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WKB approximation 

This method is named after physicists Wentzel, Kramers, and Brillouin, who all 
developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general 
method of approximating solutions to linear, second-order differential equations, which 
includes the Schrödinger equation. But even though the Schrödinger equation was 
developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of 
this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics 
contain any number of combinations of their initials, including WBK, BWK, WKBJ, 
JWKB and BWKJ. The important contribution of Jeffreys, Wentzel, Kramers and 
Brillouin to the method was the inclusion of the treatment of turning points, connecting 
the evanescent and oscillatory solutions at either side of the turning point. For example, 
this may occur in the Schrödinger equation, due to a potential energy hill. 
(from http://en.wikipedia.org/wiki/WKB_approximation) 
 
________________________________________________________________________ 
Gregor Wentzel (February 17, 1898 – August 12, 1978) was a German physicist known 
for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin 
developed the Wentzel–Kramers–Brillouin approximation in 1926. In his early years, he 
contributed to X-ray spectroscopy, but then broadened out to make contributions to 
quantum mechanics, quantum electrodynamics, and meson theory.  
http://en.wikipedia.org/wiki/Gregor_Wentzel 
 
Hendrik Anthony (2 February 1894 – 24 April 1952) was a Dutch physicist who worked 
with Niels Bohr to understand how electromagnetic waves interact with matter. 
http://en.wikipedia.org/wiki/Hans_Kramers 
 
Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He 
made contributions to quantum mechanics, radio wave propagation in the atmosphere, 
solid state physics, and information theory. 
http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin 
________________________________________________________________________ 
1. Classical limit 
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In the classical domain,    
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which is the criterion of the classical behavior. 
 
2. WKB approximation 

The quantum wavelength does not change appreciably over the distance of one 
wavelength. We start with the de Broglie wave length given by 
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If dV/dx is small, the momentum is large, or both, the above inequality is likely to be 
satisfied  
 
Around the turning point, p(x) = 0. |dV/dx| is very small when V(x) is a slowly changing 
function of x. 
 
Now we consider the WKB approximation, 
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If the potential V is slowly varying function of x, we can assume that 
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WKB approximation

eq1  
—2

2 m
Dx, x, 2  Vx x  ∂ x;

rule1    Exp
—

S & ;

eq2  eq1 . rule1  Simplify


 Sx

— 2 m ∂  2 m Vx  Sx2   — Sx
2 m

rule2 

S 

S0  — S1 
—2

2
S2 

—3

3
S3  —4

4
S4 & ;

eq3  2 ∂ m  2 m Vx  Sx2   — Sx;

eq4  eq3 . rule2  Expand;

list1  Tablen, Coefficienteq4, —, n, n, 0, 6 
Simplify;

  TableForm

0 2 m ∂  2 m Vx  S0x2

1 2 S0x S1x   S0x
2 S1x2  S0x S2x   S1x
3 S1x S2x  1

3
S0x S3x  1

2
 S2x

4 1
12

3 S2x2  4 S1x S3x  S0x S4x  2  S3x
5 1

24
4 S2x S3x  2 S1x S4x   S4x

6 1
72

2 S3x2  3 S2x S4x
 

 
_______________________________________________________________________ 
For each power of ħ, we have 
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Then the WKB solution is given by 
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The wave function has the form 
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where "A  and "B  are constants. 
 
3. The probability current density  

We now consider the case of B = 0. 
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4. WKB approximation near the turning points 

We consider the potential energy V(x) and the energy  shown in the following figure. 
The inadequacy of the WKB approximation near the turning point is evident, since 

0)( xk implies an unphysical divergence of )(x .  
 
(a) V(x): increasing function of x around the turning point x = a 
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(ii) For x<a where V(x)<, 
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(b) V(x): decreasing function of x around the turning point 
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5. Exact solution of wave function around the turning point x= a 
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The Schrödinger equation is given by 
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where  is the energy of a particle with a mass m. We assume that 
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((Note)) 
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Fig. Plot of the Ai(z) (red) and its asymptotic form (blue) as a function of z for z<0. 
 
