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For more than two identical particles, we can determine the character of the symmetry of the 

total wave functions using the law of the addition of the angular momentum with the use of the 
Clebsch-Gordan co-efficient (both for orbital angular momentum and spin angular momentum). 
As the number of identical particles increases, such a calculation becomes much more 
complicated than we expect. To determine the ground state of the system, we do not have to 
obtain the exact form of the wave function. To this end, we just apply the Hund’s rule. Here we 
discuss the Young tabeleau. Using this scheme, we can easily determine the symmetric character 
of the excited states as well as the ground state among the symmetric state, the mixed state, and 
the anti-symmetric state.  
 
1 Two spin 1/2 particles 

First we consider the case of two identical spin 1/2 particles. Using the Clebsch-Gordan co-
efficient, we get the states as follows. 
 

D1/2 x D1/2 = D1+D0 
 
(i) j = 1 (spin triplet): symmetric states 
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(ii) j  = 0 (singlet): anti-symmetric state 
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2 Young tableau-I 

We use the Young’s tableau for the above problem. The spin state of an individual electron is 
to be represented by a box. A single box represents a doublet 
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 spin down  
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: , ,  symmetric tableau (spin triplet; S = 1) 
 m=1 m=0 m=-1 
 

:       antisymmetric tableau (spin singlet, S = 0) 
 m = 0 
 
((Rule)) 
 

We do not consider 
 

 
 
When we put boxes horizontally, symmetry is understood. So we deduce an important rule. 
Double counting is avoided if we require that the number (label) not decrease going from the left 
to the right. Similarly, to eliminate the unwanted symmetry states, we require the number (label) 
to increase as we go down. 
 
General rule: 
 

In drawing Young tableau, going from left to right the number cannot decrease; going 
down the number must increase. 

 
3 Three electrons with spin 1/2 

Next we consider the case of three identical spin 1/2 particles. Using the Clebsch-Gordan co-
efficient, we get the states as follows. 
 
 

D1/2 x D1/2 x D1/2 = (D1+D0) x D1/2 = D3/2+D1/2+D1/2 
 
(i) j = 3/2 
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(ii) j = 1/2 
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4 Young tableaux II 

We use the Young’s tableau for the identical 3 spin 1/2 particles. The result is as follows. 
The symmetric state is denoted as 
 
(i) j = 3/2 
 

:symmetric state 
 

 j = 3/2, m = 3/2, 1/2, -1/2, -3/2 
 

, , ,  
 m=3/2 m=1/2 m=-1/2 m=-3/2 
 
What about the totally antisymmetric states? We may try vertical tableau like 
 

: forbidden state 
 
But these are illegal, because the numbers must increase as we go down. So the anti-symmetric 
state is forbidden. 
 
(ii) j = 1/2 
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 m=1/2 m=-1/2 
 
which is called the mixed state. 
 
5 Mixed state 

We define a mixed symmetry tableau. The mixed state is orthogonal to the symmetric state 
and anti-symmetric state. 
 

 =  or   
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(a) 
We consider a mixed state, 
 

 
 

231311 )(   (1) 

 
satisfies symmetry under 13, but it is neither symmetric nor anti-symmetric with respect to 
2 3 (or 1 2). 
 

 
 

123322 )(   (2) 

 
satisfies symmetry under 23, but it is neither symmetric nor anti-symmetric with respect to 
1 2 (or 1 3). 
 
Subtraction: Eq.(1) - Eq.(2): 
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3212121 )(    (3) 

 
This satisfies anti-symmetry under 12, but no longer have the original symmetry under 12. 
 
This corresponds to 
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which is obtained from the Clebsch-Gordan co-efficient. 
 
(b) 
 

 
 

231313 )(   (4) 

 
This satisfies anti-symmetric under 13. 
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This satisfies anti-symmetric under 23. Addition: Eq.(4) + Eq.(5): 
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which is the same as the state given by 
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which is obtained from the Clebsch-Gordan coefficient. 
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(c) 
 

 
 

132325 )(  . (7) 

 
This satisfies symmetric under 23 
 

 
 

231316 )(  . (8) 

 
This satisfies symmetric under 13. 
 
Addition: Eq.(7) - Eq.(8). We have 
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This satisfies anti-symmetric under 12. 
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(d) 
 

 
 

132327 )(  . (10) 

 
This satisfies anti-symmetric under 23 
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This satisfies anti-symmetric under 13. 
 
Subtraction: Eq.(10) - Eq.(11) 
 

 
 

 87  . (12) 

 
This satisfies antisymmetic under 12. 
 
