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Here we discuss the translation operator. The linear momentum is a generator of the
translation. This is in contrast to the rotation operator where the angular momentum is a

generator of the operation.

1 Definition of the translation operator
Here we discuss the transportation operator

'f(a) : translation operator (unitary operator)

) =T @),
or
W= @.
()  Analogy from classical mechanics for x

The average value of X in the new state |l//'> is equal to the average value of X in the

new state |y) plus the X-displacement a.
(W ["ly) = (y[%+alw),
or
Wit @sT@ly)=(v[R+aw),
or
T*@)XT(a)=%+al. (1)
Normalization condition:
W) =T @T@|y)=(ry).
or

T (@T (@) =1, ()



((Unitary operator))
From Egs.(1) and (2), we have

$T(a)=T(a)k+a)=T(a)k+aT (a).
((Commutation relation))
[%,T(a)]=aT(a).
Here we note that
&T (a)|x) =T ()% x)+aT (a)|x) = (x+a)T (a)|).
Thus T(a)[x) is the eigenket of & with the eigenvalue (x+a)
T (a)|x) =|x+a).
or
T*(a)|x+a)=|x)
We note that
T (@)T(a)x)=T"(@)x+a)=|x).
When x is replaced by x-a in the relation T~ (a)|x +a) =|x)

T @)|x)=|x-a),

o
x-a)=T @)
o
(x-al=(xf@.
Note that



Xy = (T @) = (x-aly) =w(x-a).

(ii) Analogy from the classical mechanics for p
The average value of p in the new state |1//'> is equal to the average value of P in

the new state |w> .
(w'[Bly) = (w[plw).

or
(W @pT@|w)=(w|plv)

T (@)pT(a)=p

So we have the commutation relation

A

[T(a),p]=0.
From the above commutation relation, we have

pT(a)|p)=T(a)p|p) = pT (a)|p).

Thus 'I°(a)| p> is the eigenket of P associated with the eigenvalue p.

2 Infinitesimal translation operator
We now define the infinitesimal translation operator by

f(dx):i—%édx,

where G is called a generator of translation. The dimension of G is that of the linear
momentum.

The operator T (dx) satisfies the relations:
T (d)T (dx) =1, (1)
T*(dx)XT (dx) = R+ dxd,

or



KT (dx) =T (dx)K = dxT (dx), )
and

[T (dx), p] =0, 3)
Using the relation (1), we get

s I A .

1-—Gdx)"(1-—Gdx) =1,

( - ) ( - )
or

(i+%é*dx)(i-%édx)=i+%(é*—é)dx+0[(dx)2]=i,

or

A

G =G.

The operator G is a Hermitian operator. Using the relation (2), we get
%(1- %édx) —(1- %édx)f( =dx(1- %de) = dx1 +O(dx)?,

or

i . n
—[X,Gldx =dxl,
h[ ]

or
[X,G]=iAl.

Using the relation (3), we get
A~ ioa
1-—Gdx, p]=0.
[ > Pl

Then we have

[G,p]=0.



From these two commutation relations, we conclude that
G=9p,
and

pdx .

A ~ ]
TAx)=1-—
(dx) 2

We see that the position operator and the momentum operator p obeys the commutation
relation

[X,p]=1nl.
which leads to the Heisenberg’s principle of uncertainty.

3 Momentum operator p in the position basis.
Using the relation

T(50]x) =[x + ), 1%&»4_%ﬁ&.

we get

T(X)|w) :'I:(ﬁx)_[dx' X)X|y) :jdx'|x'+5x><x'|w>
—Idx NxX'=|w) jdx "y (X'~ 5K)

We apply the Taylor expansion:
' ' a '
p(X'=X) =y (X') - 5X;!//(X ).
X
Substitution:
T(5%)|w) j dx'| X )y (X'—0X)
—Mx W)=y ()]
= dx §x—
- Jox| (x|

=|y)- 5le dx'| x'>&<x'|z//>



From the definition, we have

T@olw)=( —% pA)|y).

