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For more than two identical particles, we can determine the character of the symmetry of the
total wave functions using the law of the addition of the angular momentum with the use of the
Clebsch-Gordan co-efficient (both for orbital angular momentum and spin angular momentum).
As the number of identical particles increases, such a calculation becomes much more
complicated than we expect. To determine the ground state of the system, we do not have to
obtain the exact form of the wave function. To this end, we just apply the Hund’s rule. Here we
discuss the Young tabeleau. Using this scheme, we can easily determine the symmetric character
of the excited states as well as the ground state among the symmetric state, the mixed state, and
the anti-symmetric state.

1 Two spin 1/2 particles
First we consider the case of two identical spin 1/2 particles. Using the Clebsch-Gordan co-
efficient, we get the states as follows.
D2 xDyjp =Dy+Dg

(1) j =1 (spin triplet): symmetric states

j=Lm=1)=|++),

1,0):%(|+—)+|—+>),
L-1)=[--).

(i1))  j =0 (singlet): anti-symmetric state

|j=0,m=0>:%[(|+—>—|—+>].

2 Young tableau-I
We use the Young’s tableau for the above problem. The spin state of an individual electron is
to be represented by a box. A single box represents a doublet

1

spin up | +>

spin down |—>



, , symmetric tableau (spin triplet; S = 1)

antisymmetric tableau (spin singlet, S'= 0)

((Rule))

We do not consider

When we put boxes horizontally, symmetry is understood. So we deduce an important rule.
Double counting is avoided if we require that the number (label) not decrease going from the left
to the right. Similarly, to eliminate the unwanted symmetry states, we require the number (label)
to increase as we go down.

General rule:

In drawing Young tableau, going from left to right the number cannot decrease; going
down the number must increase.

3 Three electrons with spin 1/2
Next we consider the case of three identical spin 1/2 particles. Using the Clebsch-Gordan co-
efficient, we get the states as follows.

Dy, x Dyjp x Dyjp = (D1+Dg) X D1/ = D3/ptD1ptDypp

G =32

j:2 m:§>:|+++>
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i) j=172
.1 1 1
‘] =5,m:5>=%[—|—++>+2|++—>—|+—+]>
1 1 1
Jmg) =gl =l )=2- )
(i) j=1/2

4 Young tableaux II
We use the Young’s tableau for the identical 3 spin 1/2 particles. The result is as follows.
The symmetric state is denoted as

G =32

:symmetric state

j=32,m=3/2,1/2,-1/2,-3/2

1111 [ 1[1(2]]11]12]2 21212

9 b b

m=3/2 m=1/2 m=-1/2 m=-3/2

What about the totally antisymmetric states? We may try vertical tableau like

1
11 2
112 : forbidden state

But these are illegal, because the numbers must increase as we go down. So the anti-symmetric
state is forbidden.

i) j=1/2



1(1 112
2 2

b

m=1/2 m=-1/2

which is called the mixed state.

5 Mixed state
We define a mixed symmetry tableau. The mixed state is orthogonal to the symmetric state
and anti-symmetric state.

B
on .

We consider a mixed state,

_H
) = =)+l = (1), 1, 0

satisfies symmetry under 1<>3, but it is neither symmetric nor anti-symmetric with respect to
23 (orl ©2).

a) === +[=+ )= (=), [+, +0 ), @

satisfies symmetry under 2<>3, but it is neither symmetric nor anti-symmetric with respect to
1 2(orlo3).

Subtraction: Eq.(1) - Eq.(2):



i) =lva)=[+==) ==+ =)= (4}, =190,

3)

This satisfies anti-symmetry under 1<>2, but no longer have the original symmetry under 1<>2.

