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WKB approximation

This method is named after physicists Wentzel, Kramers, and Brillouin, who all
developed it in 1926. In 1923, mathematician Harold Jeffreys had developed a general
method of approximating solutions to linear, second-order differential equations, which
includes the Schrdodinger equation. But even though the Schrodinger equation was
developed two years later, Wentzel, Kramers, and Brillouin were apparently unaware of
this earlier work, so Jeffreys is often neglected credit. Early texts in quantum mechanics
contain any number of combinations of their initials, including WBK, BWK, WKBJ,
JWKB and BWKIJ. The important contribution of Jeffreys, Wentzel, Kramers and
Brillouin to the method was the inclusion of the treatment of turning points, connecting
the evanescent and oscillatory solutions at either side of the turning point. For example,
this may occur in the Schrodinger equation, due to a potential energy hill.
(from http://en.wikipedia.org/wiki/WKB_approximation)

Gregor Wentzel (February 17, 1898 — August 12, 1978) was a German physicist known
for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin
developed the Wentzel-Kramers—Brillouin approximation in 1926. In his early years, he
contributed to X-ray spectroscopy, but then broadened out to make contributions to
quantum mechanics, quantum electrodynamics, and meson theory.
http://en.wikipedia.org/wiki/Gregor Wentzel

Hendrik Anthony (2 February 1894 — 24 April 1952) was a Dutch physicist who worked
with Niels Bohr to understand how electromagnetic waves interact with matter.
http://en.wikipedia.org/wiki/Hans_Kramers

Léon Nicolas Brillouin (August 7, 1889 — October 4, 1969) was a French physicist. He
made contributions to quantum mechanics, radio wave propagation in the atmosphere,

solid state physics, and information theory.
http://en.wikipedia.org/wiki/L%C3%A90on_Brillouin
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which is the criterion of the classical behavior.

2. WKB approximation
The quantum wavelength does not change appreciably over the distance of one
wavelength. We start with the de Broglie wave length given by
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If dV/dx is small, the momentum is large, or both, the above inequality is likely to be
satisfied

Around the turning point, p(x) = 0. |dV/dx| is very small when V(x) is a slowly changing
function of x.

Now we consider the WKB approximation,
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When V' — 0,
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If the potential V' is slowly varying function of x, we can assume that
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S(x) =S, (x) +%Sl(x) +%Sz(x) +%S3(x) o,

((Mathematica))



WKB approximation

h2
eql = _ﬂ DI¥[x], {X, 2}] +V[X] ¢[X] -e¢[X];

rulel = {11/-) (Exp[—i S[#]] &)};

eqg2 =eql /- rulel // Simplify
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eqd = (-2em+2mV[x] +S [x]? -4 aS"[X]);
eg4 = eq3 /. rule2 // Expand;

listl = Table[{n, Coefficient[eg4, A, N]}, {n, O, 6}] //
Simplify;

% // TableForm

0 -2me+2mV[x] +S0 [x]?2
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5 2—14 (4S2[X] S3'[X] +2S1'[X] S4'[X] - 1 S4” [X])
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For each power of 7, we have

—2me +2mV (x)+[S,"(x)] =



28,"(0)S,"(x) =iS,"(x),
[S,' ()T +5,'(x)S,'(x) =iS," (x),
(a) Derivation of S,(x)

Suppose that & >V (x). Then we have

[Sy' ()] = 2m[e —V ()] = p*(x)
where

p’(x)=2mle -V (2],
or

Sy'(¥) =%p(x),

or

S,(x) = ij p(x)dx .
Since p(x) = hk(x),

Sy(x) = ihjk(x)dx.
(b)  Derivation of S, (x)

25,'(x)S,"(x) = S,"(x),
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which is independent of sign.