Addition: Eq.(10) + Eq.(11) 
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6 4 electrons with spin 1/2 

We consider the case of four identical spin 1/2 particles. Using the Clebsch-Gordan co-
efficient, we get the states as follows. 
 

D1/2 x D1/2 x D1/2 x D1/2 = (D3/2 + D1/2 +D1/2) x D1/2 
 

= (D2 + D1) + (D1 + D0) +(D1 + D0) 
 
(i) j = 2 
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(iv) j = 1 
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7 Young  tableaux  III 
We apply the Young’s tableau for the 4 identical spin 1/2 particles The results are as follows. 
Only j = 2 state is symmetric upon the interchange of the positions. 
 
(i) j = 2 symmetric state 
 

, , ,  
 m=2 m=1 m=0 m=-1 
 

 
 m=-2 
 
(ii) j = 1 mixed state 
 

, ,  
 m=1 m=0 m=-1 
 
(iii) j = 0 mixed state 
 

 
 m = 0 
 
8 Simplified model for spin 1/2 

Now we introduce a simple way to build a Young diagram. 
 
(a) Two spin 1/2 particles 
 

  
2 x 2 = 4 states 

  =    
triplet singlet 

 
2 x 2 = 3 + 1 states 
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D1/2 x D1/2 = D1 +D0 
 
(b) Three spin 1/2 particles 
_______________________________________________ 
 

   
2 x 2 x 2 = 8 

 
________________________________________________________ 
 

  =    
triplet doublet quartet doublet 

 
3 x 2 = 4+2 

 
D1 x D1/2 = D3/2 +D1/2 

 

  = 
singlet doublet doublet 

 
1 x 2 = 2 

 
D0 x D1/2 = D1/2 

 
((Note)) 
 

 is forbidden. 
 
(c) Four particles with 1/2 
____________________________________________ 
 

    
2 x 2 x 2 x 2 = 16 states 

____________________________________________ 
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  =    
quartet 

 
D3/2 x D1/2 =D2 + D1 

 
 

  =    
doublet 

 
D1/2 xD1/2 =D1 + D0 

 
(d) 5 spin 1/2 particles 
 

     
2 x 2 x 2 x 2 x 2 = 32 

 

  =   
 

D2 xD1/2 =D5/2 + D3/2 
 

  =   
 

D1 xD1/2 = D3/2+ D1/2 
 

  =  
 

D0 xD1/2 =D1/2 
 
9 Particles with l = 1; m = 1, 0, -1 (p electrons) 
 
The labels 1, 2, and 3 may stand for the magnetic quantum number of p-orbitals (l= 1 particle). 
 



 

12 
 

: ,  ,   
 m=1 m=0 m=-1 
 
10 Two particles with spin 1: 3x3 = 9 states 
 
For j = 1 
 

 =  , 3 x 3 = 6 +3 
 
 D1, D1  D2, D0 D1 
 
The horizontal tableau has six states: the tableau is to be broken down into j =- 2 (multiplicity 5) 
and j = 0 (multiplicity1); both of which are symmetric. 
 
The vertical tableau corresponds to an antisymmetric j = 1 state. 
 
(i) Symmetric 
 

: , , , , , ,  
 6 states (j = 2 and  0) 
 m=2 m=1 m=0 m=0 m=-1 m=-2 
 
(ii) Anti-symmetric 
 

 : , , ,  3 states (j=1) 
 m=1 m=0 m=-1 
 
11 Three particles with l = 1 

The Young’s diagram for a system of three particles are obtained by adding to the diagrams 
(1) one cell in every possible way. The results may be written as the symbolic equations, 
 
3 x 3 x 3 = 27 states  
 

 =   : 6 x 3=7+3 +5+3 
 
 D2, D0 x D1 D3, D1 D2, D1 
 

1 2 3

11 21 31 22 32 33
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 =     : 3 x 3=8 +1 
 
 D1 x D1 D2, D1 D0 
 
((Note)) 
 

 contains both j = 3 (7 states) and j = 1 (3 states). 
 
 

As for with eight possibilities altogether, the argument is more involved, but we note 
that this 8 cannot be broken into 7 + 1 because 7 is totally symmetric, while 1 is totally anti-
symmetric when we know that 8 is of mixed symmetry. So the only possibility is 8 = 5 + 3 - in 
other words j = 2 and j = 1. 
 