Comparing these two equations, we obtain the relation

A h 1 1 6 1
o) =2 o) (),

or

(x

h o
V/>:dex'<x|x'>&<x'|‘//>
h o
- i_jdx'g(x— )= {(xlw)

h o
—i—a—X<X|V/>

p

We obtain a very important formula
h o
(cloly) =22 ()
Note that

(| Bly) = [ ey |X)(x]plw)

4. Position operator Xin the momentum basis.



(P} = [l
- ool

_ipx
:ﬁjdxxe " (x|w)
Sl 1 J'dxem"*X<X|w>
op  27h

.. 0
in-Z fox(p o)ly)

.. 0
~in-Z (ply)

Then we have

(p

X

v)=in2(ply).

Using this result, we get

(#18]y) = [dn(g|p){p[w)

= [ap(o]pjin = (plv)

x. 0
=|d ih—
Jap(plg) inZ {ply)
These results suggest that in momentum space the position operator takes the form

X— ihi .
p
5. The finite translation operator
What is the operator f(a) corresponding to a finite translation a? We find it by the

following procedure. We divide the interval into N parts of size dx = a/N. As N—oo, a/N
becomes infinitesimal.

T(dx)=1i- f)(%)-

S| -

Since a translation by a equals N translations by a/N, we have



. .o~ 1, a i,
T(@) = lim[{-—p(]" =exp(——-pa).

0

Here we use the formula

A
\

a

Ax=a/N

RN S IR
im0 =e.  lim(1-)" =e

N
: _axaax_ : _aXN_ -lyax _ p-ax
lim[(1 —N) I" = lim( —N) =(e7)" =e

In summary, we have
5 i
T(@= eXp(—g pa).

6. Discussion on the commutation relation
It is interesting to calculate

A 2 l;’5a N —iﬁa
T'(@)XT(a)=e" Xe " ,
by using the Baker-Hausdorff theorem:

A~ ~

2 3
exp(Ax)B exp(—Ax) = I§+%[A,I§]+%[A,[A, I§]]+%[A,[A,[ BI]]+...
When X = 1, we have
. N S DU I
exp(A)Bexp(-A) = B+F[A,B]+5[A,[ ,B]]+§[A,[A,[A,B]]]+-~-
Then we have

i
——pa

Tr@sT (@) =e" R " =R+]



So we confirmed that the relation
T*(@)XT(a)=%+al,
holds for any finite translation operator.

7. Invariance of Hamiltonian under the translation

Now we consider the condition for the invariance of Hamiltonian H under the
translation.

The average value of H in the new state |l//'> is equal to the average value of H in the

new state |l//> .

or
T (d)HT (dx)=H , or HT (dx) =T (dx)H ,
or
ﬁ(i—%bdx):(i—;—bdx)l—] .
Then we have
[H,p]=0.

8. ((Sakurai 1-28))
(a) Let x and px be the coordinate and linear momentum in one dimension. Evaluate
the classical Poisson bracket.

[X, F ( px)]classical .

(b) Let X and P, be the corresponding quantum-mechanical operators this time.

Evaluate the commutator

[ﬁ,exp(%n .



(©) Using the result obtained in (b), prove that
pX O " __ ' '
o). 3)=x]x)

is an eigenstate of the coordinate operator x, What is the corresponding

eigenvalue?
((Solution))
(a)

X F (P i = 5 o = DT TR
(b)

We use the Gottfried’s result

. ipa., . 0 ip.a ip.a
X, V] =1#h *“)=—-a —X=
[X,exp( 5 )] 2. exp( 5 ) exp( 5 )
(©)

Then we have

X') - aexp(-2 Ip,a 5)lx)

Rexp(—— px )| > exp(% X

ip
= (x-a)exp()[x)
The ket exp(%ﬂ X'> is the eigenket of X with an eigenvalue (X’-a).
ipa
exp(pTX)| X') =|x—a)
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- ip,a. . .
Therefore T, (a) = exp(pTX) is a translation operator.

9. ((Sakurai 1-29))

(a) Gottfried (1966) states that
[%.G(p))=in-2-G(p),  [p.F(0]=-in2F(%)

o oA

can be easily derived from the fundamental commutation relations for all
functions of F and G can be expressed as power series in their arguments. Verify
this statement.

