Translation operator Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: August 30, 2015)

Here we discuss the translation operator. The linear momentum is a generator of the translation. This is in contrast to the rotation operator where the angular momentum is a generator of the operation.

1 Definition of the translation operator

Here we discuss the transportation operator

 $\hat{T}(a)$: translation operator (unitary operator)

$$|\psi'\rangle = \hat{T}(a)|\psi\rangle,$$

or

$$\langle \psi' | = \langle \psi' | \hat{T}^+(a) .$$

(i) Analogy from classical mechanics for x

The average value of \hat{x} in the new state $|\psi'\rangle$ is equal to the average value of \hat{x} in the new state $|\psi\rangle$ plus the x-displacement a.

$$\langle \psi' | \hat{x} | \psi' \rangle = \langle \psi | \hat{x} + a | \psi \rangle,$$

or

$$\langle \psi | \hat{T}^{+}(a) \hat{x} \hat{T}(a) | \psi \rangle = \langle \psi | \hat{x} + a | \psi \rangle,$$

or

$$\hat{T}^{+}(a)\hat{x}\hat{T}(a) = \hat{x} + a\hat{1}$$
. (1)

Normalization condition:

$$\langle \psi' | \psi' \rangle = \langle \psi | \hat{T}^{+}(a) \hat{T}(a) | \psi \rangle = \langle \psi | \psi \rangle,$$

or

$$\hat{T}^+(a)\hat{T}(a) = \hat{1},\tag{2}$$

((Unitary operator))

From Eqs.(1) and (2), we have

$$\hat{x}\hat{T}(a) = \hat{T}(a)(\hat{x} + a) = \hat{T}(a)\hat{x} + a\hat{T}(a).$$

((Commutation relation))

$$[\hat{x}, \hat{T}(a)] = a\hat{T}(a).$$

Here we note that

$$\hat{x}\hat{T}(a)|x\rangle = \hat{T}(a)\hat{x}|x\rangle + a\hat{T}(a)|x\rangle = (x+a)\hat{T}(a)|x\rangle.$$

Thus $\hat{T}(a)|x\rangle$ is the eigenket of \hat{x} with the eigenvalue (x+a)

$$\hat{T}(a)|x\rangle = |x+a\rangle$$
.

or

$$\hat{T}^+(a)|x+a\rangle = |x\rangle$$

We note that

$$\hat{T}^+(a)\hat{T}(a)|x\rangle = \hat{T}^+(a)|x+a\rangle = |x\rangle.$$

When x is replaced by x-a in the relation $\hat{T}^+(a)|x+a\rangle = |x\rangle$

$$\hat{T}^+(a)|x\rangle = |x-a\rangle,$$

or

$$|x-a\rangle = \hat{T}^+(a)|x\rangle,$$

or

$$\langle x-a|=\langle x|\hat{T}(a).$$

Note that

$$\langle x|\psi'\rangle = \langle x|\hat{T}(a)|\psi\rangle = \langle x-a|\psi\rangle = \psi(x-a).$$

(ii) Analogy from the classical mechanics for p

The average value of \hat{p} in the new state $|\psi'\rangle$ is equal to the average value of \hat{p} in the new state $|\psi\rangle$.

$$\langle \psi' | \hat{p} | \psi' \rangle = \langle \psi | \hat{p} | \psi \rangle,$$

or

$$\langle \psi | \hat{T}^{+}(a) \hat{p} \hat{T}(a) | \psi \rangle = \langle \psi | \hat{p} | \psi \rangle$$

$$\hat{T}^+(a)\hat{p}\hat{T}(a) = \hat{p}$$

So we have the commutation relation

$$[\hat{T}(a), \hat{p}] = 0.$$

From the above commutation relation, we have

$$|\hat{p}\hat{T}(a)|p\rangle = \hat{T}(a)\hat{p}|p\rangle = p\hat{T}(a)|p\rangle.$$

Thus $\hat{T}(a)|p\rangle$ is the eigenket of \hat{p} associated with the eigenvalue p.

