have exploited the orthonormality of the basis }{ n . Thus the state n  is not an 

energy eigen state. Let us look again at the trial 
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Like before we have 
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Furthermore 
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The earlier degeneracy will be lifted if 0  and 
 

cos20  EE  

 
with 
 

 22 00 EEE  

 
3. Feynman’s approach 
Eigenvalue problem: 
 

 EH ˆ  

 
The translation operator 
 

0]ˆ),([ HaTx  

 

Then   should be a simultaneous eigenket of )(aTx  and Ĥ . 

 

0]ˆ),( HaTx  

 

 EkHk ˆ  

 


k

k ka  

 
with 
 



kak   

 
Eigenvalue problem: 
 

 EH ˆ  

 









kE

kkkE

llE

llHkHk

l
lklkqk

l















11

)(

ˆˆ

0

1,1,,0
 

 
or 
 










































































































N

E

NE

E

E

E

E

4

3

2

1

4

3

2

1

0000

000

000

00

000

0

0

0

0

0

 (1) 

 
We also note that 
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or 
 

 kk 1  



 
or 
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1

 kk     (2) 

 
What is the value of  ? We use the periodic boundary condition such that 
 

kkaTx 1)(ˆ , kaTk x )(ˆ1   

 

)(ˆ1 aTkk x  

 
Then we have 
 

 kkaTk x  1)(ˆ ,  

 

 kNkaTk NN
x )(ˆ  

 
We assume that 
 

 kNk     (periodic boundary condition) 

 
which leads to 
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with 
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The number of the freedom is given by N (the total number of atoms in the 1D chain). 
 
Energy eigenvalues: 
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since 
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Thus we have 
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Fig. Energy dispersion for the phonon for the 1D system with a lattice constant a. The energy 

dispersion curve is expressed by )cos(2)( 0 kaEkE  . We use E0 = 1.0. 1.0 . a = 1. 

 
4. Numerical calculation 
((Feynman)) 

All we have to do is take the determinant, but wait! Determinants are fine when there are 2, 3, 
or 4 equations. But if there are a large number—or an infinite number—of equations, the 
determinants are not very convenient. We’d better just try to solve the equations directly.  
 

We solve the eigenvalue problem for the Hamiltonian (12 x 12) 
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by using the Mathematica. For simplicity we assume that 
 

10 E ,  1.0 , N = 12 

 

Ĥ  ( NN  matrix) 
 

 EH ˆ  

 

with  22 00 EEE   
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We determine the energy eigenvalues and the corresponding eigenkets. For each energy 

eigenvalue, we make a plot of the normalized amplitude na  as a function of n 

 
((Mathematica)) 
 



 
 

Clear "Global` " ;

exp : exp . Complex re , im Complex re, im ;

H1

1 a 0 0 0 0 0 0 0 0 0 0
a 1 a 0 0 0 0 0 0 0 0 0

0 a 1 a 0 0 0 0 0 0 0 0
0 0 a 1 a 0 0 0 0 0 0 0
0 0 0 a 1 a 0 0 0 0 0 0
0 0 0 0 a 1 a 0 0 0 0 0
0 0 0 0 0 a 1 a 0 0 0 0
0 0 0 0 0 0 a 1 a 0 0 0
0 0 0 0 0 0 0 a 1 a 0 0
0 0 0 0 0 0 0 0 a 1 a 0
0 0 0 0 0 0 0 0 0 a 1 a
0 0 0 0 0 0 0 0 0 0 a 1

;

H11 H1 . a 0.1 ;

eq1 Eigensystem H11 ;

Pt n : Module f1, f2, n1 , n1 n;

f1 ListPlot Normalize eq1 2, n ,

PlotStyle Hue 0.09 n 1 , Thick ,

Filling Axis ;

f2 Graphics

Text Style "E " ToString eq1 1, n ,

Black, 12 , 10, 0.3 ,

Text Style "N " ToString 12 n1 1 ,

Black, 12 , 2, 0.35 ,

Text Style "n", Black, Italic, 15 ,

11.5, 0 ; Show f1, f2 ;
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state 0 EE 80.02  0 
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