Finally, therefore 
 

  =    
 

D1 x D1 x D1 = D3 + 2D2 + 3D1 + D0 
 
or 
 

  =      
 
States 3 3 3 7+3 5+3 5+3 1 
 
In terms of angular momentum states, we have 
 

j = 3 (7 states)  once  (totally symmetric) 
j = 2 (5 states)) twice  (both mixed symmetry) 
j = 1 (3 states) three times (one totally symmetric, two mixed symmetry) 
j = 0 (1 state) once (totally antisymmetric). 
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, ,  
 m = 3 m = 2 m = 1 
 

,   
 m = 1 m =0 m = -1 
 

, ,  
 m = 0 m = -1 m = -2 
 

 
 m = -3 
 

 
 m = 0 
 

    
 m =2  m = 1  m = 1  m = 0 
 

     
 m = 0  m = -1  m = -1  m = -2 
 
12 Four particles with l= 1 (Landau) (p)4 

The Young’s diagram for a system of four particles are obtained by adding to the diagrams 
each cell in every possible way. The results may be written as the symbolic equations, 
 
 

  =  

 D3, D1 D1 D4, D3, D2 D2, D1, D0 
 

1 1 1 1 1 2 1 1 3

1 2 2 1 32 1 33
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333
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  =   

 D1, D2 D1 D1, D2, D3,  D0, D2 D1 
 

   =  
 
 D0 D1 D1 
 
((Note)) 
 

  is forbidden. 
 

   
 m = 4   m = 3   m = 2 
 

   
 m = 2   m = 1   m = 0 
 

   
 m = 1   m = 0   m = -1 
 

   
 m = -2   m = 0   m = -1 
 

    
 m = -2   m = -3   m = -4 
 
13. Symmetric states and antisymmetric states for two identical particles 

 
 

1 1 1 1 1 1 1 2 1 1 1 3

1 1 2 2 1 1 2 3 1 1 3 3

1 2 2 2 1 2 2 3 1 2 33

1 3 33 2 2 22 2 2 32

2 2 33 2 3 33 3 3 33
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The spin states of the two identical particles, each of spin s, can be separated into symmetric 
states and antisymmetric states. For s = 1/2, the 4)12)(12(  ss  states consist of three 
symmetric states and 1 antisymmetric one. In general if one has two variables, each taking on n 

values, the number of anti-symmetrical combinations is )1(
2

1
nn , and the number of 

symmetrical ones is )1(
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 nnnnn  correctly adding to 2n . Thus the fraction of spin 

states are symmetrical or anti-symmetric is (n = 2s+1) 
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where s is an integer for boson, and is a half integer for fermion (Schwinger). This concept will 
be applied to the scattering of identical particles. 
 

Here we show the proof of this theorem using the Young’s tableau.  
 
(a) Two identical particles with s = 1/2 

The total number of states is 3 x 3 = 9 
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Symmetric states (3 states) 

 

 
 

Anti-symmetric state (1 state) 
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(b) Two identical particles with s = 1 
The total number of states is 3 x 3 = 9 

 

 
 

1,1 , 0,1 , 1,1   

 
Symmetric states (6 states) 

 

 
 

Anti-symmetric states (3 states) 
 

 
 
(c) Two identical particles with spin s = 3/2 

The total number of states is 4 x 4 = 16. 
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Symmetric states (10 states) 
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Anti-symmetric states (6 states) 
 

 
 
(d) Two identical particles with spin s = 2. 

The total number of states is 5 x 5 = 25. 
 

 
 

2,2 , 1,2 , 0,2 , 1,2  , 2,2   

 
Symmetric states (15 states) 
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Antisymmetric states (10 states) 
 

 
 
(e) Two identical particles with spin s = 5/2. 

The total number of states is 6 x 6 = 36. 
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Symmetric states (21 states) 
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Antisymmetric states (15 states) 
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APPENDIX 

Orbital angular momentum and spin angular momentum for three and four spin s = 1/2 
particles and three l = 1 particles 
 
A.1. Definition of symmetrizer and antisymmetrizer 

For the three particles (N = 3), we define the symmetrizer and anti-symmetrizer as 
 

]ˆˆˆˆˆ1̂[
6

1ˆ
132123312312 PPPPPS   

 
and 
 

]ˆˆˆˆˆ1̂[
6

1ˆ
132123312312 PPPPPA   

 
where 
 

2312123
ˆˆˆ PPP  ,  1312132

ˆˆˆ PPP   

 

1̂)ˆˆ1̂(
3

1ˆˆ
132123  PPAS  

 
A.2. Spin state of three particles with spin 1/2 
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j = 3/2 (symmetric), j = 1/2, j = 1/2, 
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A.3. Three particles with the angular momentum 1l . 

We now consider the state of two particles with the angular momentum ħ. 
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1,1 , 0,1 , 1,1   

 
j = 3, 2, 1, and 0 
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A.4. Four particles with the angular momentum 2/1S . 
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