This corresponds to

i

which is obtained from the Clebsch-Gordan co-efficient.

la) =l ==)===+) = ()], ==+l

This satisfies anti-symmetric under 1<>3.

s =l=+=)=l==H =0+, -2l

(b)

This satisfies anti-symmetric under 2<>3. Addition: Eq.(4) + Eq.(5):

a)Hya) =l ==t |=+-)=2-—+)
which is the same as the state given by

I 1

1
rm3) ==l -2

which is obtained from the Clebsch-Gordan coefficient.
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(c)

[s) =l =)+ =) = ()], +]=), 0,

This satisfies symmetric under 2<>3

o) =+t =) = ()2, + [0 )]),

This satisfies symmetric under 1<>3.

Addition: Eq.(7) - Eq.(8). We have

.

ws)=lwe)=[+=+)=|-++).
This satisfies anti-symmetric under 1<>2.

S S I I
|]—2,m—2> ﬁ[|+ +)—|—++)]

.

(d)

o) ===+ =4) = (), =) 9l

This satisfies anti-symmetric under 2<>3

.

i) =l++=) ==+ 0 =), =) 19+,
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(8)

)
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This satisfies anti-symmetric under 1<>3.

Subtraction: Eq.(10) - Eq.(11)

.

=lya) ) =[+ =) =|=+4). (12)
This satisfies antisymmetic under 1<>2.

Addition: Eq.(10) + Eq.(11)

)l =2+ )| r—) |-+

or

S T e
|]—2,m 2> \/EH +4)+ 2+ + )=+ =+)]

6 4 electrons with spin 1/2
We consider the case of four identical spin 1/2 particles. Using the Clebsch-Gordan co-
efficient, we get the states as follows.

Dy xDyjpx D1y xDyjp=(D3p + Dy ¥D1s2) X Dypp
= (Dy +Dy) +(Dg + Dg) +Dy + D)
i j=2

|j=2,m=2)=|++++)

2,1>:%[|+++—>+|++—+>+|+—++>+|—+++>]

1

NG

2,0)=—=[|-++-)+|++—)+|[+—+ ) +|+——H)+| -+ =) +]|-—++)]

2i-t)=3 [+ ===t ===l =)
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22) |-~
() j=1

1

|j=Lm=1)= [|—+++>+|++—+>+|+—++>]+?|+++—>]
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i) j=1

|j:1,m:1>:%[—|—+++>—|+—++>+2|++—+>]

|1,0>:%[—|—++—>+2|++——>—|+—+—>+|+——+>—2|——++>+|—+—+>]
1

.

o O0m=0) = — [y I

|j=0,m=0) 2\/§[| ++-)+ 2+ -y =+ —+-)

—|+==+) =2 ==+ )+ |-+ —+)]

(iv) j=1

b

NG

|j=Lm=1)=—[+-++)—|-+++)]

pg)=%u+_+_y4_++_yq+__+y4_+_+n

1

ot) =l =) |-

V) Jj=0



j:O,m:0>:%[|+—+—>—|—++—>—|+——+>+|—+—+>]

7 Young tableaux III
We apply the Young’s tableau for the 4 identical spin 1/2 particles The results are as follows.
Only j = 2 state is symmetric upon the interchange of the positions.

(1) Jj =2 symmetric state

111 (1 (1111112 11(1(2]2 112]2(2

m=-2

(1))  j=1 mixed state

111 (1 [1[1 2] ]11]2]2

(ii1))  j =0 mixed state

11
2|2
m=0

8 Simplified model for spin 1/2
Now we introduce a simple way to build a Young diagram.

(a) Two spin 1/2 particles

®
2 x 2 = 4 states

® = ®
triplet singlet

2x2=3+1 states



DipxDyp=D;+ Dy

(b) Three spin 1/2 particles

® ®
2x2x2=8

® =

triplet  doublet quartet
3x2=4+2

D1 xDyp=D3,+Dyp

® =
singlet doublet doublet

1x2=2
DoxDyp=Djp

((Note))

is forbidden.