2 Infinitesimal translation operator

We now define the infinitesimal translation operator by

$$\hat{T}(dx) = \hat{1} - \frac{i}{\hbar} \hat{G} dx,$$

where \hat{G} is called a generator of translation. The dimension of \hat{G} is that of the linear momentum.

The operator $\hat{T}(dx)$ satisfies the relations:

$$\hat{T}^+(dx)\hat{T}(dx) = \hat{1}, \qquad (1)$$

$$\hat{T}^+(dx)\hat{x}\hat{T}(dx) = \hat{x} + dx\hat{1},$$

or

$$\hat{x}\hat{T}(dx) - \hat{T}(dx)\hat{x} = dx\hat{T}(dx), \qquad (2)$$

and

$$[\hat{T}(dx), \hat{p}] = 0, \tag{3}$$

Using the relation (1), we get

$$(\hat{1} - \frac{i}{\hbar}\hat{G}dx)^{+}(\hat{1} - \frac{i}{\hbar}\hat{G}dx) = \hat{1},$$

or

$$(\hat{1} + \frac{i}{\hbar}\hat{G}^{+}dx)(\hat{1} - \frac{i}{\hbar}\hat{G}dx) = \hat{1} + \frac{i}{\hbar}(\hat{G}^{+} - \hat{G})dx + O[(dx)^{2}] = \hat{1},$$

or

$$\hat{G}^{\scriptscriptstyle +} = \hat{G} \, .$$

The operator \hat{G} is a Hermitian operator. Using the relation (2), we get

$$\hat{x}(\hat{1} - \frac{i}{\hbar}\hat{G}dx) - (\hat{1} - \frac{i}{\hbar}\hat{G}dx)\hat{x} = dx(\hat{1} - \frac{i}{\hbar}\hat{G}dx) = dx\hat{1} + O(dx)^2,$$

or

$$-\frac{i}{\hbar}[\hat{x},\hat{G}]dx = dx\hat{1},$$

or

$$[\hat{x}, \hat{G}] = i\hbar \hat{1}$$
.

Using the relation (3), we get

$$[\hat{1} - \frac{i}{\hbar}\hat{G}dx, \hat{p}] = 0.$$

Then we have

$$[\hat{G}, \hat{p}] = 0$$
.

From these two commutation relations, we conclude that

$$\hat{G} = \hat{p}$$
,

and

$$\hat{T}(dx) = \hat{1} - \frac{i}{\hbar} \hat{p} dx.$$

We see that the position operator and the momentum operator \hat{p} obeys the commutation relation

$$[\hat{x}, \hat{p}] = i\hbar \hat{1}$$
.

which leads to the Heisenberg's principle of uncertainty.

Momentum operator \hat{p} in the position basis.

Using the relation

$$\hat{T}(\delta x)|x\rangle = |x + \delta x\rangle,$$
 $\hat{T}(\delta x) = \hat{1} - \frac{i}{\hbar}\hat{p}\,\delta x.$

we get

$$\hat{T}(\delta x)|\psi\rangle = \hat{T}(\delta x)\int dx'|x'\rangle\langle x'|\psi\rangle = \int dx'|x'+\delta x\rangle\langle x'|\psi\rangle$$
$$= \int dx'|x'\rangle\langle x'-\delta x|\psi\rangle = \int dx'|x'\rangle\psi(x'-\delta x)$$

We apply the Taylor expansion:

$$\psi(x' - \delta x) = \psi(x') - \delta x \frac{\partial}{\partial x'} \psi(x').$$

Substitution:

$$\begin{split} \widehat{T}(\delta x)|\psi\rangle &= \int dx'|x'\rangle\psi(x'-\delta x) \\ &= \int dx'|x'\rangle[\psi(x') - \delta x \frac{\partial}{\partial x'}\psi(x')] \\ &= \int dx'|x'\rangle[\langle x'|\psi\rangle - \delta x \frac{\partial}{\partial x'}\langle x'|\psi\rangle] \\ &= |\psi\rangle - \delta x \int dx'|x'\rangle \frac{\partial}{\partial x'}\langle x'|\psi\rangle \end{split}$$

