Translation operator and rotation operator for the 3D system
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton
 (Date: February 05, 2015)

Translation operators are linear and unitary. They are closely related to the momentum operator; for example, a translation operator that moves by an infinitesimal amount in the x direction has a simple relationship to the x-component of the momentum operator. Because of this, conservation of momentum holds when the translation operators commute with the Hamiltonian, i.e. when laws of physics are translation-invariant.

Here we discuss the properties of the translation operator for the 3D system.

1. Translation operator

The state vector:

$$
|\psi\rangle=\int d \boldsymbol{r}|\boldsymbol{r}\rangle\langle\boldsymbol{r} \mid \psi\rangle,
$$

where

$$
\begin{aligned}
& \left\langle\boldsymbol{r} \mid \boldsymbol{r}^{\prime}\right\rangle=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right), \\
& \hat{T}(\boldsymbol{a})|\boldsymbol{r}\rangle=|\boldsymbol{r}+\boldsymbol{a}\rangle .
\end{aligned}
$$

Translation operator:

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=\hat{T}(\boldsymbol{a})|\psi\rangle,
$$

with

$$
\hat{T}^{+}(\boldsymbol{a}) \hat{T}(\boldsymbol{a})=\hat{1} . \quad \text { Unitary operator }
$$

(a)

It is expected from the analogy of classical mechanics that

$$
\left\langle\psi^{\prime}\right| \hat{\boldsymbol{r}}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{\boldsymbol{r}}|\psi\rangle+\langle\psi| \boldsymbol{a}|\psi\rangle .
$$

or

$$
\langle\psi| \hat{T}^{+}(\boldsymbol{a}) \hat{\boldsymbol{r}} \hat{T}(\boldsymbol{a})|\psi\rangle=\langle\psi| \hat{\boldsymbol{r}}+\boldsymbol{a}|\psi\rangle
$$

leading to the relation

$$
\hat{T}^{+}(\boldsymbol{a}) \hat{\boldsymbol{r}} \hat{\boldsymbol{T}}(\boldsymbol{a})=\hat{\boldsymbol{r}}+\boldsymbol{a} \hat{\mathbf{1}},
$$

or

$$
\hat{\boldsymbol{r}} \hat{T}(\boldsymbol{a})=\hat{T}(\boldsymbol{a}) \hat{\boldsymbol{r}}+\boldsymbol{a} \hat{T}(\boldsymbol{a})
$$

or

$$
[\hat{\boldsymbol{r}}, \hat{T}(\boldsymbol{a})]=\boldsymbol{a} \hat{T}(\boldsymbol{a}) .
$$

Using the commutation relation, we get

$$
\begin{aligned}
\hat{\boldsymbol{r}} \hat{T}(\boldsymbol{a})|\boldsymbol{r}\rangle & =\hat{T}(\boldsymbol{a}) \hat{\boldsymbol{r}}|\boldsymbol{r}\rangle+\boldsymbol{a} \hat{T}(\boldsymbol{a}))|\boldsymbol{r}\rangle \\
& =(\hat{T}(\boldsymbol{a}) \boldsymbol{r}|\boldsymbol{r}\rangle+\boldsymbol{a} \hat{T}(\boldsymbol{a}))|\boldsymbol{r}\rangle \\
& =(\boldsymbol{r}+\boldsymbol{a}) \hat{T}(\boldsymbol{a})|\boldsymbol{r}\rangle
\end{aligned}
$$

This implies that $\hat{T}(\boldsymbol{a})|\boldsymbol{r}\rangle$ is the eigenket of $\hat{\boldsymbol{r}}$ with the eigenvalue $(\boldsymbol{r}+\boldsymbol{a})$,

$$
\hat{T}(\boldsymbol{a})|\boldsymbol{r}\rangle=|\boldsymbol{r}+\boldsymbol{a}\rangle,
$$

or

$$
\langle\boldsymbol{r}+\boldsymbol{a}|=\langle\boldsymbol{r}| \hat{T}^{+}(\boldsymbol{a})
$$

Note that

$$
|\boldsymbol{r}\rangle=\hat{T}^{+}(\boldsymbol{a})|\boldsymbol{r}+\boldsymbol{a}\rangle .
$$

When $\boldsymbol{r} \rightarrow \boldsymbol{r}-\boldsymbol{a}$, we get

$$
|\boldsymbol{r}-\boldsymbol{a}\rangle=\hat{T}^{+}(\boldsymbol{a})|\boldsymbol{r}\rangle,
$$

or

$$
\langle\boldsymbol{r} \hat{T}(\boldsymbol{a})=\langle\boldsymbol{r}-\boldsymbol{a}|
$$

(b)

It is also expected from the analogy of classical mechanics that

$$
\left\langle\psi^{\prime}\right| \hat{\boldsymbol{p}}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{\boldsymbol{p}}|\psi\rangle .
$$

or

$$
\langle\psi| \hat{T}^{+}(\boldsymbol{a}) \hat{\boldsymbol{p}} \hat{T}(\boldsymbol{a})|\psi\rangle=\langle\psi| \hat{\boldsymbol{p}}|\psi\rangle
$$

leading to the commutation relation

$$
\hat{T}^{+}(\boldsymbol{a}) \hat{\boldsymbol{p}} \hat{T}(\boldsymbol{a})=\hat{\boldsymbol{p}}, \quad \text { or } \quad[\hat{\boldsymbol{p}}, \hat{T}(\boldsymbol{a})]=0
$$

We assume that the infinitesimal translation operator is given by

$$
\hat{T}(d \boldsymbol{r})=\hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{G}} \cdot d \boldsymbol{r}
$$

where

$$
\begin{aligned}
& \hat{T}^{+}(d \boldsymbol{r}) \hat{T}(d \boldsymbol{r})=\hat{1}, \\
& \hat{T}^{+}(d \boldsymbol{r}) \hat{\boldsymbol{r}} \hat{T}(d \boldsymbol{r})=\hat{\boldsymbol{r}}+d \boldsymbol{r} \hat{1}, \\
& \hat{T}^{+}(d \boldsymbol{r}) \hat{\boldsymbol{p}} \hat{T}(d \boldsymbol{r})=\hat{\boldsymbol{p}} .
\end{aligned}
$$

(a) $\hat{\boldsymbol{G}}$ is a Hermitian operator.

$$
\begin{aligned}
\hat{T}^{+}(d \boldsymbol{r}) \hat{T}(d \boldsymbol{r}) & =\left(\hat{1}+\frac{i}{\hbar} \hat{\boldsymbol{G}}^{+} \cdot d \boldsymbol{r}\right)\left(\hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{G}} \cdot d \boldsymbol{r}\right) \\
& =\hat{1}+\frac{i}{\hbar}\left(\hat{\boldsymbol{G}}^{+}-\hat{\boldsymbol{G}}\right) \cdot d \boldsymbol{r} \\
& =\hat{1}
\end{aligned}
$$

Then we have

$$
\hat{\boldsymbol{G}}^{+}=\hat{\boldsymbol{G}} \quad \text { (Hermitian operator) }
$$

