Translation operator
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: August 30, 2015)
Here we discuss the translation operator. The linear momentum is a generator of the translation. This is in contrast to the rotation operator where the angular momentum is a generator of the operation.

1 Definition of the translation operator

Here we discuss the transportation operator
$\hat{T}(a)$: translation operator (unitary operator)

$$
\left|\psi^{\prime}\right\rangle=\hat{T}(a)|\psi\rangle,
$$

or

$$
\left\langle\psi^{\prime}\right|=\left\langle\psi^{\prime}\right| \hat{T}^{+}(a) .
$$

(i) Analogy from classical mechanics for \boldsymbol{x}

The average value of \hat{x} in the new state $\left|\psi^{\prime}\right\rangle$ is equal to the average value of \hat{x} in the new state $|\psi\rangle$ plus the x-displacement a.

$$
\left\langle\psi^{\prime}\right| \hat{x}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{x}+a|\psi\rangle,
$$

or

$$
\langle\psi| \hat{T}^{+}(a) \hat{x} \hat{T}(a)|\psi\rangle=\langle\psi| \hat{x}+a|\psi\rangle
$$

or

$$
\begin{equation*}
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=\hat{x}+a \hat{1} . \tag{1}
\end{equation*}
$$

Normalization condition:

$$
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| \hat{T}^{+}(a) \hat{T}(a)|\psi\rangle=\langle\psi \mid \psi\rangle,
$$

or

$$
\begin{equation*}
\hat{T}^{+}(a) \hat{T}(a)=\hat{1}, \tag{2}
\end{equation*}
$$

((Unitary operator))

From Eqs.(1) and (2), we have

$$
\hat{x} \hat{T}(a)=\hat{T}(a)(\hat{x}+a)=\hat{T}(a) \hat{X}+a \hat{T}(a) .
$$

((Commutation relation))

$$
[\hat{x}, \hat{T}(a)]=a \hat{T}(a) .
$$

Here we note that

$$
\hat{x} \hat{T}(a)|x\rangle=\hat{T}(a) \hat{x}|x\rangle+a \hat{T}(a)|x\rangle=(x+a) \hat{T}(a)|x\rangle .
$$

Thus $\hat{T}(a)|x\rangle$ is the eigenket of \hat{x} with the eigenvalue $(x+a)$

$$
\hat{T}(a)|x\rangle=|x+a\rangle .
$$

or

$$
\hat{T}^{+}(a)|x+a\rangle=|x\rangle
$$

We note that

$$
\hat{T}^{+}(a) \hat{T}(a)|x\rangle=\hat{T}^{+}(a)|x+a\rangle=|x\rangle .
$$

When x is replaced by $x-a$ in the relation $\hat{T}^{+}(a)|x+a\rangle=|x\rangle$

$$
\hat{T}^{+}(a)|x\rangle=|x-a\rangle,
$$

or

$$
|x-a\rangle=\hat{T}^{+}(a)|x\rangle,
$$

or

$$
\langle x-a|=\langle x| \hat{T}(a) .
$$

Note that

$$
\left\langle x \mid \psi^{\prime}\right\rangle=\langle x| \hat{T}(a)|\psi\rangle=\langle x-a \mid \psi\rangle=\psi(x-a) .
$$

(ii) Analogy from the classical mechanics for p

The average value of \hat{p} in the new state $\left|\psi^{\prime}\right\rangle$ is equal to the average value of \hat{p} in the new state $|\psi\rangle$.

$$
\left\langle\psi^{\prime}\right| \hat{p}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{p}|\psi\rangle,
$$

or

$$
\begin{aligned}
& \langle\psi| \hat{T}^{+}(a) \hat{p} \hat{T}(a)|\psi\rangle=\langle\psi| \hat{p}|\psi\rangle \\
& \hat{T}^{+}(a) \hat{p} \hat{T}(a)=\hat{p}
\end{aligned}
$$

So we have the commutation relation

$$
[\hat{T}(a), \hat{p}]=0 .
$$

From the above commutation relation, we have

$$
\hat{p} \hat{T}(a)|p\rangle=\hat{T}(a) \hat{p}|p\rangle=p \hat{T}(a)|p\rangle .
$$

Thus $\hat{T}(a)|p\rangle$ is the eigenket of \hat{p} associated with the eigenvalue p.