5,0 = [, (e = 2 InlS, ()] = 3 Inl k(o).

or
i, (x) = —%ln[hk(x)] = In[Ak(x)]"'?,
or
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Jhk(x)

(©) Derivation of S,(x)
[S,' ()T +S,'(x)S,' (x) =iS,"(x) ,

iS," () =[S, OF

S,'(x) = S.'(x)

Then the WKB solution is given by

S()=Sy()+ S(x)+h S(x)+h Sy(x) + ...

=+h j k(x)dx — fln[hk(x)] +...
o 2i
The wave function has the form

yv(x)= exp[—%ln(hk(x))] {A'expli _[ k(x)dx]+ B"exp[—i jk(x)dx)]} ,

X0 %o

or
()= ﬁTeXp[zJ (x)dx J%()exp[—ifkmdx]
:\/%exp[ijk(x)dx]ntx/%exp[ J-k(x)dx]
or



where we put

=L p=2 A=A+B, B =i(A-B)

Jn’ Jn’
We now assume that
Suppose that & <V (x). k(x)is replaced by
k(x) > ix(x)

where

K(x)=+2m[V (x) -]

Then we have the wave function

where A" and B" are constants.

3. The probability current density
We now consider the case of B=0.

A i,
w(x)= m expli Ik(x)dx] .

Xo

The probability is obtained as

A 4P
P(x) =y * (x)y(x) = % B %

n
m
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where hik(x)=mv.

The probability current density is
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for for € >V (x),

for e <V (x).
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Fig. Jadt= or J= v|l//|2

4. WKB approximation near the turning points

We consider the potential energy V(x) and the energy & shown in the following figure.
The inadequacy of the WKB approximation near the turning point is evident, since
k(x) — 0 implies an unphysical divergence ofy (x).

(a) V(X): increasing function of X around the turning point X =a

V(x)

A

(1) For x>>a where V(x)>¢,

V0= Zsel] JrCodals J%exp[j k()]

where 41 and B are constants, and

K(x) =%m1/V(x)—g ,



(i)

where

For x<a where V(x)<e,

cos[]ik(x)dx] + sin[]l. k(x)dx],

()C) — C L
LA e Jk(x)

k(x) =%M1/6—V(x).

(b)

with

(i)

where

V(X): decreasing function of X around the turning point

V(x)

/

fan)
S pem=m==

For x<<b where V(x)>¢,

v, ()= J;;—)exp[j K] + J%exp[jm)dx],

K(x) =%M1/V(x)—g ,

For x>b where V(x)<e,

v, (x) = \/% cos( j k(x)dx) + \/(_ sin( j k(x)dx))



k(x) =%m1/€—V(x)

5. Exact solution of wave function around the turning point Xx=a

V(x)

The Schrodinger equation is given by

B dy
2m dx’

+V(x)y = ey (x)

or

B dy
2m dx’

+[V(x)—€ly =0

where ¢ is the energy of a particle with a mass m. We assume that
Vix)-e=g(x—-a)

in the vicinity of x =a, where g>0. Then the Schrodinger equation is expressed by

d’y
dx?

2m
—h—zg(x—a)t//:o.

Here we put

z=(2212gj (x—a).
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((Note))

d _éi_[ngJm d

a_dxdz_ K’ E

d? (2mgj2/3 d?

dx’ "’ dz’
Then we get
d’y(2)
————zy(z)=0.
dz

The solution of this equation is given by
w(2)=2C,4,(2) +C,B,(2)

where we use 2C1 instead of Ci. The asymptotic form of the Airy function 4i(z) for large
|z| is given by

A(z)=7"2|z["* cos(¢ —%) , for z<0
and

A(z)= %72’1/2|Z|_1/4€g , for z>0
where

c=2|zf"
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Aj(z)

Fig. Plot of the 4i(z) (red) and its asymptotic form (blue) as a function of z for z<O0.

The asymptotic form of the Airy function Bi(z) for large |z,

B(z)=-n""?|z["* sin(¢c - %) , for z<0
B(z)=n""z"%", for >0
with
2 3/2
=—|z
s=3l=l
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Bi(z)

AN\ /S
SN NS

Fig.  Plot of the Bi(z) (red) and its asymptotic form (blue) as a function of z for z<O0.