 
The asymptotic form of the Airy function Bi(z) for large |z|, 
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Fig. Plot of the Bi(z) (red) and its asymptotic form (blue) as a function of z for z<0. 
 
Here we note that 
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______________________________________________________________________ 
6. Connection formula (I; upward) 
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Fig. Connection formula (I; upward). The condition 1
dx

d
 for the WKB 

approximation is not satisfied in the vicinity of x = a. We need the asymptotic 
form the exact solution of the Schrödinger equation. Note that 
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and )( bxII   are determined, depending on the nature of travelling waves, and 
the convergence of wave function at the infinity. 
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From Eqs.(1) and (2) we have the connection rule (I; upward) as follows. 
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at the boundary of x = a. 
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where C1 = A and C2 = B. 
 
______________________________________________________________________ 
7. Exact solution of wave function around the turning point x= b 
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The solution of this equation is given by 
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__________________________________________________________________ 
8. Connection formula-II (downward) 
 

 
 

Fig. Connection formula (II; downward). The condition 1
dx

d
 for the WKB 

approximation is not satisfied in the vicinity of x = b.  We need the asymptotic 
form the exact solution of the Schrödinger equation. Note that 

)()( bxbx IIII    and )()( bxbx IIII   . The forms of )( bxII   

and )( bxII   are determined, depending on the nature of travelling waves, and 
the convergence of wave function at the infinity. 
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The asymptotic form for z>0; 
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Then we have the connection formula (II; downward) as 
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with 

Vx

x
bO

E

 
 
where C1 = A and C2 = B. 
 
9. Tunneling probability 

We apply the connection formula to find the tunneling probability. In order that the 
WKB approximation apply within a barrier, it is necessary that the potential V(x) does not 
change so rapidly. Suppose that a particle (energy  and mass m) penetrates into a barrier 
shown in the figure. There are three regions, I, II, and III. 
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Fig. The connection formula I (upward) is used at x = a and the connection formula II 

(downward) is used at x = b. 
 
For x>b, (region III) 
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(we consider on the wave propagating along the positive x axis), where 
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The connection formula (II, downward) is applied to the boundary between the regions 
III and II. 
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Here we get 
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iAB 2 . 

 
Then we get the wave function of the region II, 
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Next, the connection formula (I; upward) is applied to the boundary between the regions 
II and I. 
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Then we have the wave function of the region I, 
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The first term corresponds to that of the reflected wave and the second term corresponds 
to that of the incident wave. Then the tunneling probability is 
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9. -particle decay: quantum tunneling 
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Fig. Gamov's model for the potential energy of an alpha particle in a radioactive 

nucleus. 
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Fig. The tunneling of a particle from the 238U (Z = 92). The kinetic energy 4.2 MeV. 

http://demonstrations.wolfram.com/GamowModelForAlphaDecayTheGeigerNutt
allLaw/ 

 
For r1<r<r2. 
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The tunneling probability is 
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where m is the mass of -particle (= 4.001506179125 u). fm = 10-15 m (fermi). 

The quantity P gives the probability that in one trial an  particle will penetrate the 
barrier. The number of trials per second could estimated to be 
 

12r

v
N  , 

 
if it were assumed that a particle is bouncing back and forth with velocity v inside the 
nucleus of diameter 2r1. Then the probability per second that nucleus will decay by 
emitting a particle, called the decay rate R, would be 
 

2

12
 e

r

v
R . 

 
((Example)) 

We consider the  particle emission from 238U nucleus (Z = 92), which emits a K = 
4.2 MeV  particle. The a particle is contained inside the nuclear radius r1 = 7.0 fm (fm = 
10-15 m).  
 
(i) The distance r2: 
From the relation 
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Ze
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 , 

 
we get 
 

r2 = 63.08 fm. 
 