(b) The commutation relation (I)

$$
\left[\hat{\boldsymbol{p}}, \hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{G}} \cdot d \boldsymbol{r}\right]=0,
$$

or

$$
\left[\hat{p}_{\alpha}, \hat{G}_{\beta}\right]=0 \quad \text { with } \alpha, \beta=x, y, z .
$$

(c) The commutation relation (II)

$$
\left(\hat{1}+\frac{i}{\hbar} \hat{\boldsymbol{G}} \cdot d \boldsymbol{r}\right) \hat{\boldsymbol{r}}\left(\hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{G}} \cdot d \boldsymbol{r}=\hat{\boldsymbol{r}}+d \boldsymbol{r} \hat{1},\right.
$$

or

$$
(\hat{\boldsymbol{G}} \cdot d \boldsymbol{r}) \hat{\boldsymbol{r}}-\hat{\boldsymbol{r}}(\hat{\boldsymbol{G}} \cdot d \boldsymbol{r})=\frac{\hbar}{i} d \boldsymbol{r} \hat{1}
$$

or

$$
\sum_{\alpha}\left[\hat{G}_{\alpha}, \hat{x}_{\beta}\right] d x_{\alpha}=\frac{\hbar}{i} d x_{\beta} \hat{1}=\frac{\hbar}{i} \hat{1} \sum_{\alpha} \delta_{\alpha \beta} d x_{\alpha},
$$

So we get the commutation relation

$$
\left[\hat{G}_{\alpha}, \hat{x}_{\beta}\right]=\frac{\hbar}{i} \hat{1} .
$$

From these results, it can be conclued that

$$
\hat{\boldsymbol{G}}=\hat{\boldsymbol{p}} .
$$

3. Infinitesimal translation operator

$$
\begin{aligned}
\hat{T}(d \boldsymbol{r})|\psi\rangle & =\hat{T}(d \boldsymbol{r}) \int d \boldsymbol{r}^{\prime}\left|\boldsymbol{r}^{\prime}\right\rangle\left\langle\boldsymbol{r}^{\prime} \mid \psi\right\rangle \\
& =\int d \boldsymbol{r}^{\prime} \hat{T}(d \boldsymbol{r})\left|\boldsymbol{r}^{\prime}\right\rangle\left\langle\boldsymbol{r}^{\prime} \mid \psi\right\rangle \\
& =\int d \boldsymbol{r}^{\prime}\left|\boldsymbol{r}^{\prime}+d \boldsymbol{r}\right\rangle\left\langle\boldsymbol{r}^{\prime} \mid \psi\right\rangle \\
& =\int d \boldsymbol{r}^{\prime}\left|\boldsymbol{r}^{\prime}\right\rangle\left\langle\boldsymbol{r}^{\prime}-d \boldsymbol{r} \mid \psi\right\rangle
\end{aligned}
$$

Using the Taylor expansion

$$
\left\langle\boldsymbol{r}^{\prime}-d \boldsymbol{r} \mid \psi\right\rangle=\psi\left(\boldsymbol{r}^{\prime}-d \boldsymbol{r}\right)=\psi\left(\boldsymbol{r}^{\prime}\right)-\frac{\partial \psi\left(\boldsymbol{r}^{\prime}\right)}{\partial \boldsymbol{r}^{\prime}} d \boldsymbol{r}
$$

we have

$$
\begin{aligned}
\hat{T}(d \boldsymbol{r})|\psi\rangle & =\int d \boldsymbol{r}^{\prime}\left|\boldsymbol{r}^{\prime}\right\rangle\left[\psi\left(\boldsymbol{r}^{\prime}\right)-\frac{\partial \psi\left(\boldsymbol{r}^{\prime}\right)}{\partial \boldsymbol{r}^{\prime}} d \boldsymbol{r}\right] \\
& =\int d \boldsymbol{r}^{\prime}\left|\boldsymbol{r}^{\prime}\right\rangle\left[\left\langle\boldsymbol{r}^{\prime} \mid \psi\right\rangle-\frac{i}{\hbar}\left\langle\boldsymbol{r}^{\prime}\right| \hat{\boldsymbol{p}}|\psi\rangle \cdot d \boldsymbol{r}\right] \\
& =\left(\hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{p}} \cdot d \boldsymbol{r}\right)|\psi\rangle
\end{aligned}
$$

since

$$
\langle\boldsymbol{r}| \hat{\boldsymbol{p}}|\psi\rangle=\frac{\hbar}{i} \nabla_{r}\langle\boldsymbol{r} \mid \psi\rangle .
$$

Then we have

$$
\hat{T}(d \boldsymbol{r})=1-\frac{i}{\hbar} \hat{\boldsymbol{p}} \cdot d \boldsymbol{r} .
$$

4. Finite translation operator

The finite translation operator is given by

$$
\hat{T}(\boldsymbol{a})=\lim _{N \rightarrow \infty}\left(\hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{p}} \cdot \frac{\boldsymbol{a}}{N}\right)^{N}=\exp \left(-\frac{i}{\hbar} \hat{\boldsymbol{p}} \cdot \boldsymbol{a}\right),
$$

where we use the definition of e^{-x} as

$$
e^{-x}=\lim _{N \rightarrow \infty}\left(1-\frac{x}{N}\right)^{N}
$$

5. Transformation function

Using the relation

$$
\langle\boldsymbol{r}| \hat{\boldsymbol{p}}|\psi\rangle=\frac{\hbar}{i} \nabla\langle\boldsymbol{r} \mid \psi\rangle=\frac{\hbar}{i} \frac{\partial}{\partial \boldsymbol{r}}\langle\boldsymbol{r} \mid \psi\rangle .
$$

we get the transformation function as

$$
\langle\boldsymbol{r} \mid \boldsymbol{p}\rangle=\frac{1}{(2 \pi \hbar)^{3 / 2}} \exp \left(\frac{i}{\hbar} \boldsymbol{p} \cdot \boldsymbol{r}\right) .
$$

We note that

$$
\left\langle\boldsymbol{p} \mid \boldsymbol{p}^{\prime}\right\rangle=\delta\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right)
$$

Then we have

$$
\left\langle\boldsymbol{p} \mid \boldsymbol{p}^{\prime}\right\rangle=\int d r\langle\boldsymbol{p} \mid \boldsymbol{r}\rangle\left\langle\boldsymbol{r} \mid \boldsymbol{p}^{\prime}\right\rangle=\frac{1}{(2 \pi \hbar)^{3}} \int d \boldsymbol{r} \exp \left[\frac{i}{\hbar}\left(\boldsymbol{p}^{\prime}-\boldsymbol{p}\right) \cdot \boldsymbol{r}\right] .
$$

6. Translation operator for two-body problem

We consider a Hamiltonian of two particles at \boldsymbol{r}_{1} and $\boldsymbol{r}_{2} . p_{1}$ and p_{2} are the momentum of particles 1 and 2, respectively.

The Hamiltonian is given by

$$
\hat{H}=\frac{1}{2 m_{1}} \hat{\boldsymbol{p}}_{1}^{2}+\frac{1}{2 m_{2}} \hat{\boldsymbol{p}}_{2}^{2}+V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right),
$$

where $V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right)$ is the interaction between two particles with mass m_{1} and m_{2}. This is so-called the central field problem.