() Four particles with 1/2

doublet

® ® ®
2x2x2x2=16 states
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quartet

D3 x Dyjp=Dy+ Dy

® = S

doublet
Dipx Dyp=D;+Dg

(d) 5 spin 1/2 particles

® ® ® ®
2x2x2x2x2=32

S = ®

Dy x Dy =Ds;p + D3pp

S = ®

Dy x Dy =Dzt Dyp

6—) =

Do x Dy =Dy
9 Particles with | =1; m =1, 0, -1 (p electrons)

The labels 1, 2, and 3 may stand for the magnetic quantum number of p-orbitals (/= 1 particle).
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1 2 3

9 b

m=1  m=0 m=-1
10 Two particles with spin 1: 3x3 = 9 states

Forj=1

® = S ,3x3=6+13

Dy, Dy D,,Dy Dy

The horizontal tableau has six states: the tableau is to be broken down into j =- 2 (multiplicity 5)
and j = 0 (multiplicity1); both of which are symmetric.

The vertical tableau corresponds to an antisymmetric j = 1 state.

(1) Symmetric

111 1112|113 12]2]|2]3 33

6 states (j =2 and 0)
m=2 m=1 m=0 m=0 m=-1 m=-2

(i1) Anti-symmetric

1 1 2

2 3 3 )
, , , 3 states (j=1)

m=1 m=0 m=-1

11 Three particles with | =1
The Young’s diagram for a system of three particles are obtained by adding to the diagrams
(1) one cell in every possible way. The results may be written as the symbolic equations,

3 x 3 x 3 =27 states

® = @ 16 x 3=7+3 +5+3

Dy, Dox Dy D3, D Dy, Dy
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®

= S :3x3=8+1

D1 x D1 D29D1 DO

((Note))

As for

contains both j = 3 (7 states) and j = 1 (3 states).

with eight possibilities altogether, the argument is more involved, but we note

that this 8 cannot be broken into 7 + 1 because 7 is totally symmetric, while 1 is totally anti-
symmetric when we know that 8 is of mixed symmetry. So the only possibility is 8 =5 + 3 - in

other words j =

2andj=1.

Finally, therefore

®

® = @ ®

D1XD1XD1:D3+2D2+3D1+D0

or

States 3

3 3 7+3 5+3 5+3 1

In terms of angular momentum states, we have

j =3 (7 states) once (totally symmetric)

j =2 (5 states)) twice (both mixed symmetry)

j =1 (3 states) three times (one totally symmetric, two mixed symmetry)
7 =0 (1 state) once (totally antisymmetric).
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m=3 m=2 m=1

1122 11213 1133

m=1 m =0 m=-1

21 2| 2 21 213 21313

m=0 m=-1 m=-2

313(3

m=-3

1

2

3
m=0

111 111 112 112
2 3 2 3
m=2 m=1 m=1 m=0
113 113 2|2 213
2 3 3 3
m=0 m=-1 m=-1 m=-2

12 Four particles with |I=1 (Landau) (p)*
The Young’s diagram for a system of four particles are obtained by adding to the diagrams
each cell in every possible way. The results may be written as the symbolic equations,

D;, D, D, D,;D;D, D,DD,

14



D,,D, D; Dy,D,,D;, Dy,D, D

Dy Dy Dy

((Note))

@® is forbidden.

1{1(1]1 111112 11113
m=4 m=3 m=2
1111212 1(1] 23 111(3]3
m=2 m=1 m=0
112122 1 2|3 112313
m=1 m=0 m=-1
1131313 2(212)2 212123
m=-2 m=0 m=-1
212|313 2(313]3 313|313
m=-2 m=-3 m=-4
13. Symmetric states and antisymmetric states for two identical particles
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The spin states of the two identical particles, each of spin s, can be separated into symmetric
states and antisymmetric states. For s = 1/2, the (25 +1)(2s+1)=4 states consist of three

symmetric states and 1 antisymmetric one. In general if one has two variables, each taking on n

: . o 1
values, the number of anti-symmetrical combinations is En(n—l) , and the number of

symmetrical ones is %n(n -)+n= %n(n +1) correctly adding to n*. Thus the fraction of spin

states are symmetrical or anti-symmetric is (n = 2s+1)

! 1
PR TS T .
5 = = >— for the symmetric states
n 2n 2s+1 2
ln(n -1)
2 n—1 S 1 . .
5 = = <= for the anti-symmetric states
n 2n 2s+1 2

where s is an integer for boson, and is a half integer for fermion (Schwinger). This concept will
be applied to the scattering of identical particles.