From the definition, we have

$$\widehat{T}(\delta x)|\psi\rangle = (\widehat{1} - \frac{i}{\hbar}\widehat{p}\delta x)|\psi\rangle.$$

Comparing these two equations, we obtain the relation

$$\hat{p}|\psi\rangle = \frac{\hbar}{i} \int dx' |x'\rangle \frac{\partial}{\partial x'} \langle x'|\psi\rangle,$$

or

$$\langle x | \hat{p} | \psi \rangle = \frac{\hbar}{i} \int dx' \langle x | x' \rangle \frac{\partial}{\partial x'} \langle x' | \psi \rangle$$
$$= \frac{\hbar}{i} \int dx' \, \delta(x - x') \, \frac{\partial}{\partial x'} \langle x' | \psi \rangle$$
$$= \frac{\hbar}{i} \frac{\partial}{\partial x} \langle x | \psi \rangle$$

We obtain a very important formula

$$\langle x | \hat{p} | \psi \rangle = \frac{\hbar}{i} \frac{\partial}{\partial x} \langle x | \psi \rangle.$$

Note that

$$\langle \psi | \hat{p} | \psi \rangle = \int dx \langle \psi | x \rangle \langle x | \hat{p} | \psi \rangle$$

$$= \int dx \langle \psi | x \rangle \frac{\hbar}{i} \frac{\partial}{\partial x} \langle x | \psi \rangle$$

$$= \int dx \langle x | \psi \rangle^* \frac{\hbar}{i} \frac{\partial}{\partial x} \langle x | \psi \rangle$$

These results suggest that in position space the momentum operator takes the form

$$\hat{p} \to \frac{\hbar}{i} \frac{\partial}{\partial x}$$
.

4. Position operator \hat{x} in the momentum basis.

$$\langle p|\hat{x}|\psi\rangle = \int dx \langle p|x\rangle \langle x|\hat{x}|\psi\rangle$$

$$= \int dx x \langle p|x\rangle \langle x|\psi\rangle$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \int dx x e^{-\frac{ipx}{\hbar}} \langle x|\psi\rangle$$

$$= i\hbar \frac{\partial}{\partial p} \frac{1}{\sqrt{2\pi\hbar}} \left(\int dx e^{-\frac{ipx}{\hbar}} \langle x|\psi\rangle \right)$$

$$= i\hbar \frac{\partial}{\partial p} \int dx \langle p|x\rangle \langle x|\psi\rangle$$

$$= i\hbar \frac{\partial}{\partial p} \langle p|\psi\rangle$$

Then we have

$$\langle p | \hat{x} | \psi \rangle = i\hbar \frac{\partial}{\partial p} \langle p | \psi \rangle.$$

Using this result, we get

$$\begin{split} \langle \phi | \hat{x} | \psi \rangle &= \int dp \langle \phi | p \rangle \langle p | \hat{x} | \psi \rangle \\ &= \int dp \langle \phi | p \rangle i\hbar \frac{\partial}{\partial p} \langle p | \psi \rangle \\ &= \int dp \langle p | \phi \rangle^* i\hbar \frac{\partial}{\partial p} \langle p | \psi \rangle \end{split}$$

These results suggest that in momentum space the position operator takes the form

$$\hat{x} \to i\hbar \frac{\partial}{\partial p}.$$

5. The finite translation operator

What is the operator $\hat{T}(a)$ corresponding to a finite translation a? We find it by the following procedure. We divide the interval into N parts of size dx = a/N. As $N \rightarrow \infty$, a/N becomes infinitesimal.

$$\hat{T}(dx) = \hat{1} - \frac{i}{\hbar} \hat{p}(\frac{a}{N}).$$

Since a translation by a equals N translations by a/N, we have

$$\hat{T}(a) = \lim_{N \to \infty} [\hat{1} - \frac{i}{\hbar} \hat{p}(\frac{a}{N})]^N = \exp(-\frac{i}{\hbar} \hat{p}a).$$