Here we note that

For z<0,

2m 2mg 1
k(x)=‘/?g(a—x)=( e ) |z[2.

Then we have

2mg
2

1/2 4
> j j«/a—xdx

= g(zmgjm(a _x)¥?

Tk(x)dx = (

3\ K
2
—§|Z|3/2=§
For z>0,
2m 2mg "
K(X)ZW/?g(x—a):( e ) |z|"2,
we have
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( K(x)dx = 2mg Ui \Nx—adx
hZ

= g[zmgjm(x _a)?

3\ A
2
:§|Z|3/2:g

Connection formula (I; upward)

V(x)

A
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Fig.

(1)

—attf - ~af -
W(x<<a) Wr(x<a) | Yr(x>a) p(x>=a

Asymptotic forms T Vix)
of exact|solution_+—""

X=Fa

<<1 for the WKB

Connection formula (I; upward). The condition 7
X

approximation is not satisfied in the vicinity of x = a. We need the asymptotic
form the exact solution of the Schrodinger equation. Note that
v,(x>a)=y,(x>>a) and y,(x<a)=y,(x <<a). The forms of y,(x >>b)
and y, (x << b) are determined, depending on the nature of travelling waves, and
the convergence of wave function at the infinity.

Asymptotic form for z<0 (x<a)

The asymptotic form of the wave function for z<0 (x<a) can be expressed by

2C.A(z)+C,B(z)=2Cx ™" | z[""* cos(c —%) —Cyr |z sin(e —%)

where

o Zﬂ 1/6 1 a oz
. (hzj [2Clmcos(£k(x)dx ;) (1)

| T
W sm(-[ k(x)dx — Z)]

_C2
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‘ 2 2mg\"”
c=[k@ds=T1z" k()= ( gj B

(1)  The asymptotic form for z>0;

The asymptotic form of the wave function for z>0 (x>a) can be expressed by

2C,A(z)+ C,B,(z) :Clﬂ‘1/2|z| 4os + Oy s
:”-1/2(2mg

72 j [ 1meXp( jx(x)dx) (2)
+C, J%x)exp(!x(x)dx)]

where

b 2 2mg "’
=J-K'(X)dx=§|2|3/2’ K'(.X') ( gj |Z|1/2.

From Egs.(1) and (2) we have the connection rule (I; upward) as follows.

(I; upward)

at the boundary of x = a.
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V(x)

where C1 = A4 and C2 = B.

7. Exact solution of wave function around the turning point x=Db

V(x)

|

Y

The Schrodinger equation is given by

n*d’
5 dxl/;+V(x)1//:gt//(x),
or
n*d’
~om dxl/;"‘[V(x)—S]l//:O,

where ¢ is the energy of a particle with a mass m. We assume that
V(x)-&=-g(x-b),

in the vicinity of x =b, where g>0. The Schrédinger equation is expressed by

17



LY 2 gy =0,
Here we put

= (2Zgjl/3(x—b)
Then we get

dzdl/;gz) -z (2)=0.

The solution of this equation is given by
w(z)=2C 4,(z)+C,B,(2).

We note the following.

(1) For z<0 (x>b)

k(x) is expressed by

2m 2mg v
k(X)ﬂ/h—zg(x—b):( 2 j 2],

jik(x)dx (2mgj j.v bdx = (2mgj (x—b)3/2=§|z|3/2:g.

(i)  For z>0 (x<b), where & V(x)

x(x) is expressed by

K(x)= \/—8 V(x)]= \/ g(b—x)
(ngj |Z|1/2
hZ

j.’((x)dx_(2mg] inTd (ngj (b—x)""? =§|Z|3/2 =g

hZ
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Fig.