Here we show the proof of this theorem using the Young’s tableau.

(a) Two identical particles with s =1/2
The total number of statesis 3 x 3 =9

TV 1
2°2/7127 2/

Symmetric states (3 states)

Anti-symmetric state (1 state)
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(b) Two identical particles with s =1
The total number of statesis3 x 3 =9

11,

1,0),

1-1)

Symmetric states (6 states)

1 (1 112 113
212 2|3
313

Anti-symmetric states (3 states)

1 1
2 3
2
3

(©) Two identical particles with spin s = 3/2
The total number of states is 4 x 4 = 16.

33V 31V 3 1V 3 3
2°2/7 1272/ (27 2/ 127 2/’

Symmetric states (10 states)
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(d)

2|2 213 2
313 3
4

Anti-symmetric states (6 states)

1 1 1
2 3 4
2 2

3 4

3

4

Two identical particles with spin s = 2.
The total number of states is 5 x 5 = 25.

2,2,

2.1),

2,0,

2,-1),

2,-2)

Symmetric states (15 states)
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1] 1 112 113 1|4
2|2 2|3 2|4
3|3 3|4

3|4

Antisymmetric states (10 states)

1 1 1 1
2 3 4 5
2 2 2

3 4 5

3 3

4 5

4

5

(e) Two identical particles with spin s = 5/2.
The total number of states is 6 x 6 = 36.

SOV 3V (S IV S T
2°2/7 1272/ 1272/ 127 2/’

Symmetric states (21 states)

S 3
27 2/

5.3
27 2
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L] Lede) [efe] [afe] [ads] [a]e]

[2]2] [2]s] [2]4] [2]5] [2]e]
Lala] [a]4] [efs] [e]e]
[af4] Lels] [ele]

[sls] [s]e]

Antisymmetric states (15 states)

1 1 1 1 1
2 3 4 5 6
2 2 2 2
3 4 5 6
3 3 3
4 5 6
4 4
5 6
5
6
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APPENDIX
Orbital angular momentum and spin angular momentum for three and four spin s = 1/2
particles and three / = 1 particles

A.1. Definition of symmetrizer and antisymmetrizer
For the three particles (N = 3), we define the symmetrizer and anti-symmetrizer as

s 1A A A A A .
S:g[l+ﬁz+1323+a1+323+332]

and
n 1A A A A A .
A::g[l_Plz — Py — P+ Ry + Ry,
where
}3123 = Alzﬁzw }3132 = Alz A13

A.2. Spin state of three particles with spin 1/2

D,,, xD,,, XD, ,, =(D, +Dy)x D, ,
= D3/2 +2D1/2

11 11
afpg) asfpg)

j=3/2 (symmetric), j = 1/2, j=1/2,

|j=3/2,m=3/2>=aaa
|j=3/2,m=1/2>=%(aaﬂ+aﬁa+ﬂaa)

|j=3/2,m :—1/2>:%(aﬁﬂ+ﬂaﬁ+,ﬁﬂa)

|j=3/2,m=-3/2)= Bpp

|j=1/2,m :1/2>:%(aaﬂ—ﬂaa)
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|j=1/2,m :—1/2>:%(aﬂﬁ—ﬂﬂa)

|j=1/2,m =1/2>=%(aaﬂ—2aﬂa+ﬂaa)

|j=1/2,m :—1/2>:%(aﬂﬂ—2ﬂaﬂ+ﬂﬂa)

A.3. Three particles with the angular momentum /=1.
We now consider the state of two particles with the angular momentum #.