2 Infinitesimal translation operator

We now define the infinitesimal translation operator by

$$
\hat{T}(d x)=\hat{1}-\frac{i}{\hbar} \hat{G} d x
$$

where \hat{G} is called a generator of translation. The dimension of \hat{G} is that of the linear momentum.

The operator $\hat{T}(d x)$ satisfies the relations:

$$
\begin{align*}
& \hat{T}^{+}(d x) \hat{T}(d x)=\hat{1} \tag{1}\\
& \hat{T}^{+}(d x) \hat{x} \hat{T}(d x)=\hat{x}+d x \hat{1}
\end{align*}
$$

or

$$
\begin{equation*}
\hat{x} \hat{T}(d x)-\hat{T}(d x) \hat{x}=d x \hat{T}(d x) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
[\hat{T}(d x), \hat{p}]=0 \tag{3}
\end{equation*}
$$

Using the relation (1), we get

$$
\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)^{+}\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)=\hat{1}
$$

or

$$
\left(\hat{1}+\frac{i}{\hbar} \hat{G}^{+} d x\right)\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)=\hat{1}+\frac{i}{\hbar}\left(\hat{G}^{+}-\hat{G}\right) d x+O\left[(d x)^{2}\right]=\hat{1}
$$

or

$$
\hat{G}^{+}=\hat{G} .
$$

The operator \hat{G} is a Hermitian operator. Using the relation (2), we get

$$
\hat{x}\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)-\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right) \hat{x}=d x\left(\hat{1}-\frac{i}{\hbar} \hat{G} d x\right)=d x \hat{1}+O(d x)^{2},
$$

or

$$
-\frac{i}{\hbar}[\hat{x}, \hat{G}] d x=d x \hat{1}
$$

or

$$
[\hat{x}, \hat{G}]=i \hbar \hat{1} .
$$

Using the relation (3), we get

$$
\left[\hat{1}-\frac{i}{\hbar} \hat{G} d x, \hat{p}\right]=0
$$

Then we have

$$
[\hat{G}, \hat{p}]=0
$$

From these two commutation relations, we conclude that

$$
\hat{G}=\hat{p},
$$

and

$$
\hat{T}(d x)=\hat{1}-\frac{i}{\hbar} \hat{p} d x
$$

We see that the position operator and the momentum operator \hat{p} obeys the commutation relation

$$
[\hat{x}, \hat{p}]=i \hbar \hat{1} .
$$

which leads to the Heisenberg's principle of uncertainty.

3 Momentum operator \hat{p} in the position basis.

Using the relation

$$
\hat{T}(\delta x)|x\rangle=|x+\delta x\rangle, \quad \hat{T}(\delta x)=\hat{1}-\frac{i}{\hbar} \hat{p} \delta x
$$

we get

$$
\begin{aligned}
\hat{T}(\delta x)|\psi\rangle & =\hat{T}(\delta x) \int d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle=\int d x^{\prime}\left|x^{\prime}+\delta x\right\rangle\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\int d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime}-\delta x \mid \psi\right\rangle=\int d x^{\prime}\left|x^{\prime}\right\rangle \psi\left(x^{\prime}-\delta x\right)
\end{aligned}
$$

We apply the Taylor expansion:

$$
\psi\left(x^{\prime}-\delta x\right)=\psi\left(x^{\prime}\right)-\delta x \frac{\partial}{\partial x^{\prime}} \psi\left(x^{\prime}\right) .
$$

Substitution:

$$
\begin{aligned}
\hat{T}(\delta x)|\psi\rangle & =\int d x^{\prime}\left|x^{\prime}\right\rangle \psi\left(x^{\prime}-\delta x\right) \\
& =\int d x^{\prime}\left|x^{\prime}\right\rangle\left[\psi\left(x^{\prime}\right)-\delta x \frac{\partial}{\partial x^{\prime}} \psi\left(x^{\prime}\right)\right] \\
& =\int d x^{\prime}\left|x^{\prime}\right\rangle\left[\left\langle x^{\prime} \mid \psi\right\rangle-\delta x \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle\right] \\
& =|\psi\rangle-\delta x \int d x^{\prime}\left|x^{\prime}\right\rangle \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle
\end{aligned}
$$

