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Translation operators are linear and unitary. They are closely related to the momentum operator;
for example, a translation operator that moves by an infinitesimal amount in the X direction has a
simple relationship to the X-component of the momentum operator. Because of this, conservation
of momentum holds when the translation operators commute with the Hamiltonian, i.e. when
laws of physics are translation-invariant.

Here we discuss the properties of the translation operator for the 3D system.

1. Translation operator
The state vector:

jv) = Jdrlr)rl).
where
(rlr) =80 =11,
T(@)r)=|r+a).
Translation operator:
)= ly)=T@),
with
T*@)T(a)=1. Unitary operator

(2)

It is expected from the analogy of classical mechanics that
Wlfly) = () + (v laly )
or

(wT @FT@)|y)=(w|f+aly),



leading to the relation
T*@)fT(a)=F +al,
or
fT(a)=T(a)f +aT(a),
or
[f,T(a)]=aT (a).
Using the commutation relation, we get

FT (a)|r) =T (a)f|r)+aT @)|r)
= (T (@)r|r)+aT@)|r),
=(r+a)T()r)

This implies that T(a)|r) is the eigenket of f with the eigenvalue (r +a),
T(@)|r)=|r+a),
or
(r+al=(r[T"(a).
Note that
Ir=T"(@)|r+a).
When r —>r —a, we get
Ir—a)=T"@)r),

or



(fF@=(r-a

(b)

It is also expected from the analogy of classical mechanics that
(w[ply ) = (v |plw).
or
(T @pT@lw)=(y|plw).
leading to the commutation relation
T@pT@=p. o  [pT(@]=0.

We assume that the infinitesimal translation operator is given by

T(dry=1--G-dr,

h
where
T*(dr)T(dr)=1,
TH(dr)fT(dr)="F +drl,
T*(dr)pT(dr)=p.
(a) G is a Hermitian operator.

T dr)T(dr)y=( +%(§+ -dr)(d —%é -dr)
f i s oa
=1+—(G"=G)-dr
- )

=1



Then we have
G =G (Hermitian operator)

(b) The commutation relation (I)

i
p,l——G-dr]=0,
[P 5 ]
or
[0,.G,1=0 with a, 8 =x,y,z.
() The commutation relation (II)
A+LG.drpd-L& . dr = +dri,
h h
or
. A hooa
(G-dr)f —=f(G-dr)=—drl,
i
or

Z[éa’ )zﬁ]dxa = ?dxﬂi = ?izé‘aﬂdxa >

So we get the commutation relation

[6,.%,1="11.
|

From these results, it can be conclued that
G=p.

3. Infinitesimal translation operator



T(dnfy) =Tdr)[dr|r)(rly)
:jdr'f(dr)|r'><r'|w>
:Idr'|r'+dr><r'|w>

)

—.[dr }r'—dr|y

Using the Taylor expansion

(r=dr|y) =y (r'—-dr)=y(r) - z/(;('r )d

we have
Tnjy) = [ar ey - 2 dn
= Jar (e )~ (¢ ply) o

== p-dny)

since

(r

Bly) = TV.{rlw)

Then we have
'I°(dr)=1—%b-dr.

4. Finite translation operator
The finite translation operator is given by

T(@)= hm(l—lﬁ %)” =exp(—é p-a).

where we use the definition of e ™* as



g XN
e —hlll_rg(l N).

5. Transformation function
Using the relation

(rlply) =9 {rlw) =52 {rlw).

we get the transformation function as

<r| p> (27Zh)3/2 eXp( p r)
We note that
(p|p)=6(p-p"

Then we have

(p|p)=[dr(p|r)r|p)= ],

(2727‘1)

6. Translation operator for two-body problem
We consider a Hamiltonian of two particles at ri and r2. p1 and p2 are the momentum of
particles 1 and 2, respectively.



O

The Hamiltonian is given by

A 1 .5 1 .
He—p +—p, +V
2m, P 2m, P2 (

rA-l_fz

)

where V(||¢1 - f2|) is the interaction between two particles with mass m: and ma. This is so-called

the central field problem.

((Definition of Central-force Problem))

In classical mechanics, the central-force problem is to determine the motion of a particle
under the influence of a single central force. A central force is a force that points from the
particle directly towards (or directly away from) a fixed point in space, the center, and whose
magnitude only depends on the distance of the object to the center.

We consider the two particles (denoted by particle 1 and particle 2) located at ri and r,
respectively. The position ket vector for these two particles is expressed by

n.n)=[n) ®n),,



using the Kronecker product ® . Note that we have the commutation relations,

[)A(“’ plj]:ih5ija [)A(ziaf)zj]:ihé‘ij )

which means that the operators for particle 1 and particle 2 are completely independent each
other.
We introduce the translation operator (one particle) as

T.(a)

rl’r2>:fl(a)|r1>1 ®|I’2>2 =|I’1 +a>1 ®|r2>2’

T,(a)

.n)=T@|r), 8n), =|r), ®T,@)|r), =|r), ©|r, +a),.