Here we use the formula

$$\lim_{N \to \infty} (1 + \frac{1}{N})^N = e , \qquad \lim_{N \to \infty} (1 - \frac{1}{N})^N = e^{-1}$$

$$\lim_{N \to \infty} \left[\left(1 - \frac{ax}{N} \right)^{\frac{N}{ax}} \right]^{ax} = \lim_{N \to \infty} \left(1 - \frac{ax}{N} \right)^{N} = (e^{-1})^{ax} = e^{-ax}$$

In summary, we have

$$\hat{T}(a) = \exp(-\frac{i}{\hbar}\,\hat{p}a).$$

6. Discussion on the commutation relation

It is interesting to calculate

$$\hat{T}^{+}(a)\hat{x}\hat{T}(a) = e^{\frac{i}{\hbar}\hat{p}a}\hat{x}e^{-\frac{i}{\hbar}\hat{p}a},$$

by using the Baker-Hausdorff theorem:

$$\exp(\hat{A}x)\hat{B}\exp(-\hat{A}x) = \hat{B} + \frac{x}{1!}[\hat{A},\hat{B}] + \frac{x^2}{2!}[\hat{A},[\hat{A},\hat{B}]] + \frac{x^3}{3!}[\hat{A},[\hat{A},[\hat{A},\hat{B}]]] + \dots$$

When x = 1, we have

$$\exp(\hat{A})\hat{B}\exp(-\hat{A}) = \hat{B} + \frac{1}{1!}[\hat{A},\hat{B}] + \frac{1}{2!}[\hat{A},[\hat{A},\hat{B}]] + \frac{1}{3!}[\hat{A},[\hat{A},[\hat{A},\hat{B}]]] + \dots$$

Then we have

$$\hat{T}^{+}(a)\hat{x}\hat{T}(a) = e^{\frac{i}{\hbar}\hat{p}a}\hat{x}e^{-\frac{i}{\hbar}\hat{p}a} = \hat{x} + \left[\frac{i}{\hbar}\hat{p}a,\hat{x}\right] = \hat{x} + \frac{i}{\hbar}a[\hat{p},\hat{x}] = \hat{x} + \frac{i}{\hbar}a\frac{\hbar}{i} = \hat{x} + a\hat{1}.$$

So we confirmed that the relation

$$\hat{T}^+(a)\hat{x}\hat{T}(a) = \hat{x} + a\hat{1},$$

holds for any finite translation operator.

7. Invariance of Hamiltonian under the translation

Now we consider the condition for the invariance of Hamiltonian \hat{H} under the translation.

The average value of \hat{H} in the new state $|\psi'\rangle$ is equal to the average value of \hat{H} in the new state $|\psi\rangle$.

$$\langle \psi' | \hat{H} | \psi' \rangle = \langle \psi | \hat{H} | \psi \rangle,$$

or

$$\hat{T}^+(dx)\hat{H}\hat{T}(dx) = \hat{H}$$
, or $\hat{H}\hat{T}(dx) = \hat{T}(dx)\hat{H}$,

or

$$\hat{H}(\hat{1} - \frac{i}{\hbar} \hat{p} dx) = (\hat{1} - \frac{i}{\hbar} \hat{p} dx)\hat{H}.$$

Then we have

$$[\hat{H},\hat{p}]=0.$$

8. ((Sakurai 1-28))

(a) Let x and p_x be the coordinate and linear momentum in one dimension. Evaluate the classical Poisson bracket.

$$[x, F(p_x)]_{classical}$$
.

(b) Let \hat{x} and \hat{p}_x be the corresponding quantum-mechanical operators this time. Evaluate the commutator

$$[\hat{x}, \exp(\frac{i\hat{p}_x a}{\hbar})].$$

(c) Using the result obtained in (b), prove that

$$\exp(\frac{i\hat{p}_x a}{\hbar})|x'\rangle$$
, $\hat{x}|x'\rangle = x'|x'\rangle$

is an eigenstate of the coordinate operator x, What is the corresponding eigenvalue?