((Definition of Central-force Problem))

In classical mechanics, the central-force problem is to determine the motion of a particle under the influence of a single central force. A central force is a force that points from the particle directly towards (or directly away from) a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

We consider the two particles (denoted by particle 1 and particle 2) located at \boldsymbol{r}_{1} and \boldsymbol{r}_{2}, respectively. The position ket vector for these two particles is expressed by

$$
\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle=\left|\boldsymbol{r}_{1}\right\rangle_{1} \otimes\left|\boldsymbol{r}_{2}\right\rangle_{2},
$$

using the Kronecker product \otimes. Note that we have the commutation relations,

$$
\begin{aligned}
& {\left[\hat{x}_{1 i}, \hat{p}_{1 j}\right]=i \hbar \delta_{i j}, \quad\left[\hat{x}_{2 i}, \hat{p}_{2 j}\right]=i \hbar \delta_{i j},} \\
& {\left[\hat{x}_{1 i}, \hat{p}_{2 j}\right]=0, \quad\left[\hat{x}_{2 i}, \hat{p}_{1 j}\right]=0 .}
\end{aligned}
$$

which means that the operators for particle 1 and particle 2 are completely independent each other.

We introduce the translation operator (one particle) as

$$
\begin{aligned}
& \hat{T}_{1}(\boldsymbol{a})\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle=\hat{T}_{1}(\boldsymbol{a})\left|\boldsymbol{r}_{1}\right\rangle_{1} \otimes\left|\boldsymbol{r}_{2}\right\rangle_{2}=\left|\boldsymbol{r}_{1}+\boldsymbol{a}\right\rangle_{1} \otimes\left|\boldsymbol{r}_{2}\right\rangle_{2}, \\
& \hat{T}_{2}(\boldsymbol{a})\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle=\hat{T}_{2}(\boldsymbol{a})\left|\boldsymbol{r}_{1}\right\rangle_{1} \otimes\left|\boldsymbol{r}_{2}\right\rangle_{2}=\left|\boldsymbol{r}_{1}\right\rangle_{1} \otimes \hat{T}_{2}(\boldsymbol{a})\left|\boldsymbol{r}_{2}\right\rangle_{2}=\left|\boldsymbol{r}_{1}\right\rangle_{1} \otimes\left|\boldsymbol{r}_{2}+\boldsymbol{a}\right\rangle_{2} .
\end{aligned}
$$

Here we assume that

$$
\left[\hat{\boldsymbol{p}}_{1}, \hat{\boldsymbol{p}}_{2}\right]=0,
$$

Then we have

$$
\begin{aligned}
\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}) & =\exp \left(-\frac{i}{\hbar} \hat{\boldsymbol{p}}_{1} \cdot \boldsymbol{a}\right) \exp \left(-\frac{i}{\hbar} \hat{\boldsymbol{p}}_{2} \cdot \boldsymbol{a}\right) \\
& =\exp \left[-\frac{i}{\hbar}\left(\hat{\boldsymbol{p}}_{1}+\hat{\boldsymbol{p}}_{2}\right) \cdot \boldsymbol{a}\right] \\
& =\exp \left[-\frac{i}{\hbar} \hat{\boldsymbol{P}} \cdot \boldsymbol{a}\right]
\end{aligned}
$$

where we use the formula

$$
\exp (\hat{A}) \exp (\hat{B})=\exp (\hat{A}+\hat{B})
$$

when $[\hat{A}, \hat{B}]=0$. We also define the total momentum as

$$
\hat{\boldsymbol{P}}=\hat{\boldsymbol{p}}_{1}+\hat{\boldsymbol{p}}_{2} .
$$

Using the closure relation, we can define the wave function as

$$
|\psi\rangle=\int d \boldsymbol{r}_{1} d \boldsymbol{r}_{2}\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle\left\langle\boldsymbol{r}_{1}, \boldsymbol{r}_{2} \mid \psi\right\rangle
$$

We now show that

$$
\left[V\left(\left|\hat{r}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right), \hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})\right]=0
$$

((Proof))

$$
\begin{aligned}
\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}) V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right)\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle & =\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}) V\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle \\
& =V\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2} \mid\right) \hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle \\
& =V\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)\left|\boldsymbol{r}_{1}+\boldsymbol{a}, \boldsymbol{r}_{2}+\boldsymbol{a}\right\rangle \\
V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right) \hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle & =V\left(\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2} \mid\right)\left|\boldsymbol{r}_{1}+\boldsymbol{a}, \boldsymbol{r}_{2}+\boldsymbol{a}\right\rangle \\
& =V\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)\left|\boldsymbol{r}_{1}+\boldsymbol{a}, \boldsymbol{r}_{2}+\boldsymbol{a}\right\rangle
\end{aligned}
$$

Then we have

$$
\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}) V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right)\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle=V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right) \hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})\left|\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right\rangle
$$

or

$$
\left[\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}), V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right)\right]=0
$$

Since

$$
\left[\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}), \frac{1}{2 m_{1}} \hat{\boldsymbol{p}}_{1}^{2}+\frac{1}{2 m_{1}} \hat{\boldsymbol{p}}_{1}^{2}\right]=0
$$

we get the commutation relation

$$
\left[\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a}), \hat{H}\right]=0 .
$$

This means that there is a simultaneous eigenket $|\psi\rangle$ of both $\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})$ and \hat{H}, such that

$$
H|\psi\rangle=E|\psi\rangle, \quad \hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})|\psi\rangle=\lambda|\psi\rangle
$$

We also note that

$$
\hat{T}_{1}(\delta \boldsymbol{a}) \hat{T}_{2}(\delta \boldsymbol{a})=\exp \left(-\frac{i}{\hbar} \hat{\boldsymbol{P}} \cdot \delta \boldsymbol{a}\right)=\hat{1}-\frac{i}{\hbar} \hat{\boldsymbol{P}} \cdot \delta \boldsymbol{a} .
$$

For any $\delta \boldsymbol{a}$, we have

$$
[\hat{H}, \hat{\boldsymbol{P}}]=0
$$

leading to

$$
\frac{d}{d t}\langle\psi(t)| \hat{\boldsymbol{P}}|\psi(t)\rangle=\frac{i}{\hbar}\langle\psi(t)[\hat{H}, \hat{\boldsymbol{P}}] \mid \psi(t)\rangle=0 .
$$

This implies the conservation of the total momentum.

((In summary))

What is the physical meaning of the above result?