(b) Evaluate [)”(2, f)z]. Compare your result with the classical Poisson bracket
[Xza pz]classic :

((Solution))

(a)

(1)

(p[%.G(P)]

Y B
a) = [in o G(p)-G(p)in o Kp|a)

_in 0 _inG(p-2-
= [G(p)(p|)]-inG(p) » (p|a)

i 2 G (0)-2 (pla)— inG ()2
- 'h(api G(p) |( p|a)+inG(p) » (p|ar)-inG(p) > (p|a)

= ih(a%c;( p)j( pla) | |

0
ap

- (plin2-G(pa)

Thus we have the final result

(i)

%.6(P)=in

G(p)
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<r|[f)i>

. h o h o
a)= [Tﬁ_xi F(r)- F(r)Ta—X]<r|a>

h o h 0
= T—[F(r)<r|a>] —— F(r)&<r|a>

=—[—F( )]
Jie

=—[—F(r)

i O
—<rl782i o)
or
h o
[B,,F(P)]= ——F(r)
(b)
[R%,p°]=R[R, p*1+[R, p*1R
niy O 4o 0 5 |a
= Xih 1h — X
a’ " aﬁpj
=2iA(Xp + pX)

The classical Poisson bracket is defined by

ox* op>  ox* op’
ox op - op oX
=4xp

=2(Xp + px)

2 2
[X 2 p ]classic =

+— F(r)—<| >]—?F(r)§<r|a>

10.  ((Sakurai 1-30))

The translation operator for a finite (spatial) displacement is given by

T()=

12



where p is the momentum operator.

(a) Evaluate
[%T )]

(b) Using (a) (or otherwise), demonstrate how the expectation value <x> changes

under translation.
((Solution))
(@)

The translation operator is defined by

(1) =exp(-

(%, F ()= -2 (1) = L exp(— 21y =17 (1))
op h

or
[£,T(H]=IT (1)
(b)
@) =T(D)]er)
<a' f a'> = <a T (DFT (1) a'>
=(aT*OT(HF +IT ()]
= <a F+ ||a'>
or

11. ((Sakurai 1-31))
Prove
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(—>(r+dr, (p)>(p)

under infinitesimal translation.

((Solution))
We use the commutation relations

[f,T(dr)]=drT(dr)
and

[p.T(dn]=0
We have

([T *(dr)FT (dr)|a) = (T *(dr)[T (dr)f +drT (dr)|a)
<a|f + dr|a>

or
(alfler) = (affle) +dr

Similarly

(a

T(dr) pT (dr)|er) = ([T *(dr)T(dr) pla) = («|p|a)

12. ((Sakurai 1-33))
(a) Prove the following:

(@)
R — i i '
(Pl =inz-(pla)
(i)
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. +. 0
(BlSlar) = [ap(p| ) in - <(pa)
(b) What is the physical significance of

IXp,
o)

exp(

where X is the position operator and p, is some number with the dimension of

momentum? Justify your answer.

((Solution))
(a)
(@)

(Pl¥ar) = [ax'(px)}(x'%|a)
= jdx' X'(p'|x)(X| )

ip'

- ﬁjdx’ x'e " (x|a)

=in = Jox(p[x){x]a)
_ .ha%<pv|a>
(i1)
(Bl3a)= [an'(5]p){p(Xa)
= [dp'(Blp)(P¥ar)
= [op (gl plin (v
(b)
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p)

ip. X ip. X
—{p, exp<p7°> + exp<p7°) P} p)

ik [T iR ip %
b exp<p7°)| p) = {[ p,exp<p7°>} + exp(pTO) p}

or
ﬁexp(%ﬂ p') = (p, + p')exp(%ﬂ p').

Therefore exp(%ﬂ p'> is the eigenket of p with an eigenvalue of (p° + p,).
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APPENDIX
Properties of the translation operator

i T@+b)=T@T(b)=Tb)T(a)
((proof))
T (b)|x) =|x +D),
T(@)T (b)|x) =T (a)|x+b)=|x+a+b)
T(a+b)x)=|x+a+b)
Then we have
T(a+b)=T(@T(b)=T(D)T(a)
i) TO)=1

((Proof))

For any |X>, we have
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TO)x)=[x)
leading to the relation
T0)=1.
(i) T@T(-a)=T(-a)T(a)=1

((Proof))

In the relation
T(a+b)=T(@T(b)=Tb)T(a),
we assume that a + b =0. Then we have
T(@)T(-a)=T(-a)T(a)=T(0) =1
leading to the relation

T(-a)=T"'(@)=T"(a)
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