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Abstract: 

In 1897, Pieter Zeeman observed the splitting of the atomic spectrum of cadmium (Cd) 
from one main line to three lines. Such a splitting of lines is called the normal Zeeman effect. 
According to the oscillation model by Hendrik Lorentz, the Zeeman splitting arises from the 
oscillation of charged particles in atoms. The discovery of the Zeeman effect indicates that 
the charged particles are electrons. In 1897 - 1899, J.J. (Joseph John) Thomson independently 
found the existence of electrons from his explorations on the properties of cathode rays.  

There are few atoms showing the normal Zeeman effect. In contrast, many atoms shows 
anomalous Zeeman effects. For the spectra of sodium (Na). for example, there are two D-
lines (yellow) in the absence of the magnetic field. When the magnetic field is applied, each 
line is split into four and six lines, respectively. Although Zeeman himself observed the 
spectra of Na, he could not find the splitting of the D lines in the presence of the magnetic 
field because of the low resolution of his spectrometer. The electron configuration of Na is 
similar to that of hydrogen. There is one electron outside the closed shell. Instead, he chose 
Cd for his experiment and found the normal Zeeman effect (three lines). In the electron 
configuration of Cd, there are two electrons outside the closed shell. The three lines observed 
in Cd was successfully explained in terms of the Lorentz theory. It seems that the choice of 
Cd by Zeeman is fortunate to the development of atomic physics. If Zeeman found the 
anomalous Zeeman effect in Na by using spectrometer with much higher resolution, Lorentz 
might have some difficulty in explaining such a complicated phenomenon. In fact, only the 
quantum mechanics can explain the normal Zeeman effect, the anomalous Zeeman effect, 
and the Paschen-Back effect (Zeeman effect in an extremely large magnetic field). Here we 
note that the Fabry-Perot interferometer (which is used for the measurement of Zeeman effect 
in our laboratory ), designed in 1899 by C. Fabry and A. Perot, represents a significant 
improvement over the Michelson interferometer. 

In our Advanced laboratory [Senior Laboratory (Phys.427, Phys.429) and Graduate 
Laboratory (Phys.527)], students (both undergraduate and graduate students) are supposed 
to do the experiment for the Zeeman splitting of mercury (Hg), using an equipment consisting 
of magnetic field, Hg light source, polarizer, Fabry-Perot Etalon, CCD camera, and computer. 
The normal Zeeman splitting is observed in Hg. The electron configuration of Hg is similar 
to that of Cd, where two electrons are outside the closed shell. The introduction of such new 
techniques may lead to clear visualization of the Zeeman effect in the laboratory class.  
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In this lecture note, we present both classical and quantum mechanical theories on the 
Zeeman effect. (1) Lorenz theory, (2) the Zeeman effect of Na using quantum mechanics, (3) 
the Zeeman effect of Cd and Hg. These notes will be helpful to understanding the Zeeman 
effect from a view point of quantum mechanics. "The atomic spectra are sort of voices which 
can be heard from the quantum world." 
 
_________________________________________________________________________ 
Pieter Zeeman (25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 1902 
Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect. 
 

 
http://en.wikipedia.org/wiki/Pieter_Zeeman 
 
1. Introduction 

In 1897, Pieter Zeeman observed the splitting of the atomic spectrum of cadmium (Cd) 
from one main line to three lines. Such a splitting of lines is called the normal Zeeman effect. 
According to the oscillation model by Hendrik Lorentz, the Zeeman splitting arises from the 
oscillation of charged particles in atoms. The discovery of the Zeeman effect indicates that 
the charged particles are electrons. In 1897 - 1899, J.J. (Joseph John) Thomson independently 
found the existence of electrons from his explorations on the properties of cathode rays.  