From $H|\psi\rangle=E|\psi\rangle$, the wave function of the Schrödinger equation is given by

$$
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\left\langle\boldsymbol{r}_{1}, \boldsymbol{r}_{2} \mid \psi\right\rangle .
$$

From $\hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})|\psi\rangle=\lambda|\psi\rangle$, we have

$$
\left\langle\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right| \hat{T}_{1}(\boldsymbol{a}) \hat{T}_{2}(\boldsymbol{a})|\psi\rangle=\left\langle\boldsymbol{r}_{1}-\boldsymbol{a}, \boldsymbol{r}_{2}-\boldsymbol{a} \mid \psi\right\rangle=\psi\left(\boldsymbol{r}_{1}-\boldsymbol{a}, \boldsymbol{r}_{2}-\boldsymbol{a}\right)=\lambda \psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) .
$$

Suppose that $\boldsymbol{r}_{2}-\boldsymbol{a}=0$ (\boldsymbol{a} can be chosen arbitrarily). Then we get

$$
\psi\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, 0\right)=\lambda \psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)
$$

In other words, the wave function $\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$ is only dependent on the relative co-ordinate

```
r=\mp@subsup{\boldsymbol{r}}{1}{}-\mp@subsup{\boldsymbol{r}}{2}{},\quad\psi(\mp@subsup{\boldsymbol{r}}{1}{},\mp@subsup{\boldsymbol{r}}{2}{})=\psi(\boldsymbol{r}).
```

6. Two-body problems: Classical mechanics

Lagrangian:

$$
\begin{aligned}
& L=\frac{1}{2} m_{1}\left(\frac{d \boldsymbol{r}_{1}}{d t}\right)^{2}+\frac{1}{2} m_{2}\left(\frac{d \boldsymbol{r}_{2}}{d t}\right)^{2}-V\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right), \\
& \boldsymbol{p}_{1}=m_{1} \frac{d \boldsymbol{r}_{1}}{d t}, \quad \quad \boldsymbol{p}_{2}=m_{2} \frac{d \boldsymbol{r}_{2}}{d t} .
\end{aligned}
$$

Center of mass:

$$
\boldsymbol{r}_{G}=\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{m_{1}+m_{2}}
$$

Relative coordinate:

$$
\begin{aligned}
& \boldsymbol{r}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, \\
& \boldsymbol{r}_{1}=\boldsymbol{r}_{G}+\frac{m_{2} \boldsymbol{r}}{m_{1}+m_{2}}, \quad \boldsymbol{r}_{2}=\boldsymbol{r}_{G}-\frac{m_{1} \boldsymbol{r}}{m_{1}+m_{2}} .
\end{aligned}
$$

The Lagrangian L can be written in terms of \boldsymbol{r}_{G} and \boldsymbol{r}

$$
L\left(\boldsymbol{r}, \dot{\boldsymbol{r}}, \boldsymbol{r}_{G}\right)=\frac{1}{2} m_{1}\left(\frac{d \boldsymbol{r}_{G}}{d t}+\frac{m_{2}}{m_{1}+m_{2}} \frac{d \boldsymbol{r}_{2}}{d t}\right)^{2}+\frac{1}{2} m_{2}\left(\frac{d \boldsymbol{r}_{G}}{d t}-\frac{m_{1}}{m_{1}+m_{2}} \frac{d \boldsymbol{r}}{d t}\right)^{2}-V(\boldsymbol{r})
$$

or

$$
\begin{aligned}
L\left(\boldsymbol{r}, \dot{\boldsymbol{r}}, \boldsymbol{r}_{G}\right) & =\frac{1}{2} M\left(\frac{d \boldsymbol{r}_{G}}{d t}\right)^{2}+\frac{1}{2} \mu\left(\frac{d \boldsymbol{r}}{d t}\right)^{2}-V(\boldsymbol{r}) \\
& =\frac{1}{2} M \dot{\boldsymbol{r}}_{G}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}-V(\boldsymbol{r})
\end{aligned}
$$

where the total mass is defined by

$$
M=m_{1}+m_{2},
$$

and the reduced mass is defined by

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} . \quad \frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} .
$$

Lagrange equations:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{r}}}\right)=\frac{\partial L}{\partial \boldsymbol{r}}, \quad \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\boldsymbol{r}}_{G}}\right)=\frac{\partial L}{\partial \boldsymbol{r}_{G}}=0 .
$$

Since $L\left(\boldsymbol{r}, \dot{\boldsymbol{r}}, \boldsymbol{r}_{G}\right)$ is independent of \boldsymbol{r}_{G}, we find that the conjugate momentum

$$
\boldsymbol{p}_{G}=\frac{\partial L}{\partial \dot{\boldsymbol{r}}_{G}}=M \frac{d \boldsymbol{r}_{G}}{d t}=m_{1} \frac{d \boldsymbol{r}_{1}}{d t}+m_{2} \frac{d \boldsymbol{r}_{2}}{d t}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2},
$$

is a cyclic (time-independent) (which means the momentum conservation because of no external force). The conjugate momentum is given by

$$
\boldsymbol{p}=\frac{\partial L}{\partial \dot{\boldsymbol{r}}}=\mu \frac{d \boldsymbol{r}}{d t}=\frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1}+m_{2}}
$$

Note that

$$
\begin{aligned}
& \frac{d \boldsymbol{r}}{d t}=\frac{d \boldsymbol{r}_{1}}{d t}-\frac{d \boldsymbol{r}_{2}}{d t}=\frac{1}{m_{1}} \boldsymbol{p}_{1}-\frac{1}{m_{2}} \boldsymbol{p}_{2}=\frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1} m_{2}}, \\
& \boldsymbol{p}=\mu \frac{d \boldsymbol{r}}{d t}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1} m_{2}}=\frac{m_{2} \boldsymbol{p}_{1}-m_{1} \boldsymbol{p}_{2}}{m_{1}+m_{2}} .
\end{aligned}
$$

Since the momentum of the center of mass is given by

$$
\boldsymbol{p}_{G}=\boldsymbol{p}_{1}+\boldsymbol{p}_{2},
$$

we get

$$
\boldsymbol{p}_{1}=\boldsymbol{p}+\frac{m_{1}}{m_{1}+m_{2}} \boldsymbol{p}_{G},
$$

$$
\boldsymbol{p}_{2}=-\boldsymbol{p}+\frac{m_{2}}{m_{1}+m_{2}} \boldsymbol{p}_{G} .
$$

The Hamiltonian H can be written as

$$
H=\boldsymbol{p}_{G} \cdot \frac{d \boldsymbol{r}_{G}}{d t}+\boldsymbol{p} \cdot \frac{d \boldsymbol{r}}{d t}-L=\frac{\boldsymbol{p}_{G}{ }^{2}}{2 M}+\frac{\boldsymbol{p}^{2}}{2 \mu}+V(\boldsymbol{r})+\text { const } .
$$

The total orbital angular momentum:

$$
\begin{aligned}
\boldsymbol{L}_{T} & =\boldsymbol{L}_{1}+\boldsymbol{L}_{2} \\
& =\boldsymbol{r}_{1} \times \boldsymbol{p}_{1}+\boldsymbol{r}_{2} \times \boldsymbol{p}_{2} \\
& =\left(\boldsymbol{r}_{G}+\frac{m_{2} \boldsymbol{r}}{m_{1}+m_{2}}\right) \times\left(\boldsymbol{p}+\frac{m_{1}}{m_{1}+m_{2}} \boldsymbol{p}_{G}\right)+\left(\boldsymbol{r}_{G}-\frac{m_{1} \boldsymbol{r}}{m_{1}+m_{2}}\right) \times\left(-\boldsymbol{p}+\frac{m_{2}}{m_{1}+m_{2}} \boldsymbol{p}_{G}\right)
\end{aligned}
$$

or

$$
\mathbf{L}_{T}=\boldsymbol{L}_{G}+\boldsymbol{L}
$$

with

$$
\boldsymbol{L}_{G}=\boldsymbol{r}_{G} \times \boldsymbol{p}_{G} . \quad \boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}
$$