Here we assume that

Then we have

T, (@)T.(2) = exp(— By @)exp(— s -2)
= expl— (P + )l
= exp[—% P. a]
where we use the formula
exp(A) exp(é) = exp(A+ I§) ,
when [A, |§] =0. We also define the total momentum as
P=p+p,.

Using the closure relation, we can define the wave function as



lw) = Idrldrz

NN AN

We now show that

IV (|f, - £, T, ()T, (a)] =0
((Proof))

T,@)T, @V (f -£])r, r,) =T, (a)T,(aV (r=rpr.n)
=V(r -n)T@T,@)|r.r,)
=V(r,-r)lr +a,r, +a)

V(f - )T @T,@)|r.n) =V(f - i) +a.r, +a)
:V(|rl — r2|)| r+a,r, + a>

Then we have

T@T,@V (|, -, n)=V(f - ;)T @T,@)r.r,)

or

[T, (@)T,(@).V(f —,)]=0.

Since
[, @), (@), —— p’ +— p]=0
1 2 > 2m1 1 2m1 1 >

we get the commutation relation
[T, @T,(@),H]1=0.

This means that there is a simultaneous eigenket |l//> of both 'Icl (a)T}(a) and H, such that



Hly)=E[w). T@T,@ly)=4ly).

We also note that

.- oL B 6.

For any da, we have
[H.P]=0.

leading to
%<w(t)|ﬁ|w(t>> ~ IR P (0) =0.

This implies the conservation of the total momentum.

((In summary))
What is the physical meaning of the above result?

From H |¢//> = E| 1//> , the wave function of the Schrédinger equation is given by
w(r,n)=(r.nly).
From 'Icl (a)'I:2 (a)|1//> = /1|1//>, we have
(r.nM@T,@y)=(r-ar -aly)=y(r —ar-a)=Ay(r.n).
Suppose that I, —a =0 (a can be chosen arbitrarily). Then we get

w(r —n,0)=Aw(r,r,).

In other words, the wave function w/(I,r,) is only dependent on the relative co-ordinate

r=r-n, w,n)=y().
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6. Two-body problems: Classical mechanics

O

Lagrangian:

1

dr 1 dr
L=—m (=) +—m,(—=2)>-V(|r,—r
> l(dt) > Z(dt) (rn-rD,

p:m% —mdi
1 ldt’ pz_zdt-

Center of mass:

mr, +m,r,
g =—1—22.
m, +m,

Relative coordinate:
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The Lagrangian L can be written in terms of g and r

M v,

1 dr m dr 1 dr
L(r,r,r.)=—m, (—= + 2 Vi m,(—&—
(r,f,15) 5 o ) 2(dt o m, dt

dt  m, +m, dt 2
or

; 1 dr 1 dr
L(r,r,r;)= EM (Ol—te)2 +§ﬂ(a)z =V (r)

=%Mr‘e2 +%ﬂr'2 ~V(r)
where the total mass is defined by
M=m +m,,
and the reduced mass is defined by

m,m, 1
M= -
m, +m, H

+

L
ml m2.

Lagrange equations:

ga)a ga)
dtlor) or’ dt{ or; ) org
Since L(r,r,r;)is independent of rg, we find that the conjugate momentum

oL dr dr dr
=—=M—CS=m-—4+m,—2=p +p,,
Pe ot gt Mg Mg PP

is a cyclic (time-independent) (which means the momentum conservation because of no external
force). The conjugate momentum is given by
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_oL_ dr_m,p —mp,

IO_g_ﬂdt m, +m,
Note that
E_%_%_Lp _L _m,p,-mp,
dt dt dt m ' m, mm,
dr - mm, m,p,—m m,p,—m p
p:,u_: 1°°2 2p1 1p2: 2 Ml 1 2.

dt m+m, mm, m, +m,

Since the momentum of the center of mass is given by

Pec =P+ Py
we get
m, m,
pl:erm1+m2 e p2:_erm1+m2 =
The Hamiltonian H can be written as
H=p; -ddif+ p-%— L:%+§—;+V(r)+const.
The total orbital angular momentum:
L, =L +L,
=hxp+rnxp,
=+ (Pt TR (1 X (P T pe)
or
L, =L +L
with
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Ls =15 X Pg- L=rxp

7. Quantum Kepler problem

We now consider the quantum mechanics of the central force problem.