From the definition, we have

$$
\widehat{T}(\delta x)|\psi\rangle=\left(\hat{1}-\frac{i}{\hbar} \hat{p} \delta x\right)|\psi\rangle .
$$

Comparing these two equations, we obtain the relation

$$
\hat{p}|\psi\rangle=\frac{\hbar}{i} \int d x^{\prime}\left|x^{\prime}\right\rangle \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle,
$$

or

$$
\begin{aligned}
\langle x| \hat{p}|\psi\rangle & =\frac{\hbar}{i} \int d x^{\prime}\left\langle x \mid x^{\prime}\right\rangle \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\frac{\hbar}{i} \int d x^{\prime} \delta\left(x-x^{\prime}\right) \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid \psi\right\rangle \\
& =\frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle
\end{aligned}
$$

We obtain a very important formula

$$
\langle x| \hat{p}|\psi\rangle=\frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle .
$$

Note that

$$
\begin{aligned}
\langle\psi| \hat{p}|\psi\rangle & =\int d x\langle\psi \mid x\rangle\langle x| \hat{p}|\psi\rangle \\
& =\int d x\langle\psi \mid x\rangle \frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle \\
& =\int d x\langle x \mid \psi\rangle^{*} \frac{\hbar}{i} \frac{\partial}{\partial x}\langle x \mid \psi\rangle
\end{aligned}
$$

These results suggest that in position space the momentum operator takes the form

$$
\hat{p} \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial x} .
$$

4. Position operator \hat{x} in the momentum basis.

$$
\begin{aligned}
\langle p| \hat{x}|\psi\rangle & =\int d x\langle p \mid x\rangle\langle x| \hat{x}|\psi\rangle \\
& =\int d x x\langle p \mid x\rangle\langle x \mid \psi\rangle \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int d x x e^{-\frac{i p x}{\hbar}}\langle x \mid \psi\rangle \\
& =i \hbar \frac{\partial}{\partial p} \frac{1}{\sqrt{2 \pi \hbar}}\left(\int d x e^{-\frac{i p x}{\hbar}}\langle x \mid \psi\rangle\right) \\
& =i \hbar \frac{\partial}{\partial p} \int d x\langle p \mid x\rangle\langle x \mid \psi\rangle \\
& =i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle
\end{aligned}
$$

Then we have

$$
\langle p| \hat{x}|\psi\rangle=i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle .
$$

Using this result, we get

$$
\begin{aligned}
\langle\phi| \hat{x}|\psi\rangle & =\int d p\langle\phi \mid p\rangle\langle p| \hat{x}|\psi\rangle \\
& =\int d p\langle\phi \mid p\rangle i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle \\
& =\int d p\langle p \mid \phi\rangle^{*} i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle
\end{aligned}
$$

These results suggest that in momentum space the position operator takes the form

$$
\hat{x} \rightarrow i \hbar \frac{\partial}{\partial p}
$$

5. The finite translation operator

What is the operator $\hat{T}(a)$ corresponding to a finite translation a ? We find it by the following procedure. We divide the interval into N parts of size $\mathrm{d} x=a / N$. As $N \rightarrow \infty, a / N$ becomes infinitesimal.

$$
\hat{T}(d x)=\hat{1}-\frac{i}{\hbar} \hat{p}\left(\frac{a}{N}\right)
$$

Since a translation by a equals N translations by a / N, we have

$$
\hat{T}(a)=\lim _{N \rightarrow \infty}\left[\hat{1}-\frac{i}{\hbar} \hat{p}\left(\frac{a}{N}\right)\right]^{N}=\exp \left(-\frac{i}{\hbar} \hat{p} a\right)
$$

Here we use the formula

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\left(1+\frac{1}{N}\right)^{N}=e, \quad \lim _{N \rightarrow \infty}\left(1-\frac{1}{N}\right)^{N}=e^{-1} \\
& \lim _{N \rightarrow \infty}\left[\left(1-\frac{a x}{N}\right)^{\frac{N}{a x}}\right]^{a x}=\lim _{N \rightarrow \infty}\left(1-\frac{a x}{N}\right)^{N}=\left(e^{-1}\right)^{a x}=e^{-a x}
\end{aligned}
$$