((Solution))

(a)

$$[x, F(p_x)]_{classical} = \frac{\partial x}{\partial x} \frac{\partial F(p_x)}{\partial p_x} - \frac{\partial x}{\partial p_x} \frac{\partial F(p_x)}{\partial x} = \frac{\partial F(p_x)}{\partial p_x}$$

(b) We use the Gottfried's result

$$[\hat{x}, \exp(\frac{i\hat{p}_x a}{\hbar})] = i\hbar \frac{\partial}{\partial \hat{p}} \exp(\frac{i\hat{p}_x a}{\hbar}) = -a \exp(\frac{i\hat{p}_x a}{\hbar})$$

(c)

$$\hat{x} \exp(\frac{i\hat{p}_x a}{\hbar}) = \exp(\frac{i\hat{p}_x a}{\hbar})\hat{x} - a \exp(\frac{i\hat{p}_x a}{\hbar})$$

Then we have

$$\hat{x} \exp(\frac{i\hat{p}_x a}{\hbar}) |x'\rangle = \exp(\frac{i\hat{p}_x a}{\hbar}) \hat{x} |x'\rangle - a \exp(\frac{i\hat{p}_x a}{\hbar}) |x'\rangle$$
$$= (x' - a) \exp(\frac{i\hat{p}_x a}{\hbar}) |x'\rangle$$

The ket $\exp(\frac{i\hat{p}_x a}{\hbar})|x'\rangle$ is the eigenket of \hat{x} with an eigenvalue (x'-a).

$$\exp(\frac{i\hat{p}_x a}{\hbar})|x'\rangle = |x'-a\rangle$$

Therefore $\hat{T}_x(a) = \exp(\frac{i\hat{p}_x a}{\hbar})$ is a translation operator.

9. ((Sakurai 1-29))

(a) Gottfried (1966) states that

$$[\hat{x}_i, G(\hat{p})] = i\hbar \frac{\partial}{\partial \hat{p}_i} G(\hat{p}), \qquad [\hat{p}_i, F(\hat{x})] = -i\hbar \frac{\partial}{\partial \hat{x}_i} F(\hat{x})$$

can be easily derived from the fundamental commutation relations for all functions of F and G can be expressed as power series in their arguments. Verify this statement.

(b) Evaluate $[\hat{x}^2, \hat{p}^2]$. Compare your result with the classical Poisson bracket $[x^2, p^2]_{classic}$.

((Solution))

(a)

(i)

$$\begin{split} \left\langle \boldsymbol{p} \left[\left[\hat{x}_{i}, G(\hat{\boldsymbol{p}}) \right] \right] \boldsymbol{\alpha} \right\rangle &= \left[i\hbar \frac{\partial}{\partial p_{i}} G(\boldsymbol{p}) - G(\boldsymbol{p}) i\hbar \frac{\partial}{\partial p_{i}} \right] \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle \\ &= i\hbar \frac{\partial}{\partial p_{i}} \left[G(\boldsymbol{p}) \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle \right] - i\hbar G(\boldsymbol{p}) \frac{\partial}{\partial p_{i}} \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle \\ &= i\hbar \left(\frac{\partial}{\partial p_{i}} G(\boldsymbol{p}) \right) \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle + i\hbar G(\boldsymbol{p}) \frac{\partial}{\partial p_{i}} \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle - i\hbar G(\boldsymbol{p}) \frac{\partial}{\partial p_{i}} \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle \\ &= i\hbar \left(\frac{\partial}{\partial p_{i}} G(\boldsymbol{p}) \right) \left\langle \boldsymbol{p} \middle| \boldsymbol{\alpha} \right\rangle \\ &= \left\langle \boldsymbol{p} \middle| i\hbar \frac{\partial}{\partial \hat{p}_{i}} G(\hat{\boldsymbol{p}}) \middle| \boldsymbol{\alpha} \right\rangle \end{split}$$