7. Quantum Kepler problem

We now consider the quantum mechanics of the central force problem.
(i) The relative co-ordinate operator:

$$
\hat{\boldsymbol{r}}=\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2},
$$

(ii) The relative momentum operator:

$$
\hat{\boldsymbol{p}}=\frac{m_{2} \hat{\boldsymbol{p}}_{1}-m_{1} \hat{\boldsymbol{p}}_{2}}{m_{1}+m_{2}} .
$$

(iii) The co-ordinate operator for the center of mass:

$$
\hat{\boldsymbol{r}}_{G}=\frac{m_{1} \hat{\boldsymbol{r}}_{1}+m_{2} \hat{\boldsymbol{r}}_{2}}{m_{1}+m_{2}}
$$

(iv) The momentum operator for the center of mass:

$$
\hat{\boldsymbol{p}}_{G}=\hat{\boldsymbol{p}}_{1}+\hat{\boldsymbol{p}}_{2} .
$$

(v) The total angular momentum operator for the system:

$$
\hat{\boldsymbol{L}}_{T}=\hat{\boldsymbol{L}}_{G}+\hat{\boldsymbol{L}},
$$

with

$$
\begin{aligned}
& \hat{\boldsymbol{L}}_{G}=\hat{\boldsymbol{r}}_{G} \times \hat{\boldsymbol{p}}_{G} . \\
& \hat{\boldsymbol{L}}=\hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}} .
\end{aligned}
$$

(internal angular momentum)

The reduced mass is defined as

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} .
$$

8. The commutation relation:

We assume that

$$
\begin{array}{ll}
{\left[\hat{x}_{1 i}, \hat{x}_{1 j}\right]=0,} & {\left[\hat{x}_{2 i}, \hat{x}_{2 j}\right]=0,} \\
{\left[\hat{p}_{1 i}, \hat{p}_{1 j}\right]=0,} & {\left[\hat{p}_{2 i}, \hat{p}_{2 j}\right]=0,} \\
{\left[\hat{x}_{1 i}, \hat{p}_{1 j}\right]=i \hbar \delta_{i j},} & {\left[\hat{x}_{2 i}, \hat{p}_{2 j}\right]=i \hbar \delta_{i j},}
\end{array}
$$

for the same particle, and

$$
\begin{array}{ll}
{\left[\hat{x}_{1 i}, \hat{p}_{2 j}\right]=0,} & {\left[\hat{x}_{2 i}, \hat{p}_{1 j}\right]=0,} \\
{\left[\hat{x}_{1 i}, \hat{x}_{2 j}\right]=0,} & {\left[\hat{p}_{1 i}, \hat{p}_{2 j}\right]=0,}
\end{array}
$$

for the different particles, where $i=x, y, z$, and $j=x, y, z$.
Based on the above relations, we discuss the commutation relations between $\hat{\boldsymbol{r}}, \hat{\boldsymbol{p}}, \hat{\boldsymbol{r}}_{G}, \hat{\boldsymbol{p}}_{G}$, as follows.

$$
\begin{aligned}
{\left[\hat{x}_{i}, \hat{p}_{j}\right] } & =\left[\hat{x}_{1 i}-\hat{x}_{2 i}, \frac{m_{2} \hat{p}_{1 j}-m_{1} \hat{p}_{2 j}}{m_{1}+m_{2}}\right] \\
& =\frac{m_{2}}{m_{1}+m_{2}}\left[\hat{x}_{1 i}, \hat{p}_{1 j}\right]+\frac{m_{1}}{m_{1}+m_{2}}\left[\hat{x}_{2 i}, \hat{p}_{2 j}\right] \\
& =i \hbar \delta_{i j} \hat{1} \\
{\left[\hat{x}_{i}, \hat{p}_{G j}\right] } & =\left[\hat{x}_{1 i}-\hat{x}_{2 i}, \hat{p}_{1 j}+\hat{p}_{2 j}\right] \\
& =\left[\hat{x}_{1 i}, \hat{p}_{1 j}\right]-\left[\hat{x}_{2 i}, \hat{p}_{2 j}\right] \\
& =i \hbar \delta_{i j} \hat{1}-i \hbar \delta_{i j} \hat{1} \\
& =0 \\
{\left[\hat{x}_{G i}, \hat{p}_{G j}\right] } & =\left[\frac{m_{1} \hat{x}_{1 i}+m_{2} \hat{x}_{2 i}}{m_{1}+m_{2}}, \hat{p}_{1 j}+\hat{p}_{2 j}\right] \\
& =\frac{m_{1}}{m_{1}+m_{2}}\left[\hat{x}_{1 i}, \hat{p}_{1 j}\right]+\frac{m_{2}}{m_{1}+m_{2}}\left[\hat{x}_{2 i}, \hat{p}_{2 j}\right] \\
& =i \hbar \delta_{i j} \hat{1}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\hat{x}_{G i}, \hat{p}_{j}\right] } & =\left[\frac{m_{1} \hat{x}_{1 i}+m_{2} \hat{x}_{2 i}}{m_{1}+m_{2}}, \frac{m_{2} \hat{p}_{1 j}-m_{1} \hat{p}_{2 j}}{m_{1}+m_{2}}\right] \\
& =\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left[\hat{x}_{1 i}, \hat{p}_{1 j}\right]-\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left[\hat{x}_{2 i}, \hat{p}_{2 j}\right] \\
& =0 \\
{\left[\hat{p}_{G i}, \hat{p}_{j}\right] } & =\left[\hat{p}_{1 i}+\hat{p}_{2 i}, \frac{m_{2} \hat{p}_{1 j}-m_{1} \hat{p}_{2 j}}{m_{1}+m_{2}}\right] \\
& =\frac{m_{2}}{m_{1}+m_{2}}\left[\hat{p}_{1 i}, \hat{p}_{1 j}\right]-\frac{m_{12}}{m_{1}+m_{2}}\left[\hat{p}_{2 i}, \hat{p}_{2 j}\right] \\
& =0
\end{aligned}
$$

We note that the original Hamiltonian

$$
\hat{H}=\frac{1}{2 m_{1}} \hat{\boldsymbol{p}}_{1}^{2}+\frac{1}{2 m_{2}} \hat{\boldsymbol{p}}_{2}^{2}+V\left(\left|\hat{\boldsymbol{r}}_{1}-\hat{\boldsymbol{r}}_{2}\right|\right),
$$

can be rewritten as

$$
\hat{H}=\hat{H}_{G}+\hat{H}_{r e l}=\frac{\hat{\boldsymbol{p}}_{G}{ }^{2}}{2 M}+\left[\frac{\hat{\boldsymbol{p}}^{2}}{2 \mu}+V(|\hat{\boldsymbol{r}}|)\right] .
$$

((Mathematica))