Connection formula-II (downward)

e 3 - - -
Wrr(x<<b Yp(x<b) | Yp(x=b) W (x>=b)
\ Asymptotic forms V(x)

T~—___of exact|zolution

x=b

<<1 for the WKB

dx

approximation is not satisfied in the vicinity of x = 5. We need the asymptotic
form the exact solution of the Schrodinger equation. Note that
v,(x>b)=y,(x>>b) and y,(x<b)=y,(x <<b). The forms of y,(x >>b)

and y, (x << b) are determined, depending on the nature of travelling waves, and

Connection formula (II; downward). The condition

the convergence of wave function at the infinity.

The asymptotic form for z<0;

2C,A.(2)+ C,B,(z2)=2C,x™? | z|"* cos(g —%) —~C,n 7% | 2| sin(g —%)

cos(j e (x)dx — %)

2 2mg v 1
7 (rﬂj [2C, AE)
1. ¢ T
T sin( ! k(e =)

_C2

19



The asymptotic form for z>0;

2C1A,.(z)+C2Bi(z):C17z-‘1/2|z| tos L O e
:”_1/2(2mg

. ) [ 1meXp( J-K(x)dx)
+C, ﬁ exp(;[ K(x)dx)]

Then we have the connection formula (II; downward) as

(I, downward)

with

V(x)

|

o be---

where C1=A and C2 =B

9. Tunneling probability

We apply the connection formula to find the tunneling probability. In order that the
WKB approximation apply within a barrier, it is necessary that the potential /(x) does not
change so rapidly. Suppose that a particle (energy & and mass m) penetrates into a barrier
shown in the figure. There are three regions, I, II, and III.

20



AV(X)

Fig.  The connection formula I (upward) is used at x = @ and the connection formula II
(downward) is used at x = b.

For x>b, (region III)

(we consider on the wave propagating along the positive x axis), where

ki (x) =, /2—’?(5 -V (x)) for x>b

The connection formula (II, downward) is applied to the boundary between the regions
IIT and II.

(IT, downward)

Here we get

21



B=-2i4.

Then we get the wave function of the region II,

V= F exp[— jx(x)dx mexp j K(x)dx]

U
A 0 Vs iA . ¢ Vs
Y = W COS[J. kl (x)dx — Z] + W sm[J. kl (x)dx — Z]
or
v, = 4 exp[—j)[ K(x)dx + jﬁ K(x)dx]— i exp[j K(x)dx — ji K(x)dx]
" 2yx(x) A K(x) ’
\/_(_i) ! exp[— j K(x)dx] + \/% —exp| j K(x)dx]
where
2m
K(x)= Fe V(x)—¢], for a<x<b
and

r =exp[— I x(x)dx],

Next, the connection formula (I; upward) is applied to the boundary between the regions
ITand L.

22



(I; upward)

Here we get

C=—idd
r

D:ér.
2

ky(x) =, /i—?[e -V (x)] for x<a

Then we have the wave function of the region I

-2i4 1

v, = \/sz _COS[J k(x)dx — _]

- 3 J— r sin[j k, (x)dx — —]

m L texpli( j ko (x)de =)+ expl-il j k() =0

- () {exp[z(jk (x)dx =~ )]~ exp[—z(jk(x)dx——)]}

or

v, =

(){(——;)exp[z(j ko ()dr="D)= (G + —)exp[—z(jk (¥)dx - )]}

) k2 ) {(%_Z) eXp["'q k@ + )]+ (?+Z)) expli([ ky (1) + D)1}

23



The first term corresponds to that of the reflected wave and the second term corresponds
to that of the incident wave. Then the tunneling probability is

b
Tl <= exp(—2 I K(x)dx)
Caly a
r 4
where
b
r= exp(—J- x(x)dx)
9. a-particle decay: quantum tunneling
V(r)
Coulomb repusion
E i
1
1
1
O " rn >
Nuclear binding

Fig. Gamov's model for the potential energy of an alpha particle in a radioactive
nucleus.