Thus we have the final result

$$[\hat{x}_i, G(\hat{p})] = i\hbar \frac{\partial}{\partial \hat{p}_i} G(\hat{p})$$

(ii)

$$\langle \boldsymbol{r} \| [\hat{p}_{i}, F(\hat{\boldsymbol{r}})] | \alpha \rangle = \left[\frac{\hbar}{i} \frac{\partial}{\partial x_{i}} F(\boldsymbol{r}) - F(\boldsymbol{r}) \frac{\hbar}{i} \frac{\partial}{\partial x_{i}} \right] \langle \boldsymbol{r} | \alpha \rangle$$

$$= \frac{\hbar}{i} \frac{\partial}{\partial x_{i}} [F(\boldsymbol{r}) \langle \boldsymbol{r} | \alpha \rangle] - \frac{\hbar}{i} F(\boldsymbol{r}) \frac{\partial}{\partial x_{i}} \langle \boldsymbol{r} | \alpha \rangle$$

$$= \frac{\hbar}{i} \left(\frac{\partial}{\partial x_{i}} F(\boldsymbol{r}) \right) \langle \boldsymbol{r} | \alpha \rangle + \frac{\hbar}{i} F(\boldsymbol{r}) \frac{\partial}{\partial x_{i}} \langle \boldsymbol{r} | \alpha \rangle] - \frac{\hbar}{i} F(\boldsymbol{r}) \frac{\partial}{\partial x_{i}} \langle \boldsymbol{r} | \alpha \rangle$$

$$= \frac{\hbar}{i} \left(\frac{\partial}{\partial x_{i}} F(\boldsymbol{r}) \right) \langle \boldsymbol{r} | \alpha \rangle$$

$$= \langle \boldsymbol{r} | \frac{\hbar}{i} \frac{\partial}{\partial \hat{x}_{i}} F(\hat{\boldsymbol{r}}) | \alpha \rangle$$

or

$$[\hat{p}_i, F(\hat{\mathbf{r}})] = \frac{\hbar}{i} \frac{\partial}{\partial \hat{x}_i} F(\hat{\mathbf{r}})$$

(b)

$$\begin{split} [\hat{x}^2, \hat{p}^2] &= \hat{x}[\hat{x}, \hat{p}^2] + [\hat{x}, \hat{p}^2]\hat{x} \\ &= \hat{x}i\hbar \frac{\partial}{\partial \hat{p}} \hat{p}^2 + i\hbar \left(\frac{\partial}{\partial \hat{p}} \hat{p}^2\right)\hat{x} \\ &= 2i\hbar (\hat{x}\hat{p} + \hat{p}\hat{x}) \end{split}$$

The classical Poisson bracket is defined by

$$[x^{2}, p^{2}]_{classic} = \frac{\partial x^{2}}{\partial x} \frac{\partial p^{2}}{\partial p} - \frac{\partial x^{2}}{\partial p} \frac{\partial p^{2}}{\partial x}$$
$$= 4xp$$
$$= 2(xp + px)$$

10. ((Sakurai 1-30))

The translation operator for a finite (spatial) displacement is given by

$$\hat{T}(\boldsymbol{l}) = \exp(-\frac{i\hat{\boldsymbol{p}}\cdot\boldsymbol{l}}{\hbar}),$$

where \hat{p} is the momentum operator.

(a) Evaluate

$$[\hat{x},\hat{T}(\boldsymbol{l})]$$

(b) Using (a) (or otherwise), demonstrate how the expectation value $\langle x \rangle$ changes under translation.