(1) The relative co-ordinate operator:

>
>

-
Il
-
|
38}
o

(i1) The relative momentum operator:

m,p,—m, p,
m, +m,

p=

(ii1))  The co-ordinate operator for the center of mass:

P _min+myr,
G - .
m, +m,

(iv)  The momentum operator for the center of mass:

Pe =P+ D,
(v) The total angular momentum operator for the system:
[ =(,+L,
with
Lo = fs x Pg
L=Fxp. (internal angular momentum)

The reduced mass is defined as

m1m2
p=—
m, +m,
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8. The commutation relation:
We assume that

[)’ZU’)’Z]]]:O: [22”’)’22]]:05
[plwﬁlj]zoa [ﬁ2|9p2j]:07
[)A(“’ f)lj]:ihgija [)A(zia ﬁzj]:ih5ij >

for the same particle, and

for the different particles, where i =X, Yy, z,and j=X, Y, Z.
Based on the above relations, we discuss the commutation relations between f, p,f;, pg,as

follows.

m,P,; —m, Py

[)/Z-,f)-]Z[)/Z-—)’Z-, ]
i j 1i 2i m1+m2
m A m A
= 2 [Xliaplj]+ : [Xziapzj]
m, +m, m,+m,
=ins;1
[)’zi’ﬁGj]:[Xli_kziﬂﬁIj_'_rjzj]
:[Xliﬁﬁlj]_[kzi’ﬁzj]
=ihs;1-ihs,1
=0
5 oA mX,; +mX, . -
[Rsi> Py 1 =[——— By + By
Gi Gj m1+m2 1j 2j
m A m soA
= : Kjis plj]+ 2 [ 22 pzj]
m, +m, m, +m,
=ing;1

U]
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[)A(Giaﬁj]:[ ]
m, +m, m, +m,
mm N oA mm A A
- 2 [Xli’ 1j 2 [X2i9 21]
m, +m, m, +m,

We note that the original Hamiltonian

A 1 . 1 .-
He—p 4—p 4V
2m, P 2m, P, +V(

Icl_'az

),

can be rewritten as

N

H=Hg+H, =L+ v
2p

el 2M

((Mathematica))
Using the commutation relations, we can directly show that

A 2 A2
1 plz + ! [522 = P +p—.
2m, 2m, 2M 2p
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Clear["Global %"]; pl = {plx, ply, plz};

ml m2
p2 = {p2x, p2y, p2z}; u=———; ML=ml + m2;
ml + m2
m2pl - mlp2
P= mL + m2
pG = pl + p2;
pPG. pG pP-p , i
K1 = + // FullSimplify;
2 M1 2u Pty
pl.pl p2.p2 . N
K2 = // Simplify;
2ml * 2m2 Pty

K1-K2 // Simplify
0

9. Reduction of the two-body problem
We note that

[P, Hpw1=0,

and
[H,pe]=[He + Hpu Pe]=[H > Ps]1=0.

Then I-AIreI , H, and P can all be simultaneously diagonalized. In other words, there exists a

simultaneous eigenstate | pg,E, ).

|:|G|pG’Er>:EG|EG’Er>7 |:|rel|pG’Er>:Er|pG’Er>’

and
|:|| pG’Er>:(H’\G + |:Irel)| pG’Er>:(EG + Er)| pGJEr>'

We note that
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N

G

Py
pG>—2M|pG>— s Ps) s

where

£ _Pe
¢ M’

The wave function can be described by
v)=[Pe) ®IE) =|pc)lw),
where

E)=Iw).

10. The representation of

I5.1) =|rs) ®|r)
Based on the commutation relations,

[)?Gi’f)Gj]zihé‘"la [)A(-,f)j]=ih5--i,

ij i

we can use the basis

I.1) =|r5) ®]r),

for both the center-of mass co-ordinate and relative co-ordinate, corresponding to the basis for
the momentum basis

|PesP)=|Ps)®|P).

The transformation functions are defined by
<rG | pG> = ;mexp(l PeT)s
(27h) h

and
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(r| p>zﬁexp(é 0-1).

The wave function in the position representation can be described by

v} =Ips)E) =|ps)lu)-

The representation of the wave function in the positional representation

eXp(% P - rG)<r|Wr> .

(o) = (ra| pe {rly.) =

1

11.  Ehrenfest theorem for < f)G>
We note that

[H,pe1=0.
From the Ehrenfest theorem, we have

d
dt

(Be) == ([e F) =0,

leading to < f)G> =constant of motion. For simplicity, we assume that

Pe =0.

The we have the final form of the Hamiltonian as

The Schrodinger equation is given by
"j2
L HY O ) =Ely)

or
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", _
5V +V(DKr|w,)=Er|w,).