24



Re ¢ (r)

nuclear potential (MeV)
— |
S —
S
S
—
|
m

7

Fig. The tunneling of a particle from the 23U (Z = 92). The kinetic energy 4.2 MeV.
http://demonstrations.wolfram.com/GamowModelForAlphaDecayTheGeigerNutt

allLaw/
For r<r<r.
1
K(r)= %«/2m1/V(r) -&
Atr=r,
27’
&= .
4re,r,

The tunneling probability is
P=e =exp[-2 j x(r)dr],

where

25



y = ]Z.K(r)dr

2m

= —]% V(r)—edr

/]
= Zme '[ r—z—ldr
/) r

2

= 2mé ry[arccos n i(l—i)]
h 7, 7, 7,

where m is the mass of a-particle (= 4.001506179125 u). fm = 10> m (fermi).
The quantity P gives the probability that in one trial an « particle will penetrate the
barrier. The number of trials per second could estimated to be

NoY
2n,

if it were assumed that a particle is bouncing back and forth with velocity v inside the

nucleus of diameter 271. Then the probability per second that nucleus will decay by

emitting a particle, called the decay rate R, would be

Voo
R=—-=~e%.
2r,

((Example))

We consider the o particle emission from 2**U nucleus (Z = 92), which emits a K =
4.2 MeV a particle. The a particle is contained inside the nuclear radius 71 = 7.0 fm (fm =
10715 m).

(1) The distance 72:
From the relation

K- 2Ze* ’
4re,r,
we get
r2=63.08 fm.

(11) The velocity of a particle inside the nucleus, v:
26



From the relation

1
K, =—m’

a

where m, is the mass of the a particle; m, =4.001506179 u, we get

v=1.42318 x 10’ m/s
(ii1))  The value of y

A 2mK
7]

[, arccos f}-— r(r,—11)]=51.8796

(iv)  The decay rate R:

R=—"¢2=8813x107%,

F

((Mathematica))

27



Clear["Global %"];

rulel = {u - 1.660538782x 107, eV - 1.602176487 x 107",
ge » 1.602176487 x 1071°, c - 2.99792458 x 108,
B > 1.05457162853 x 10™**, €0 -» 8.854187817 x 10712,
MeV - 1.602176487 x 1073, Ma - 4.001506179125 u,
fm > 107, 71592, r1-»7fm, K1 - 4.2 MeV};

2 71 ge?

eq0 = K1 == — //. rulel
47e0r

4.24502 x 10-26

r

6.72914x 10713 -

eqOl = Solve[eqO0, r]; r2=r /. eq01[[1]]
6.30842 x 1014

r2
— /. rulel
m

63.0842

1
eql = —2 Ma v? == K1 //. rulel; eq2 = Solve[eql, Vv];
vli=vVv/.eq2[[2]]

1.42318x 10

V2 MaK1l ri
y=—"H-"—"—" r2ArcCos[ — ]—Vrl (r2 -rl) | //.
h r2
rulel
51.8796

vl
Rl =—— Exp[-2¥] //- rulel
2rl

8.81282x 10 %°
28



10.  Schottky barrier
We consider the Schottky barrier which exists on the junction between a metal

surface and a n-typed semiconductor surface. The form of the potential energy V(x) for an
electron can be determined from a Poisson equation with appropriate boundary condition.
The parabolic form for V(x) is expected. For simplicity, here, we assume that V(x) has a

triangular form given by
X

V(x)=V,(1--)
w

where w is the width of the depletion layer in the Schottky barrier (see a Fig. below)

V(x)

29



a) Metal n-Semiconductor

—
T e e e — — —




b) lE

77

xv

Fig. Electronic band scheme of a metal/semiconductor (n-doped) junction: pinning of
the Fermi-level E, in interface states near the neutrality level causes the

formation of a Schottky-barrier ed, and a depletion space charge layer within the

semiconductor. VD is the built-in diffusion voltage. (a) In thermal equilibrium,
(b) under external bias U.