((Solution))

(a)

The translation operator is defined by

$$\hat{T}(\boldsymbol{l}) = \exp(-\frac{i\hat{\boldsymbol{p}} \cdot \boldsymbol{l}}{\hbar})$$

$$[\hat{x}_i, \hat{T}(\boldsymbol{l})] = i\hbar \frac{\partial}{\partial \hat{p}_i} \hat{T}(\boldsymbol{l}) = l_i \exp(-\frac{i\hat{\boldsymbol{p}} \cdot \boldsymbol{l}}{\hbar}) = l_i \hat{T}(\boldsymbol{l})]$$

or

$$[\hat{r},\hat{T}(l)] = l\hat{T}(l)$$

(b)

$$|\alpha'\rangle = \hat{T}(l)|\alpha\rangle$$

$$\langle \alpha' | \hat{r} | \alpha' \rangle = \langle \alpha | \hat{T}^{+}(\boldsymbol{l}) \hat{r} \hat{T}(\boldsymbol{l}) | \alpha' \rangle$$

$$= \langle \alpha | \hat{T}^{+}(\boldsymbol{l}) [\hat{T}(\boldsymbol{l}) \hat{r} + \boldsymbol{l} \hat{T}(\boldsymbol{l})] | \alpha' \rangle$$

$$= \langle \alpha | \hat{r} + \boldsymbol{l} | \alpha' \rangle$$

or

$$\langle \alpha' | \hat{r} | \alpha' \rangle = \langle \alpha | \hat{r} | \alpha \rangle + l$$

11. ((Sakurai 1-31))

Prove

$$\langle r \rangle \rightarrow \langle r \rangle + dr', \qquad \langle p \rangle \rightarrow \langle p \rangle$$

under infinitesimal translation.

((Solution))

We use the commutation relations

$$[\hat{r},\hat{T}(dr)] = dr\hat{T}(dr)$$

and

$$[\hat{\boldsymbol{p}},\hat{T}(d\boldsymbol{r})]=0$$

We have

$$\langle \alpha | \hat{T}^{+}(d\mathbf{r})\hat{\mathbf{r}}\hat{T}(d\mathbf{r}) | \alpha \rangle = \langle \alpha | \hat{T}^{+}(d\mathbf{r})[\hat{T}(d\mathbf{r})\hat{\mathbf{r}} + d\mathbf{r}\hat{T}(d\mathbf{r}) | \alpha \rangle$$
$$= \langle \alpha | \hat{\mathbf{r}} + d\mathbf{r} | \alpha \rangle$$

or

$$\langle \alpha' | \hat{\mathbf{r}} | \alpha' \rangle = \langle \alpha | \hat{\mathbf{r}} | \alpha \rangle + d\mathbf{r}$$

Similarly

$$\langle \alpha | \hat{T}^{+}(d\mathbf{r}) \hat{\mathbf{p}} \hat{T}(d\mathbf{r}) | \alpha \rangle = \langle \alpha | \hat{T}^{+}(d\mathbf{r}) \hat{T}(d\mathbf{r}) \hat{\mathbf{p}} | \alpha \rangle = \langle \alpha | \hat{\mathbf{p}} | \alpha \rangle$$

12. ((Sakurai 1-33))

- (a) Prove the following:
- (i)

$$\langle p' | \hat{x} | \alpha \rangle = i\hbar \frac{\partial}{\partial p'} \langle p' | \alpha \rangle$$

(ii)

$$\langle \beta | \hat{x} | \alpha \rangle = \int dp \langle p' | \beta \rangle^* i\hbar \frac{\partial}{\partial p'} \langle p' | \alpha \rangle$$

(b) What is the physical significance of

$$\exp(\frac{i\hat{x}p_0}{\hbar}),$$

where \hat{x} is the position operator and p_0 is some number with the dimension of momentum? Justify your answer.