Using the commutation relations, we can directly show that

$$
\frac{1}{2 m_{1}} \hat{\boldsymbol{p}}_{1}^{2}+\frac{1}{2 m_{2}} \hat{\boldsymbol{p}}_{2}{ }^{2}=\frac{\hat{\boldsymbol{p}}_{G}{ }^{2}}{2 M}+\frac{\hat{\boldsymbol{p}}^{2}}{2 \mu}
$$

$$
\begin{aligned}
& \text { Clear ["Global`*"]; p1 = \{p1x, p1y, p1z }\} \\
& \text { p2 }=\{p 2 x, p 2 y, p 2 z\} ; \mu=\frac{m 1 m 2}{m 1+m 2} ; M 1=m 1+m 2 ; \\
& p=\frac{m 2 p 1-m 1 p 2}{m 1+m 2} ; \\
& \text { pG }=p 1+p 2 ; \\
& \text { K1 }=\frac{p G \cdot p G}{2 M 1}+\frac{p \cdot p}{2 \mu} / / \text { FullSimplify; } \\
& \text { K2 }=\frac{p 1 \cdot p 1}{2 m 1}+\frac{p 2 \cdot p 2}{2 m 2} / / \text { Simplify; } \\
& \text { K1 - K2 // Simplify } \\
& 0
\end{aligned}
$$

9. Reduction of the two-body problem

We note that

$$
\left[\hat{\boldsymbol{p}}_{G}, \hat{H}_{r e l}\right]=0,
$$

and

$$
\left[\hat{H}, \hat{\boldsymbol{p}}_{G}\right]=\left[\hat{H}_{G}+\hat{H}_{r e l}, \hat{\boldsymbol{p}}_{G}\right]=\left[\hat{H}_{r e l}, \hat{\boldsymbol{p}}_{G}\right]=0 .
$$

Then $\hat{H}_{\text {rel }}, \hat{H}$, and $\hat{\boldsymbol{p}}_{G}$ can all be simultaneously diagonalized. In other words, there exists a simultaneous eigenstate $\left|\boldsymbol{p}_{G}, E_{r}\right\rangle$.

$$
\hat{H}_{G}\left|\boldsymbol{p}_{G}, E_{r}\right\rangle=E_{G}\left|E_{G}, E_{r}\right\rangle, \quad \hat{H}_{r e l}\left|\boldsymbol{p}_{G}, E_{r}\right\rangle=E_{r}\left|\boldsymbol{p}_{G}, E_{r}\right\rangle,
$$

and

$$
\hat{H}\left|\boldsymbol{p}_{G}, E_{r}\right\rangle=\left(\hat{H}_{G}+\hat{H}_{r e l}\right)\left|\boldsymbol{p}_{G}, E_{r}\right\rangle=\left(E_{G}+E_{r}\right)\left|\boldsymbol{p}_{G}, E_{r}\right\rangle .
$$

We note that

$$
\hat{H}_{G}\left|\boldsymbol{p}_{G}\right\rangle=\frac{\boldsymbol{p}_{G}{ }^{2}}{2 M}\left|\boldsymbol{p}_{G}\right\rangle=E_{G}\left|\boldsymbol{p}_{G}\right\rangle,
$$

where

$$
E_{G}=\frac{\boldsymbol{p}_{G}{ }^{2}}{2 M}
$$

The wave function can be described by

$$
|\psi\rangle=\left|\boldsymbol{p}_{G}\right\rangle \otimes\left|E_{r}\right\rangle=\left|\boldsymbol{p}_{G}\right\rangle\left|\psi_{r}\right\rangle,
$$

where

$$
\left|E_{r}\right\rangle=\left|\psi_{r}\right\rangle .
$$

10. The representation of $\left|\boldsymbol{r}_{G}, \boldsymbol{r}\right\rangle=\left|\boldsymbol{r}_{G}\right\rangle \otimes|\boldsymbol{r}\rangle$

Based on the commutation relations,

$$
\left[\hat{x}_{G i}, \hat{p}_{G j}\right]=i \hbar \delta_{i j} \hat{1}, \quad\left[\hat{x}_{i}, \hat{p}_{j}\right]=i \hbar \delta_{i j} \hat{1},
$$

we can use the basis

$$
\left|\boldsymbol{r}_{G}, \boldsymbol{r}\right\rangle=\left|\boldsymbol{r}_{G}\right\rangle \otimes|\boldsymbol{r}\rangle,
$$

for both the center-of mass co-ordinate and relative co-ordinate, corresponding to the basis for the momentum basis

$$
\left|p_{G}, \boldsymbol{p}\right\rangle=\left|\boldsymbol{p}_{G}\right\rangle \otimes|\boldsymbol{p}\rangle .
$$

The transformation functions are defined by

$$
\left\langle\boldsymbol{r}_{G} \mid \boldsymbol{p}_{G}\right\rangle=\frac{1}{(2 \pi \hbar)^{3 / 2}} \exp \left(\frac{i}{\hbar} \boldsymbol{p}_{G} \cdot \boldsymbol{r}_{G}\right),
$$

and

$$
\langle\boldsymbol{r} \mid \boldsymbol{p}\rangle=\frac{1}{(2 \pi \hbar)^{3 / 2}} \exp \left(\frac{i}{\hbar} \boldsymbol{p} \cdot \boldsymbol{r}\right)
$$

The wave function in the position representation can be described by

$$
|\psi\rangle=\left|\boldsymbol{p}_{G}\right\rangle\left|E_{r}\right\rangle=\left|\boldsymbol{p}_{G}\right\rangle\left|\psi_{r}\right\rangle .
$$

The representation of the wave function in the positional representation

$$
\left\langle\boldsymbol{r}_{G}, \boldsymbol{r} \mid \psi\right\rangle=\left\langle\boldsymbol{r}_{G} \mid \boldsymbol{p}_{G}\right\rangle\left\langle r \mid \psi_{r}\right\rangle=\frac{1}{(2 \pi \hbar)^{3 / 2}} \exp \left(\frac{i}{\hbar} \boldsymbol{p}_{G} \cdot \boldsymbol{r}_{G}\right)\left\langle\boldsymbol{r} \mid \psi_{r}\right\rangle .
$$

11. Ehrenfest theorem for $\left\langle\hat{\boldsymbol{p}}_{G}\right\rangle$

We note that

$$
\left[\hat{H}, \hat{\boldsymbol{p}}_{G}\right]=0 .
$$

From the Ehrenfest theorem, we have

$$
\frac{d}{d t}\left\langle\hat{\boldsymbol{p}}_{G}\right\rangle=\frac{1}{i \hbar}\left\langle\left[\hat{\boldsymbol{p}}_{G}, \hat{H}\right]\right\rangle=0,
$$

leading to $\left\langle\hat{\boldsymbol{p}}_{G}\right\rangle=$ constant of motion. For simplicity, we assume that

$$
\hat{\boldsymbol{p}}_{G}=0 .
$$

The we have the final form of the Hamiltonian as

$$
\hat{H}=\hat{H}_{r e l}=\frac{\hat{\boldsymbol{p}}^{2}}{2 \mu}+V(\hat{\boldsymbol{r}}) .
$$