When V' (x) = ¢, we have the value of x0

X=X, :w(l—i)
0

where ¢ is the energy of electron with a mass m. The transition probability can be
expressed by

31



T= exp[—ZT K(x)dx]

where

K(x):wfi—T[V(x)—g] for 0<x<x,.

Using the Mathematica we calculate the integral as

Tk(x)dx = xﬁ /i—T[V(x) —&ldx

2m'¢ X
_ [m204-o”
n’ 37,

where V(x)=V,(1- 1) . Then we have
w

2_71’14(V0 _8)3/2 "

I(@)=expl—y =5 —
0

]

Suppose that £ =0.

2mV,
hZ

Te=0)= exp[—% w]

or

T'(e =0) =exp[-6.83089,/V,(eV )w(nm)]

when Vo=0.7 eV,

32



1.0y
0.8
06/
0.4

02"

0.8 1.0
w(nm)

~02-

Fig.  Transition probability T as a function of the width of the depletion layer. VO = 0.7

eV.lnm=10A
9. Bound state: Bohr-Sommerfeld condition.
V(x
AV®
—
I II I1I
E b a

For x<b (region I), the un-normalized wave function is

V= \/ﬁ exp[—_)[lc(x)dx],

Using the connection rule (II; downward)

33



(IT; downward)

we get

A=2, B=0

Then we have

v, = \/% cos[;f k(x)dx — %)] for b<x<a

This may also be written as

2 T T 2 f t T
v, = T cos[ ! k(e =] = T cos[ ! k(x)dx — j k(x)dv =]

cos[]l‘ k(x)dx — j'k(x)dx + % - %]

2
VE(x)

2
Ji()
_ ﬁ sin[j k(x)dx] cos[Jj e(x)dx — %]

sin[j k(x)dx—]l‘k(x)dx +%]

\/% cos[I f(x)dx] sin[j[ Je(x)dx — %]

Here we use the connection rule (I, upward),

34



From this we have

sin[]l. k(x)dx] cos[j‘ k(x)dx) — %]

2
YVu="T——= k(x)
kz(x) cos[j ke(x)dx] sin[I k(x)dx) —%]

with
A=sin[[k(x)dx], B ==2cos[[ k(x)dx].
b b
Since y,;, should have such a form
A X
=———exp[—| x(x)dx
Vi m pl ;! (x)dx]
for x>a. Then we need the condition that

B=-2 cos[j‘ k(x)dx]=0,

or

]I‘k(x)dx =(n+ %)71'

-’

or

35
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wheren=20,1, 2, ... (Bohr-Sommerfeld condition).

1 1
§§ pO)d = (n+ )2k = (n+ ).

ff) is an area inside the trajectory of the particle in the phase space.

10. Eample-1 (Simple harmonics):
We consider a simple harmonics,

p(x)=2mle -V (x)] = \/Zm(e - %ma)zxz) = 2myq X, — X

where
2e
X, = >
ma,

Then we get

Xy Xo 2

J‘p(x)a’x = Zma)OJ‘\/xO2 —x’dx =2mao, o lma)ofz 262 ==

e 0 4 2 mao, ,
When

Xg 1

Ip(x)dx =(n+—-)ah

—x0 2
we have

e 1

—=(n+-)h,

, 2
or

e=(n+ l)hao

2

11. Example-2: linear potential

We consider a particle moving in 1D potential of the form

36



Vi(x)= ,B|x|

p(x) = 2m(s = flx])

P
(] ﬂ :
Xg X0 1
[ Py =2 po)d = (1,4, + )
-x0 0
or
2f1/2m(5 — Blxdx = 2]0 2m(fx, — Px)dx
0 0
= 21/2m,b"[O X, — xdx
0
=2,2mp g)co3/2
3
or

2 2m,6’§x03/2 =(n,, +%)ﬂh .

because of the odd parity states. Then we get the energy as

3B 0 1
&=L ) 0, + )T
When g =mg

We now calculate the value

1

3 2/3 2/3 3
=(=— 2n-1+—-)"" =(=
Py =) @n=1+ ) = 1

1
”)2/3(’1__)2/3’
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where noai=2n -1 (n=1, 2, 3,4,...),

and

for n =1, 2, 3,..... Note that z, is the n-th zero points of the Airy function 4,(z) with

odd parity. The value of zn can be obtained from the exact solution of the Schrodinger
equation. The value pm is obtained from the WKB approximation. It is surprising that in
spite of the approximation, the value of pn is so close to that of -zn

Fig.  The Airyfunction Ai(z). The values of z at which Ai(z) becomes zero are denoted
by blue circles. z = zn.