((Solution))

(a)

(i)

$$\begin{split} \left\langle p' \middle| \hat{x} \middle| \alpha \right\rangle &= \int dx' \left\langle p' \middle| x' \right\rangle \left\langle x' \middle| \hat{x} \middle| \alpha \right\rangle \\ &= \int dx' \, x' \left\langle p' \middle| x' \right\rangle \left\langle x' \middle| \alpha \right\rangle \\ &= \frac{1}{\sqrt{2\pi\hbar}} \int dx' \, x' \, e^{\frac{ip'x'}{\hbar}} \left\langle x' \middle| \alpha \right\rangle \\ &= -i\hbar \frac{\partial}{\partial p'} \frac{1}{\sqrt{2\pi\hbar}} \left(\int dx' \, e^{\frac{ip'x'}{\hbar}} \left\langle x' \middle| \alpha \right\rangle \right) \\ &= i\hbar \frac{\partial}{\partial p'} \int dx' \left\langle p' \middle| x' \right\rangle \left\langle x' \middle| \alpha \right\rangle \\ &= i\hbar \frac{\partial}{\partial p'} \left\langle p' \middle| \alpha \right\rangle \end{split}$$

(ii)

$$\begin{split} \left\langle \beta \middle| \hat{x} \middle| \alpha \right\rangle &= \int dp' \middle\langle \beta \middle| p' \middle\rangle \middle\langle p' \middle| \hat{x} \middle| \alpha \middle\rangle \\ &= \int dp' \middle\langle \beta \middle| p' \middle\rangle \middle\langle p' \middle| \hat{x} \middle| \alpha \middle\rangle \\ &= \int dp' \middle\langle \beta \middle| p' \middle\rangle i\hbar \frac{\partial}{\partial p'} \middle\langle p' \middle| \alpha \middle\rangle \end{split}$$

(b)

$$\hat{p} \exp(\frac{ip_0\hat{x}}{\hbar}) |p'\rangle = \left\{ \left[\hat{p}, \exp(\frac{ip_0\hat{x}}{\hbar}) \right] + \exp(\frac{ip_0\hat{x}}{\hbar}) \hat{p} \right\} |p'\rangle$$

$$= \left\{ p_0 \exp(\frac{ip_0\hat{x}}{\hbar}) + \exp(\frac{ip_0\hat{x}}{\hbar}) p' \right\} |p'\rangle$$

or

$$\hat{p} \exp(\frac{ip_0\hat{x}}{\hbar}) |p'\rangle = (p_0 + p') \exp(\frac{ip_0\hat{x}}{\hbar}) |p'\rangle.$$

Therefore $\exp(\frac{ip_0\hat{x}}{\hbar})|p'\rangle$ is the eigenket of \hat{p} with an eigenvalue of $(p' + p_0)$.

REFERENCES

J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, second edition (Addison-Wesley, New York, 2011).

John S. Townsend, A Modern Approach to Quantum Mechanics, second edition (University Science Books, 2012).

APPENDIX

Properties of the translation operator

(i)
$$\hat{T}(a+b) = \hat{T}(a)\hat{T}(b) = \hat{T}(b)\hat{T}(a)$$

((proof))

$$\hat{T}(b)|x\rangle = |x+b\rangle,$$

$$\hat{T}(a)\hat{T}(b)|x\rangle = \hat{T}(a)|x+b\rangle = |x+a+b\rangle$$

$$\hat{T}(a+b)|x\rangle = |x+a+b\rangle$$

Then we have

$$\hat{T}(a+b) = \hat{T}(a)\hat{T}(b) = \hat{T}(b)\hat{T}(a)$$

(ii)
$$\hat{T}(0) = \hat{1}$$

((Proof))

For any $|x\rangle$, we have

$$\hat{T}(0)|x\rangle = |x\rangle$$

leading to the relation

$$\hat{T}(0) = \hat{1}.$$

(iii)
$$\hat{T}(a)\hat{T}(-a) = \hat{T}(-a)\hat{T}(a) = \hat{1}$$

((Proof))

In the relation

$$\hat{T}(a+b) = \hat{T}(a)\hat{T}(b) = \hat{T}(b)\hat{T}(a),$$

we assume that a + b = 0. Then we have

$$\hat{T}(a)\hat{T}(-a) = \hat{T}(-a)\hat{T}(a) = \hat{T}(0) = \hat{1}$$

leading to the relation

$$\hat{T}(-a) = \hat{T}^{-1}(a) = \hat{T}^{+}(a)$$