The Schrodinger equation is given by

$$
\left[\frac{\hat{\boldsymbol{p}}^{2}}{2 \mu}+V(\hat{\boldsymbol{r}})\right]\left|\psi_{r}\right\rangle=E_{r}\left|\psi_{r}\right\rangle
$$

or

$$
\left.\left[-\frac{\hbar^{2}}{2 \mu} \nabla_{r}^{2}+V(\boldsymbol{r})\right]|\boldsymbol{r}| \psi_{r}\right\rangle=E_{r}\left\langle\boldsymbol{r} \psi_{r}\right\rangle .
$$

12. Rotation operator in Quantum mechanics

After the geometrical rotation;

$$
\boldsymbol{r} \rightarrow \mathfrak{R} \boldsymbol{r}=\boldsymbol{r}^{\prime}, \quad \text { (geometrical rotation) }
$$

we assume that the state vector changes from the old state $|\psi\rangle$ to the new state $\left|\psi^{\prime}\right\rangle$.

$$
\left|\psi^{\prime}\right\rangle=\hat{R}|\psi\rangle,
$$

or

$$
\left\langle\psi^{\prime}\right|=\langle\psi| \hat{R}^{+},
$$

where \hat{R} is a rotation operator in the quantum mechanics. It is natural to assume that

$$
\left\langle\psi^{\prime}\right| \hat{\boldsymbol{r}}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{\boldsymbol{r}}^{\prime}|\psi\rangle=\langle\psi| \Re \hat{\boldsymbol{r}}|\psi\rangle,
$$

or

$$
\langle\psi| \hat{R}^{+} \hat{r} \hat{R}|\psi\rangle=\langle\psi| \Re \hat{r}|\psi\rangle,
$$

or

$$
\begin{equation*}
\hat{R}^{+} \hat{\boldsymbol{r}} \hat{R}=\mathfrak{R} \hat{\boldsymbol{r}} . \tag{1}
\end{equation*}
$$

The rotation operator is a unitary operator.

$$
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi \mid \psi\rangle,
$$

or

$$
\hat{R}^{+} \hat{R}=\hat{R} \hat{R}^{+}=\hat{1} \text { (Unitary operator) }
$$

From Eq. (1),

$$
\hat{\boldsymbol{r}} \hat{R}=\hat{R} \mathfrak{R} \hat{\boldsymbol{r}} .
$$

Here we calculate

$$
\hat{\boldsymbol{r}} \hat{R}|\boldsymbol{r}\rangle=\hat{R} \Re \hat{\boldsymbol{r}}|\boldsymbol{r}\rangle=\hat{R} \mathfrak{R}|\boldsymbol{r}\rangle=\mathfrak{R} \boldsymbol{r} \hat{R}|\boldsymbol{r}\rangle .
$$

$\hat{R}|\boldsymbol{r}\rangle$ is the eigenket of $\hat{\boldsymbol{r}}$ with the eigenvalue $\mathfrak{R} \boldsymbol{r}$. So that we can write

$$
\hat{R}|\boldsymbol{r}\rangle=|\Re \boldsymbol{r}\rangle .
$$

When

$$
\mathfrak{R} \boldsymbol{r}=\boldsymbol{r}_{0},
$$

or

$$
\begin{aligned}
& \boldsymbol{r}=\mathfrak{R}^{-1} \boldsymbol{r}_{0}, \\
& \hat{R}\left|\mathfrak{R}^{-1} \boldsymbol{r}_{0}\right\rangle=\left|\boldsymbol{r}_{0}\right\rangle,
\end{aligned}
$$

or

$$
\left|\mathfrak{R}^{-1} \boldsymbol{r}_{0}\right\rangle=\hat{R}^{+}\left|\boldsymbol{r}_{0}\right\rangle .
$$

For any \boldsymbol{r},

$$
\begin{aligned}
& \left|\mathfrak{R}^{-1} \boldsymbol{r}\right\rangle=\hat{R}^{+}|\boldsymbol{r}\rangle, \\
& \hat{R} \hat{R}^{+}|\boldsymbol{r}\rangle=\hat{R}\left|\Re^{-1} \boldsymbol{r}\right\rangle=\left|\mathfrak{R} \Re^{-1} \boldsymbol{r}\right\rangle=|\boldsymbol{r}\rangle .
\end{aligned}
$$

In summary, we have
(1) $\hat{R}^{+} \hat{R}=\hat{R} \hat{R}^{+}=\hat{1}$.
(2) $\quad \hat{R}|\boldsymbol{r}\rangle=|\Re \boldsymbol{r}\rangle$.
(3) $\quad\langle\boldsymbol{r}| \hat{R}^{+}=\langle\mathfrak{R} \boldsymbol{r}|$.
(4) $\quad \hat{R}^{+}|\boldsymbol{r}\rangle=\left|\mathfrak{R}^{-1} \boldsymbol{r}\right\rangle$.
(5) $\langle\boldsymbol{r}| \hat{R}=\left\langle\mathfrak{R}^{-1} \boldsymbol{r}\right|$.

13. Rotation matrix

Suppose that the vector \boldsymbol{r} is rotated through θ (counter-clock wise) around the z axis. The position vector \boldsymbol{r} is changed into \boldsymbol{r}^{\prime} in the same orthogonal basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$.

In this Fig, we have

$$
\begin{array}{ll}
\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{1}^{\prime}=\cos \phi & \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{1}^{\prime}=\sin \phi \\
\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{2}^{\prime}=-\sin \phi, & \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{2}^{\prime}=\cos \phi
\end{array}
$$

We define \boldsymbol{r} and \boldsymbol{r}^{\prime} as

$$
\boldsymbol{r}^{\prime}=x_{1}{ }^{\prime} \boldsymbol{e}_{1}+x_{2}{ }^{\prime} \boldsymbol{e}_{2}=x_{1} \boldsymbol{e}_{1}{ }^{\prime}+x_{2} \boldsymbol{e}_{2}{ }^{\prime}
$$

and

$$
\boldsymbol{r}=x_{1} \boldsymbol{e}_{1}+x_{2} \boldsymbol{e}_{2}
$$

Using the relation

$$
\begin{aligned}
& \boldsymbol{e}_{1} \cdot \boldsymbol{r}^{\prime}=\boldsymbol{e}_{1} \cdot\left(x_{1}^{\prime} \boldsymbol{e}_{1}+x_{2}{ }^{\prime} \boldsymbol{e}_{2}\right)=\boldsymbol{e}_{1} \cdot\left(x_{1} \boldsymbol{e}_{1}^{\prime}+x_{2} \boldsymbol{e}_{2}{ }^{\prime}\right) \\
& \boldsymbol{e}_{2} \cdot \boldsymbol{r}^{\prime}=\boldsymbol{e}_{2} \cdot\left(x_{1}^{\prime} \boldsymbol{e}_{1}+x_{2}^{\prime} \boldsymbol{e}_{2}\right)=\boldsymbol{e}_{2} \cdot\left(x_{1} \boldsymbol{e}_{1}{ }^{\prime}+x_{2} \boldsymbol{e}_{2}^{\prime}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& x_{1}{ }^{\prime}=\mathbf{e}_{1} \cdot\left(x_{1} \mathbf{e}_{1}{ }^{\prime}+x_{2} \mathbf{e}_{2}{ }^{\prime}\right)=x_{1} \cos \phi-x_{2} \sin \phi \\
& x_{2}{ }^{\prime}=\mathbf{e}_{2} \cdot\left(x_{1} \mathbf{e}_{1}{ }^{\prime}+x_{2} \mathbf{e}_{2}{ }^{\prime}\right)=x_{1} \sin \phi+x_{2} \cos \phi
\end{aligned}
$$

or including the x_{3} axis,

$$
\left(\begin{array}{l}
x_{1}{ }^{\prime} \\
x_{2}{ }^{\prime} \\
x_{3}{ }^{\prime}
\end{array}\right)=\mathfrak{R}_{2}(\phi)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