D, xD,xD, =(D,+D,+D,)xD, =D, +2D, +3D, + D,

o=

L1), B=

1,0), 7=

1,-1)

j=3,2,1,and 0

|j=3,m=3)=aaa

|j:2,m :2>=L(aaﬂ+aﬂa+ﬂaa)

NE)

|j =3,m :1>=%(aa7+2aﬂ,8+a;/a+2ﬂaﬂ+2ﬂﬂa + yaa)

|j=3,m=0)

%(qﬂy +ayf + pay +2BBP + Pro + yaf + yPa)

|j=3m=-1)= %(rw + 2By +2ByB + yay +2yBB + yyar)

1

|j=3m=-2)= ﬁ(ﬁ77+7ﬂ7+wﬂ)

j=3,m==3)=py

|j:2,m :2>=L(0{aﬂ—2aﬂa + paa)

J6
|j=2,m=2>=%(aaﬂ—ﬂaa)

|j=2,m=1) :%(2aay+aﬂﬂ —aya + faf -2 fPa — yaa)

|j:2,m :1> %(aﬂﬂ+a7a—ﬂaﬁ—7aa)

|j=2,m=0)= 2j53 (aBy +2ayB - Bay + Pra —2yap - yBa)
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[J=2.m=0) = (apy + Py - pra - 1)

lj=2,m =—l>=%(2a77+ﬂﬂ7 + ByB — yay —2yBB - yya)
[ =2m==1) =By ~ P+ yay -y
|j=2,m=—2>=%(ﬂ77—27ﬂ7+77ﬂ)

|j=2,m=—2>=%(ﬂ77—wﬂ)

|j=Lm=1)= ﬁ(aay —3afB + baya +2paf -3 fPfa + yaa)

|j:1,m:1>:%(aa7—aﬁﬁ+,ﬁﬂa—7aa

|j=1,m =1>=%(aa7—ﬂaﬂ+7aa)

|j=1m=0)

1
m(dﬂ% +ayf —4pay + 2506 —4Byra + yaf + ypa)

|j=1m=0)

ﬁ((xw ~3ayp + 2808 —3af + )

i =1m=0)= @by ~ 30 + e

j=Lm=-1)= ﬁ((xw =3By + 2B + 6yay —3yBB + yyar)
[ =om ==1) =@y = By + 1P - )

|j=Lm =—1>=%(a77—ﬂ7ﬂ+77a)

|j=0,m =0>=%(aﬂy—a7ﬂ—ﬂay+ﬂ7a+7aﬁ—7ﬂa)

A.4. Four particles with the angular momentum S=1/2.

|j=2,m=2>=aaaa

j=2m=1)= l(0{0{0{ﬂ+ aofa+ afaa + foaaa)
2

j=2m=0)= L(ozozﬁﬂ + afaf + afffa + Paaf + Pafa + o)
J6
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[ =2.m==1) =i + fafip + faf + )
j=2.m=-2)= AP

|j=Lm=1)= L(ozozozﬁ'—ﬁozomz)

2
|j=1Lm=0)= %(aaﬁﬁ—ﬂﬂaa)

|j=1,m=—l>=%(aﬂﬂﬂ—ﬂﬂﬁa)

|j =lm= 1> = L(accwzﬂ— 2afaa + Paaa)

N
|j=1Lm =0>=%(aﬂaﬁ—ﬂaﬂa)

j=1m =—l>=%(aﬂﬂﬂ—2ﬂﬂaﬂ+ﬂﬂﬂa)

|j =l,m= l> = %(aaaﬂ -3aafa + afaa + Paa)
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|j=Lm =0>=%(aﬂﬁa—ﬁaaﬂ)

lm= 1) = _
|j=1m=~1) zﬁ(aﬂﬂﬂ 3papp + ppap + pppa)

|j=0,m=0)= %(aaﬂ,b’ —afifa — Paaf + BBac)

|/ =0,m=0)= %(wﬁﬂ ~2apaf +affa + faaf —2fapa + ffaa)
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