In summary, we have

$$
\hat{T}(a)=\exp \left(-\frac{i}{\hbar} \hat{p} a\right)
$$

6. Discussion on the commutation relation

It is interesting to calculate

$$
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=e^{\frac{i}{\hbar} \hat{p} a} \hat{x} e^{-\frac{i}{\hbar} \hat{\hbar} a}
$$

by using the Baker-Hausdorff theorem:

$$
\exp (\hat{A} x) \hat{B} \exp (-\hat{A} x)=\hat{B}+\frac{x}{1!}[\hat{A}, \hat{B}]+\frac{x^{2}}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\frac{x^{3}}{3!}[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]+\ldots
$$

When $x=1$, we have

$$
\exp (\hat{A}) \hat{B} \exp (-\hat{A})=\hat{B}+\frac{1}{1!}[\hat{A}, \hat{B}]+\frac{1}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\frac{1}{3!}[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]+\ldots
$$

Then we have

$$
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=e^{\frac{i}{\hbar} \hat{p} a} \hat{x} e^{-\frac{i}{\hbar} \hat{p} a}=\hat{x}+\left[\frac{i}{\hbar} \hat{p} a, \hat{x}\right]=\hat{x}+\frac{i}{\hbar} a[\hat{p}, \hat{x}]=\hat{x}+\frac{i}{\hbar} a \frac{\hbar}{i}=\hat{x}+a \hat{1} .
$$

So we confirmed that the relation

$$
\hat{T}^{+}(a) \hat{x} \hat{T}(a)=\hat{x}+a \hat{1},
$$

holds for any finite translation operator.

7. Invariance of Hamiltonian under the translation

Now we consider the condition for the invariance of Hamiltonian \hat{H} under the translation.

The average value of \hat{H} in the new state $\left|\psi^{\prime}\right\rangle$ is equal to the average value of \hat{H} in the new state $|\psi\rangle$.

$$
\left\langle\psi^{\prime}\right| \hat{H}\left|\psi^{\prime}\right\rangle=\langle\psi| \hat{H}|\psi\rangle,
$$

or

$$
\hat{T}^{+}(d x) \hat{H} \hat{T}(d x)=\hat{H}, \quad \text { or } \quad \hat{H} \hat{T}(d x)=\hat{T}(d x) \hat{H}
$$

or

$$
\hat{H}\left(\hat{1}-\frac{i}{\hbar} \hat{p} d x\right)=\left(\hat{1}-\frac{i}{\hbar} \hat{p} d x\right) \hat{H}
$$

Then we have

$$
[\hat{H}, \hat{p}]=0 .
$$

8. ((Sakurai 1-28))

(a) Let x and p_{x} be the coordinate and linear momentum in one dimension. Evaluate the classical Poisson bracket.

$$
\left[x, F\left(p_{x}\right)\right]_{\text {classical }} .
$$

(b) Let \hat{x} and \hat{p}_{x} be the corresponding quantum-mechanical operators this time. Evaluate the commutator

$$
\left[\hat{x}, \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\right]
$$

(c) Using the result obtained in (b), prove that

$$
\exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\left|x^{\prime}\right\rangle, \quad \hat{x}\left|x^{\prime}\right\rangle=x^{\prime}\left|x^{\prime}\right\rangle
$$

is an eigenstate of the coordinate operator x , What is the corresponding eigenvalue?