(ii) The velocity of a particle inside the nucleus, v: 
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From the relation 
 

2
1 2

1
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where m is the mass of the a particle; m = 4.001506179 u, we get 
 

v = 1.42318 x 107 m/s 
 
(iii) The value of : 
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(iv) The decay rate R: 
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((Mathematica)) 
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10. Schottky barrier 

We consider the Schottky barrier which exists on the junction between a metal 
surface and a n-typed semiconductor surface. The form of the potential energy V(x) for an 
electron can be determined from a Poisson equation with appropriate boundary condition. 
The parabolic form for V(x) is expected. For simplicity, here, we assume that V(x) has a 
triangular form given by 
 

)1()( 0 w

x
VxV   

 
where w is the width of the depletion layer in the Schottky barrier (see a Fig. below) 
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Fig. Electronic band scheme of a metal/semiconductor (n-doped) junction: pinning of 

the Fermi-level FE  in interface states near the neutrality level causes the 

formation of a Schottky-barrier SBe  and a depletion space charge layer within the 

semiconductor. VD is the built-in diffusion voltage. (a) In thermal equilibrium, 
(b) under external bias U. 

 
 
When )(xV , we have the value of x0  
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where  is the energy of electron with a mass m. The transition probability can be 
expressed by 
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Suppose that  =0.  
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when V0 = 0.7 eV, 
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Fig. Transition probability T as a function of the width of the depletion layer. V0 = 0.7 

eV. 1nm = 10 Å 
 
9. Bound state: Bohr-Sommerfeld condition. 
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For x<b (region I), the un-normalized wave function is 
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Using the connection rule (II; downward) 
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Here we use the connection rule (I, upward), 
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From this we have 
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where n = 0, 1, 2, ...  (Bohr-Sommerfeld condition). 
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  is an area inside the trajectory of the particle in the phase space.  

 
10. Eample-1 (Simple harmonics):  

We consider a simple harmonics, 
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11. Example-2: linear potential 

We consider a particle moving in 1D potential of the form 
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because of the odd parity states. Then we get the energy as 
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We now calculate the value  
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where nodd= 2n -1 (n = 1, 2, 3, 4,…), 
 
and 
 

nz  

 
for n = 1, 2, 3,….. Note that nz  is the n-th zero points of the Airy function )(zAi  with 

odd parity. The value of zn can be obtained from the exact solution of the Schrödinger 
equation. The value pm is obtained from the WKB approximation. It is surprising that in 
spite of the approximation, the value of pn is so close to that of -zn  
 

Ai z

z20 15 10 5 5

0.4

0.2

0.2

0.4

 
 
Fig. The Airyfunction Ai(z). The values of z at which Ai(z) becomes zero are denoted 

by blue circles. z = zn.  
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Fig. The potential energy xxV )( . 



0x . Because of the symmetric potential, 

the wave function should have either the even parity or the odd parity. 
 
((Note)) Solution with the even parity 
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where nneven 2  (n = 0, 1, 2, 3,…),  
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Note that qn is nearly equal to -yn, where the derivative of the Airy function Ai(z) with 
respect to z, becomes zero at z = yn. 
 

n  qn  -yn 
0  1.11546 1.01879 
1  3.26163 3,2482 
2  4.82632 4.8201 
3  6.16713 6.16331 
4  7.37485 7.37218 
5  8.49051 8.48849 
6  9.53705 9.53545 
7  10.529  10.5277 
8  11.4762 11.4751 
9  12.3857 12.3848 
10  13.263  13.2622 
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Fig. The Airyfunction Ai(z). The values of z at which the derivative of Ai(z) with 

respect to z becomes zero are denoted by blue circles. z = yn.  
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APPENDIX Connection formula  
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(i) Connection formula at x = a (upward) 
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(ii) Connection formula at x = b (downward) 
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(i) Connection formula at x = b 
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