We note that

$$
\mathfrak{R}_{z}(\phi)=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right),
$$

and

$$
\mathfrak{R}_{z}^{-1}(\phi)=\left(\begin{array}{ccc}
\cos (-\phi) & -\sin (-\phi) & 0 \\
\sin (-\phi) & \cos (-\phi) & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

14. Infinitesimal rotation matrix around the \mathbf{z} axis

We assume that $\phi=d \alpha$ (infinitesimally small angle);

$$
\begin{aligned}
\boldsymbol{r}^{\prime} & =\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\mathfrak{R}_{z}^{-1}(d \alpha) \boldsymbol{r} \\
& =\left(\begin{array}{ccc}
\cos (d \alpha) & \sin (d \alpha) & 0 \\
-\sin (d \alpha) & \cos (d \alpha) & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & d \alpha & 0 \\
-d \alpha & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& =\left(\begin{array}{c}
x+y d \alpha \\
-x d \alpha+y \\
z
\end{array}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& x^{\prime}=x+y d \alpha \\
& y^{\prime}=y-x d \alpha \\
& z^{\prime}=z
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left\langle\boldsymbol{r} \mid \psi^{\prime}\right\rangle & =\langle\boldsymbol{r}| \hat{R}_{z}(d \alpha)|\psi\rangle \\
& =\left\langle\mathfrak{R}_{z}^{-1}(d \alpha) \boldsymbol{r} \mid \psi\right\rangle \\
& =\langle x+y d \alpha, y-x d \alpha, z \mid \psi\rangle \\
& =\psi(x+y d \alpha, y-x d \alpha, z) \\
& =\psi(x, y, z)-d \alpha\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \psi(x, y, z) \\
& =\psi+d \alpha\left(y \frac{\partial \psi}{\partial x}-x \frac{\partial \psi}{\partial y}\right) \\
& =\langle\boldsymbol{r}| \hat{1}-\frac{i}{\hbar} d \alpha \hat{L}_{z}|\psi\rangle
\end{aligned}
$$

where we use the Taylor expansion and the angular (orbital) momentum is defined by

$$
\hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x} .
$$

Then we have the expression of the infinitesimal rotation operator as

$$
\hat{R}_{z}(d \alpha)=\hat{1}-\frac{i}{\hbar} d \alpha \hat{L}_{z}
$$

((Note))

$$
\langle\boldsymbol{r}|\left(\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}\right)|\psi\rangle=\langle r| \hat{L}_{z}|\psi\rangle=\frac{\hbar}{i}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\langle\boldsymbol{r} \mid \psi\rangle .
$$

15. Positional-space representation of L in spherical co-ordinates

We also use the ket vector $|\boldsymbol{r}\rangle=|r, \theta, \phi\rangle$, where r, θ, and ϕ are the spherical coordinates.

$$
\begin{aligned}
& \hat{R}_{z}(d \alpha)|r, \theta, \phi\rangle=|r, \theta, \phi+d \alpha\rangle, \\
& \hat{R}_{z}^{+}(d \alpha)|r, \theta, \phi\rangle=|r, \theta, \phi-d \alpha\rangle .
\end{aligned}
$$

$$
\langle r, \theta, \phi-d \alpha|=\langle r, \theta, \phi| \hat{R}_{z}(d \alpha)
$$

thus we have

$$
\langle r, \theta, \phi| \hat{R}_{z}(d \alpha)|\psi\rangle=\langle r, \theta, \phi-d \alpha \mid \psi\rangle=\langle r, \theta, \phi \mid \psi\rangle-d \alpha \frac{\partial}{\partial \phi}\langle r, \theta, \phi \mid \psi\rangle
$$

On the other hand, we get

$$
\langle r, \theta, \phi| \hat{R}_{z}(d \alpha)|\psi\rangle=\langle r, \theta, \phi| \hat{1}-\frac{i}{\hbar} \hat{L}_{z} d \alpha|\psi\rangle=\langle r, \theta, \phi \mid \psi\rangle-\frac{i}{\hbar} d \alpha\langle r, \theta, \phi| \hat{L}_{z}|\psi\rangle
$$

Then we have

$$
\langle r, \theta, \phi| \hat{L}_{z}|\psi\rangle=\frac{\hbar}{i} \frac{\partial}{\partial \phi}\langle r, \theta, \phi \mid \psi\rangle
$$

or

$$
L_{z} \frac{\partial}{\partial \phi} \psi(\boldsymbol{r})=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \psi(\boldsymbol{r}) .
$$

16. Finite rotation

Fig. $\quad \alpha=N \Delta \alpha$.

$$
\begin{aligned}
\hat{R}_{z}(\alpha & =0)=\hat{1}, \\
\hat{R}_{z}(\alpha) & =\lim _{N \rightarrow \infty}\left[\hat{R}_{z}(\Delta \alpha)\right]^{N}=\lim _{N \rightarrow \infty}\left(\hat{1}-\frac{i}{\hbar} \Delta \alpha \hat{L}_{z}\right)^{N}=\lim _{N \rightarrow \infty}\left(\hat{1}-\frac{i}{\hbar} \frac{\alpha}{N} \hat{L}_{z}\right)^{N}, \\
& =\exp \left(-\frac{i}{\hbar} \alpha \hat{L}_{z}\right)
\end{aligned}
$$

((Note))

$$
\lim _{N \rightarrow \infty}\left(\hat{1}-\frac{i}{\hbar} \frac{\alpha}{N} \hat{L}_{z}\right)^{N}=\lim _{N \rightarrow \infty}\left[\left(\hat{1}+\frac{\mu}{N}\right)^{\frac{N}{\mu}}\right]^{\mu}=e^{\mu}
$$

where

$$
\mu=-\frac{i}{\hbar} \alpha \hat{L}_{z} .
$$

In general, we have the rotation operator

$$
\hat{R}_{u}(\alpha)=\exp \left(-\frac{i}{\hbar} \alpha \hat{\mathbf{L}} \cdot \boldsymbol{u}\right) .
$$

In the case of an arbitrary quantum mechanical system, using the general angular momentum $\hat{\boldsymbol{J}}$ instead of $\hat{\boldsymbol{L}}$:

$$
\hat{R}_{u}(\alpha)=\exp \left(-\frac{i}{\hbar} \alpha \hat{\boldsymbol{J}} \cdot \boldsymbol{u}\right)
$$

REFERENCES

G. Auletta, M. Fortunato, and G. Parisi, Quantum Mechanics (Cambridge University Press, 2009).
J.S. Townsend, A Modern Approach to Quantum Mechanics, 2nd edition (University Science Books, 2012).