((Solution))

(a)

$$
\left[x, F\left(p_{x}\right)\right]_{\text {classical }}=\frac{\partial x}{\partial x} \frac{\partial F\left(p_{x}\right)}{\partial p_{x}}-\frac{\partial x}{\partial p_{x}} \frac{\partial F\left(p_{x}\right)}{\partial x}=\frac{\partial F\left(p_{x}\right)}{\partial p_{x}}
$$

(b)

We use the Gottfried's result

$$
\left[\hat{x}, \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\right]=i \hbar \frac{\partial}{\partial \hat{p}_{x}} \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)=-a \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)
$$

(c)

$$
\hat{x} \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)=\exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right) \hat{x}-a \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)
$$

Then we have

$$
\begin{aligned}
\hat{x} \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\left|x^{\prime}\right\rangle & =\exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right) \hat{x}\left|x^{\prime}\right\rangle-a \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\left|x^{\prime}\right\rangle \\
& =\left(x^{\prime}-a\right) \exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\left|x^{\prime}\right\rangle
\end{aligned}
$$

The ket $\exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\left|x^{\prime}\right\rangle$ is the eigenket of \hat{x} with an eigenvalue $\left(x^{\prime}-a\right)$.

$$
\exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)\left|x^{\prime}\right\rangle=\left|x^{\prime}-a\right\rangle
$$

Therefore $\hat{T}_{x}(a)=\exp \left(\frac{i \hat{p}_{x} a}{\hbar}\right)$ is a translation operator.

9. ((Sakurai 1-29))

(a) Gottfried (1966) states that

$$
\left[\hat{x}_{i}, G(\hat{\boldsymbol{p}})\right]=i \hbar \frac{\partial}{\partial \hat{p}_{i}} G(\hat{\boldsymbol{p}}), \quad\left[\hat{p}_{i}, F(\hat{\boldsymbol{x}})\right]=-i \hbar \frac{\partial}{\partial \hat{x}_{i}} F(\hat{\boldsymbol{x}})
$$

can be easily derived from the fundamental commutation relations for all functions of F and G can be expressed as power series in their arguments. Verify this statement.
(b) Evaluate $\left[\hat{x}^{2}, \hat{p}^{2}\right]$. Compare your result with the classical Poisson bracket $\left[x^{2}, p^{2}\right]_{\text {classic }}$.
((Solution))
(a)
(i)

$$
\begin{aligned}
\left\langle\boldsymbol{p}\left[\hat{x}_{i}, G(\hat{\boldsymbol{p}})\right] \mid \alpha\right\rangle & =\left[i \hbar \frac{\partial}{\partial p_{i}} G(\boldsymbol{p})-G(\boldsymbol{p}) i \hbar \frac{\partial}{\partial p_{i}}\right]\langle\boldsymbol{p} \mid \alpha\rangle \\
& =i \hbar \frac{\partial}{\partial p_{i}}[G(\boldsymbol{p})\langle\boldsymbol{p} \mid \alpha\rangle]-i \hbar G(\boldsymbol{p}) \frac{\partial}{\partial p_{i}}\langle\boldsymbol{p} \mid \alpha\rangle \\
& =i \hbar\left(\frac{\partial}{\partial p_{i}} G(\boldsymbol{p})\right)\langle\boldsymbol{p} \mid \alpha\rangle+i \hbar G(\boldsymbol{p}) \frac{\partial}{\partial p_{i}}\langle\boldsymbol{p} \mid \alpha\rangle-i \hbar G(\boldsymbol{p}) \frac{\partial}{\partial p_{i}}\langle\boldsymbol{p} \mid \alpha\rangle \\
& =i \hbar\left(\frac{\partial}{\partial p_{i}} G(\boldsymbol{p})\right)\langle\boldsymbol{p} \mid \alpha\rangle \\
& =\langle\boldsymbol{p}| i \hbar \frac{\partial}{\partial \hat{p}_{i}} G(\hat{\boldsymbol{p}})|\alpha\rangle
\end{aligned}
$$

Thus we have the final result

$$
\left[\hat{x}_{i}, G(\hat{\boldsymbol{p}})\right]=i \hbar \frac{\partial}{\partial \hat{p}_{i}} G(\hat{\boldsymbol{p}})
$$