12. Rotation operator in Quantum mechanics
After the geometrical rotation;

r-Rr=r', (geometrical rotation)

we assume that the state vector changes from the old state |z//> to the new state |1//'> .

w)=R

v),

or

where R is a rotation operator in the quantum mechanics. It is natural to assume that
' lelw) =y [Ply) = (v |%ily),
or
(WIR*Rly) = (w[Rfly),
or
R*FR=RF. (1)
The rotation operator is a unitary operator.
W)=,
or

R‘R=RR" =1 (Unitary operator)

20



From Eq. (1),
fFR=RRF.

Here we calculate

r)=RRF

r)=RRr|r) =RrR|r).

IQ| r> is the eigenket of f with the eigenvalue Rr . So that we can write

R|r)=|Rr).
When

Rr=r,,
or

r=R",

R iR’er> =Ir,),
or

|%7'r,) = R°r,).
For any T,

‘SR‘lr> =R'Ir),

A A

RR*

ry=R%'r)=|RR"'r) =|r).
In summary, we have

(1) R'R=RR" =1.
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@ A=),
® (R =)
@ Rr)=|ir).
¢ (rR={nr.

13. Rotation matrix

Suppose that the vector r is rotated through € (counter-clock wise) around the z axis. The
position vector I is changed into ' in the same orthogonal basis {ei, e2}.

In this Fig, we have

€ -e'=cos¢

e -e,'=—sing’

'=sing

,'=cos¢

D D
D@ D

We define r and ' as

r'=x'e +x,'e, = xe/'+x.e,’

and

22



r=Xe, +X,€,

Using the relation

e -r'=e-(x'e +Xx'e,)=6-(xe'+xe,')
€, r'=e,-(X'g +X,'e,) =€, - (X&/'+X8,")

we have

X,'=e, -(Xe,'"+X,e,') = X cosg— X, sin @
X,'=e, (X, '+X,e,") = X sing+ X, cos@

or including the X3 axis,

X' X, cosg —sing O0) X

X" |=R,(@)| X, |=|sing cosg O] X,|.

X' Xy 0 0 1 X,
We note that

cosg —sing O
R,(#)=|sing cosg O],
0 0 1

and

cos(—¢) —sin(—¢) 0 cos¢g sing O
SRZ_I (@) =| sin(—¢g) cos(—¢) O |=|—sing cosg O].
0 0 1 0 0 1

14. Infinitesimal rotation matrix around the z axis
We assume that ¢ = de (infinitesimally small angle);
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X!

r'=y' =R, (da)r

7!

cos(der) sin(da) 0) x

=| —sin(da) cos(da) 0|y |~|-da
0 0 I \z

X+ yda

=|-xda+y

z

or

X'=X+yda
y'=y-xda
'=1

Then we have
(rly)=(r[R(de)lw)

{
<§Rz_l(da)r‘t//>
(x+yda,y-xda,z

v)
(X+yda,y—xda,z)

74
7

0 0
s Yo _d ~ Y s Yo
(X,Y,2) a(Xay an)w(xyz)
oy oy
v Ot(ya @)

— (rfi-~dal,|y)
h
where we use the Taylor expansion and the angular (orbital) momentum is defined by
L, = Xp, —yp,.

Then we have the expression of the infinitesimal rotation operator as
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R, (da) = i—%da[z .

((Note))
ba o ~ h, o 0
ri(xp. — =(r|L =—(X—-—=—Yy—XTI .
(rlcx0y, = 9p0ly) =(rlLly) =3 05, =y Xrlv)
15.  Positional-space representation of L in spherical co-ordinates

We also use the ket vector | r> =

r,9,¢>, where r, 6, and ¢ are the spherical coordinates.

R,(da)

r.0,¢)=

r,49,¢+da>,

R, (da)

r.0,¢)=

r,0,¢—da).

(r.0,¢—da|={r,0,¢R,(da).

thus we have

(r,0,¢

Iiz(da)|w> = <r,9,¢—da|w> = {r,9,¢

0
w>—da%<r,9,¢ l//>

On the other hand, we get

(r,0,4|R, (da)|y) =<r,0,¢i—%ﬁzda|l//> = (1,0, w}—%da(r,e,qﬁ C,|w)

Then we have

(r,0,¢

N
Lzlv/>=7%<r,6’,¢

w)
or

=22y,

L, _
o i 04
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16. Finite rotation

0 4

Aa

R,(e) = lim[R,(Aa)]" = lim (1~ Aal)" = lim(I——LC)

i~
=exp(——al
p( = ,)

((Note))

N

.ol a s T N
lim(1-—=L)" = lim[(1+5)“]* =e*,
(- LY = lim{(d+ 40"

N —w

where
i -
M= —%QLZ .
In general, we have the rotation operator

IQU (a)= exp(—éali -u).

In the case of an arbitrary quantum mechanical system, using the general angular momentum J

instead of L :
FAQU (o) = exp(—%aj -u).
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