Table
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n En -Zn
1. 2.32025 2.33811
2. 4.08181 4,0B785
3. 5.5171s6 5.52056
9. 6.7E445 6.TEBET1
3. T.89424%9 7.894413
B. 9.02137 0.02265
T. 10.0381 10.0402
g. 11.0077 11.0085
9. 11.8353 11.936
10. 12,8281 12.B28E
11. 13.6909 13.6915
1z2. 14,5273 14.5278
13. 15.3403 15.3408
14, 16.1323 16.1327
15. 16.80353 16.89056
ls. 17.661 17.6613
17. 18.4008 18.4011
1E. 19,1261 19.1264
14, 19,8379 19.8381
20. 20.5371 20.5373
21. 21.224¢6 21.2248
22. 21.8012 21.9014
23. 22,5674 22.5876
24, 23.224 23.2242
25. 23,8714 23.871e
2a. 24,5101 24,5103
27. 25.1407 25.1408
2B. 25.7634 25.7835
29, 26.3787 26.3788
30. 26.986E 26.987
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31. 27.5883 27.5884
32. 28,1832 28,1833
33. 28.771%8 28,772

34. 29,3548 29,3548
35. 29,8316 29,0318
36. 30.35032 30.5033
37. 31.0654 31.0885
3E. 31.6305 31.6306
39, 32.18¢66 32.1867
40. 32.738 32.7381
41. 33.2B4E 33.284%9
42. 33.8271 33.8272
43, 34.3651 34,3852
44, 34.899 34.8901
45, 35.4288 35.4289
44q. 35.854¢6 35.9347
47. 36.4767 36.4767
48, 36.985 36.08851
44, 37.3087 37.5088
50. 38.0209 38.021

D

—-X0 X0

Fig. The potential energy V(x) = ﬂ|x|. X, =%. Because of the symmetric potential,

the wave function should have either the even parity or the odd parity.

((Note)) Solution with the even parity
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2 (2m)
mg2h2 )1/3
2

=G (mgh**
=q,(

where n, =2n (n=0,1,2,3,...),

3 2/3 1 2/3
= 2n+—
g, =(Gm) (2n+2)

Note that gn is nearly equal to -yn, where the derivative of the Airy function Ai(z) with
respect to z, becomes zero at z = yn.

n {n =¥n

0 1.11546 1.01879
1 3.26163 3,2482
2 4.82632 4.8201
3 6.16713 6.16331
4 7.37485 7.37218
5 8.49051 8.48849
6 9.53705 9.53545
7 10.529 10.5277
8 11.4762 11.4751
9 12.3857 12.3848
10 13.263 13.2622

SRR EN NI

_04-

Fig. The Airyfunction Ai(z). The values of z at which the derivative of Ai(z) with
respect to z becomes zero are denoted by blue circles. z = yn.
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APPENDIX Connection formula

k(x)=%\/%1/e—rf(x)

K(x)=%m1/V(x)—e

" Connection formula | jupward) ..~ Connection formula ll idown) -\,

(1) Connection formula at x = a (upward)

formula I (upward)

(i1) Connection formula at x = b (downward)

formula IT (downward)
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V(x)

54
b a
x1(X) kb kel
© Connection formulall [downi ' Connection formula | upward)
(1) Connection formula at x = b

formula IT (downward,)

(i1) Connection formula at x = a

formula I (upward)
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