(ii)

$$
\begin{aligned}
\langle\boldsymbol{r}|\left[\hat{p}_{i}, F(\hat{\boldsymbol{r}})\right]|\alpha\rangle & =\left[\frac{\hbar}{i} \frac{\partial}{\partial x_{i}} F(\boldsymbol{r})-F(\boldsymbol{r}) \frac{\hbar}{i} \frac{\partial}{\partial x_{i}}\right]\langle\boldsymbol{r} \mid \alpha\rangle \\
& =\frac{\hbar}{i} \frac{\partial}{\partial x_{i}}[F(\boldsymbol{r})\langle\boldsymbol{r} \mid \alpha\rangle]-\frac{\hbar}{i} F(\boldsymbol{r}) \frac{\partial}{\partial x_{i}}\langle\boldsymbol{r} \mid \alpha\rangle \\
& \left.=\frac{\hbar}{i}\left(\frac{\partial}{\partial x_{i}} F(\boldsymbol{r})\right)\langle\boldsymbol{r} \mid \alpha\rangle+\frac{\hbar}{i} F(\boldsymbol{r}) \frac{\partial}{\partial x_{i}}\langle\boldsymbol{r} \mid \alpha\rangle\right]-\frac{\hbar}{i} F(\boldsymbol{r}) \frac{\partial}{\partial x_{i}}\langle\boldsymbol{r} \mid \alpha\rangle \\
& =\frac{\hbar}{i}\left(\frac{\partial}{\partial x_{i}} F(\boldsymbol{r})\right)\langle\boldsymbol{r} \mid \alpha\rangle \\
& =\langle\boldsymbol{r}| \frac{\hbar}{i} \frac{\partial}{\partial \hat{x}_{i}} F(\hat{\boldsymbol{r}})|\alpha\rangle
\end{aligned}
$$

or

$$
\left[\hat{p}_{i}, F(\hat{\mathbf{r}})\right]=\frac{\hbar}{i} \frac{\partial}{\partial \hat{x}_{i}} F(\hat{\mathbf{r}})
$$

(b)

$$
\begin{aligned}
{\left[\hat{x}^{2}, \hat{p}^{2}\right] } & =\hat{x}\left[\hat{x}, \hat{p}^{2}\right]+\left[\hat{x}, \hat{p}^{2}\right] \hat{x} \\
& =\hat{x} i \hbar \frac{\partial}{\partial \hat{p}} \hat{p}^{2}+i \hbar\left(\frac{\partial}{\partial \hat{p}} \hat{p}^{2}\right) \hat{x} \\
& =2 i \hbar(\hat{x} \hat{p}+\hat{p} \hat{x})
\end{aligned}
$$

The classical Poisson bracket is defined by

$$
\begin{aligned}
{\left[x^{2}, p^{2}\right]_{\text {classic }} } & =\frac{\partial x^{2}}{\partial x} \frac{\partial p^{2}}{\partial p}-\frac{\partial x^{2}}{\partial p} \frac{\partial p^{2}}{\partial x} \\
& =4 x p \\
& =2(x p+p x)
\end{aligned}
$$

10. ((Sakurai 1-30))

The translation operator for a finite (spatial) displacement is given by

$$
\hat{T}(\boldsymbol{I})=\exp \left(-\frac{i \hat{\boldsymbol{p}} \cdot \boldsymbol{l}}{\hbar}\right)
$$

where $\hat{\boldsymbol{p}}$ is the momentum operator.
(a) Evaluate
$[\hat{x}, \hat{T}(I)]$
(b) Using (a) (or otherwise), demonstrate how the expectation value $\langle x\rangle$ changes under translation.
((Solution))
(a)

The translation operator is defined by

$$
\begin{aligned}
& \hat{T}(\boldsymbol{I})=\exp \left(-\frac{i \hat{\boldsymbol{p}} \cdot \boldsymbol{I}}{\hbar}\right) \\
& \left.\left[\hat{x}_{i}, \hat{T}(\boldsymbol{I})\right]=i \hbar \frac{\partial}{\partial \hat{p}_{i}} \hat{T}(\boldsymbol{I})=l_{i} \exp \left(-\frac{i \hat{\boldsymbol{p}} \cdot \boldsymbol{I}}{\hbar}\right)=l_{i} \hat{T}(\boldsymbol{I})\right]
\end{aligned}
$$

or

$$
[\hat{r}, \hat{T}(I)]=l \hat{T}(I)
$$

(b)

$$
\begin{aligned}
&\left|\alpha^{\prime}\right\rangle=\hat{T}(\boldsymbol{I})|\alpha\rangle \\
&\left\langle\alpha^{\prime}\right| \hat{\boldsymbol{r}}\left|\alpha^{\prime}\right\rangle=\langle\alpha| \hat{T}^{+}(\boldsymbol{I}) \hat{\boldsymbol{r}} \hat{T}(\boldsymbol{I})\left|\alpha^{\prime}\right\rangle \\
&=\langle\alpha| \hat{T}^{+}(\boldsymbol{I})[\hat{T}(\boldsymbol{I}) \hat{\boldsymbol{r}}+\boldsymbol{I} \hat{T}(\boldsymbol{I})]\left|\alpha^{\prime}\right\rangle \\
&=\langle\alpha| \hat{\boldsymbol{r}}+\boldsymbol{I}\left|\alpha^{\prime}\right\rangle
\end{aligned}
$$

or

$$
\left\langle\alpha^{\prime}\right| \hat{\boldsymbol{r}}\left|\alpha^{\prime}\right\rangle=\langle\alpha| \hat{\boldsymbol{r}}|\alpha\rangle+\boldsymbol{I}
$$

11. ((Sakurai 1-31))

Prove

$$
\langle\boldsymbol{r}\rangle \rightarrow\langle\boldsymbol{r}\rangle+d \boldsymbol{r}^{\prime}, \quad\langle\boldsymbol{p}\rangle \rightarrow\langle\boldsymbol{p}\rangle
$$

under infinitesimal translation.

((Solution))

We use the commutation relations

$$
[\hat{\boldsymbol{r}}, \hat{T}(d \boldsymbol{r})]=d \boldsymbol{r} \hat{T}(d \boldsymbol{r})
$$

and

$$
[\hat{\boldsymbol{p}}, \hat{T}(d \boldsymbol{r})]=0
$$

We have

$$
\begin{aligned}
\langle\alpha| \hat{T}^{+}(d \boldsymbol{r}) \hat{\boldsymbol{r}} \hat{T}(d \boldsymbol{r})|\alpha\rangle & =\langle\alpha| \hat{T}^{+}(d \boldsymbol{r})[\hat{T}(d \boldsymbol{r}) \hat{\boldsymbol{r}}+d \boldsymbol{r} \hat{T}(d \boldsymbol{r})|\alpha\rangle \\
& =\langle\alpha| \hat{\boldsymbol{r}}+d \boldsymbol{r}|\alpha\rangle
\end{aligned}
$$

or

$$
\left\langle\alpha^{\prime}\right| \hat{\mathbf{r}}\left|\alpha^{\prime}\right\rangle=\langle\alpha| \hat{\mathbf{r}}|\alpha\rangle+d \mathbf{r}
$$

Similarly

$$
\langle\alpha| \hat{T}^{+}(d \boldsymbol{r}) \hat{\boldsymbol{p}} \hat{T}(d \boldsymbol{r})|\alpha\rangle=\langle\alpha| \hat{T}^{+}(d \boldsymbol{r}) \hat{T}(d \boldsymbol{r}) \hat{\boldsymbol{p}}|\alpha\rangle=\langle\alpha| \hat{\boldsymbol{p}}|\alpha\rangle
$$

12. ((Sakurai 1-33))
(a) Prove the following:
(i)

$$
\left\langle p^{\prime}\right| \hat{x}|\alpha\rangle=i \hbar \frac{\partial}{\partial p^{\prime}}\left\langle p^{\prime} \mid \alpha\right\rangle
$$

(ii)

$$
\langle\beta| \hat{x}|\alpha\rangle=\int d p\left\langle p^{\prime} \mid \beta\right\rangle^{*} i \hbar \frac{\partial}{\partial p^{\prime}}\left\langle p^{\prime} \mid \alpha\right\rangle
$$

(b) What is the physical significance of

$$
\exp \left(\frac{i \hat{x} p_{0}}{\hbar}\right)
$$

where \hat{x} is the position operator and p_{0} is some number with the dimension of momentum? Justify your answer.

((Solution))

(a)
(i)

$$
\begin{aligned}
\left\langle p^{\prime}\right| \hat{x}|\alpha\rangle & =\int d x^{\prime}\left\langle p^{\prime} \mid x^{\prime}\right\rangle\left\langle x^{\prime}\right| \hat{x}|\alpha\rangle \\
& =\int d x^{\prime} x^{\prime}\left\langle p^{\prime} \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \alpha\right\rangle \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int d x^{\prime} x^{\prime} e^{-\frac{i p}{} x^{\prime}}\left\langle x^{\prime} \mid \alpha\right\rangle \\
& =i \hbar \frac{\partial}{\partial p^{\prime}} \frac{1}{\sqrt{2 \pi \hbar}}\left(\int d x^{\prime} e^{-\frac{i p^{\prime} x^{\prime}}{\hbar}}\left\langle x^{\prime} \mid \alpha\right\rangle\right) \\
& =i \hbar \frac{\partial}{\partial p^{\prime}} \int d x^{\prime}\left\langle p^{\prime} \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid \alpha\right\rangle \\
& =i \hbar \frac{\partial}{\partial p^{\prime}}\left\langle p^{\prime} \mid \alpha\right\rangle
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\langle\beta| \hat{x}|\alpha\rangle & =\int d p^{\prime}\left\langle\beta \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| \hat{x}|\alpha\rangle \\
& =\int d p^{\prime}\left\langle\beta \mid p^{\prime}\right\rangle\left\langle p^{\prime}\right| \hat{x}|\alpha\rangle \\
& =\int d p^{\prime}\left\langle\beta \mid p^{\prime}\right\rangle i \hbar \frac{\partial}{\partial p^{\prime}}\left\langle p^{\prime} \mid \alpha\right\rangle
\end{aligned}
$$

(b)

$$
\begin{aligned}
\hat{p} \exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right)\left|p^{\prime}\right\rangle & =\left\{\left[\hat{p}, \exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right)\right]+\exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right) \hat{p}\right\}\left|p^{\prime}\right\rangle \\
& =\left\{p_{0} \exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right)+\exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right) p^{\prime}\right\}\left|p^{\prime}\right\rangle
\end{aligned}
$$

or

$$
\hat{p} \exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right)\left|p^{\prime}\right\rangle=\left(p_{0}+p^{\prime}\right) \exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right)\left|p^{\prime}\right\rangle .
$$

Therefore $\exp \left(\frac{i p_{0} \hat{x}}{\hbar}\right)\left|p^{\prime}\right\rangle$ is the eigenket of \hat{p} with an eigenvalue of $\left(p^{\prime}+p_{0}\right)$.

REFERENCES

J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, second edition (AddisonWesley, New York, 2011).
John S. Townsend , A Modern Approach to Quantum Mechanics, second edition (University Science Books, 2012).

APPENDIX

Properties of the translation operator
(i) $\quad \hat{T}(a+b)=\hat{T}(a) \hat{T}(b)=\hat{T}(b) \hat{T}(a)$
((proof))

$$
\begin{aligned}
& \hat{T}(b)|x\rangle=|x+b\rangle, \\
& \hat{T}(a) \hat{T}(b)|x\rangle=\hat{T}(a)|x+b\rangle=|x+a+b\rangle \\
& \hat{T}(a+b)|x\rangle=|x+a+b\rangle
\end{aligned}
$$

Then we have

$$
\hat{T}(a+b)=\hat{T}(a) \hat{T}(b)=\hat{T}(b) \hat{T}(a)
$$

(ii) $\hat{T}(0)=\hat{1}$

((Proof))

For any $|x\rangle$, we have

$$
\hat{T}(0)|x\rangle=|x\rangle
$$

leading to the relation

$$
\hat{T}(0)=\hat{1}
$$

(iii) $\quad \hat{T}(a) \hat{T}(-a)=\hat{T}(-a) \hat{T}(a)=\hat{1}$
((Proof))
In the relation

$$
\hat{T}(a+b)=\hat{T}(a) \hat{T}(b)=\hat{T}(b) \hat{T}(a)
$$

we assume that $a+b=0$. Then we have

$$
\hat{T}(a) \hat{T}(-a)=\hat{T}(-a) \hat{T}(a)=\hat{T}(0)=\hat{1}
$$

leading to the relation

$$
\hat{T}(-a)=\hat{T}^{-1}(a)=\hat{T}^{+}(a)
$$