There are few atoms showing the normal Zeeman effect. In contrast, many atoms shows 
anomalous Zeeman effects. For the spectra of sodium (Na). for example, there are two D-
lines (yellow) in the absence of the magnetic field. When the magnetic field is applied, each 
line is split into four and six lines, respectively. Although Zeeman himself observed the 
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spectra of Na, he could not find the splitting of the D lines in the presence of the magnetic 
field because of the low resolution of his spectrometer. The electron configuration of Na is 
similar to that of hydrogen. There is one electron outside the closed shell. Instead, he chose 
Cd for his experiment and found the normal Zeeman effect (three lines). In the electron 
configuration of Cd, there are two electrons outside the closed shell. The three lines observed 
in Cd was successfully explained in terms of the Lorentz theory. It seems that the choice of 
Cd by Zeeman is fortunate to the development of atomic physics. If Zeeman found the 
anomalous Zeeman effect in Na by using spectrometer with much higher resolution, Lorentz 
might have some difficulty in explaining such a complicated phenomenon. In fact, only the 
quantum mechanics can explain the normal Zeeman effect, the anomalous Zeeman effect, 
and the Paschen-Back effect (Zeeman effect in an extremely large magnetic field). Here we 
note that the Fabry-Perot interferometer (which is used for the measurement of Zeeman effect 
in our laboratory ), designed in 1899 by C. Fabry and A. Perot, represents a significant 
improvement over the Michelson interferometer. 

In our Advanced laboratory [Senior Laboratory (Phys.427, Phys.429) and Graduate 
Laboratory (Phys.527)], students (both undergraduate and graduate students) are supposed 
to do the experiment for the Zeeman splitting of mercury (Hg), using an equipment consisting 
of magnetic field, Hg light source, polarizer, Fabry-Perot Etalon, CCD camera, and computer. 
The normal Zeeman splitting is observed in Hg. The electron configuration of Hg is similar 
to that of Cd, where two electrons are outside the closed shell. The introduction of such new 
techniques may lead to clear visualization of the Zeeman effect in the laboratory class.  

In this lecture note, we present both classical and quantum mechanical theories on the 
Zeeman effect. (1) Lorenz theory, (2) the Zeeman effect of Na using quantum mechanics, (3) 
the Zeeman effect of Cd and Hg. These notes will be helpful to understanding the Zeeman 
effect from a view point of quantum mechanics. "The atomic spectra are sort of voices which 
can be heard from the quantum world." 
 
2. History: explanation of the normal Zeeman effect 
(a) The discovery of the normal; Zeeman effect 

The explanation for the atomic spectra is due to the oscillation of charged particles inside 
atoms. There was no positive evidence that the particle should be an electron. The 
experimental evidence for the atomic spectra due to an electron was found by Pieter Zeeman 
in 1897. He observed splitting of Cd lines into three components (normal Zeeman effect) 
when an external magnetic field B is applied. He showed that the angular frequency of these 
lines are given by 
 

0  , L  0 ,  L  0 , 
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where 0 is the angular frequency in the absence of B. The angular frequency L  is given by 

 

cL mc

eB 
2

1

2
 , 

 
where - e is the charge of electron (we assume that e>0) and m is the mass of electron. 

In 1897, Hendrik Lorentz presented a theoretical interpretation for the observation by 
Zeeman. The Zeeman effect is the splitting of the energy levels of an atom when it is placed 
in an external magnetic field. The splitting occurs because of the interaction of the magnetic 

moment  of the atom with the magnetic field B slightly shifts the energy of the atomic levels 
by an amount, 
 

Bμ  . 

 

The magnetic moment L of electron can be expressed by 
 

Lμ


B
L


 , 

 

where L is the orbital angular momentum, B is the Bohr magneton of electron, and   is the 
Planck's constant, 
 

mc

e
B 2


  
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Fig. Schematic diagram. B = 0. 

 
Fig. Schematic diagram, where a magnetic field is applied along the z axis. 
 
(b) Oscillation model of Lorentz 

We consider a particular orbit, in which the particle is rotating around the z axis with 

angular frequency ±0, where +0 indicates the counterclockwise (CCW) rotation, and -0 

z

w0

w0

w0

B

B

z

w0

w0+wL

w0-wL
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indicates clockwise (CW) rotation. If we view the atoms in the z direction, we will obtain 
light that is circularly polarized with the electric vector rotating in the same direction as the 
electron. 
 

 
Fig. 
 

If we view it normal to the z axis, the electric field that reaches us will depend only on 
the projection of the electron motion on the axis normal to the viewing. The projection of 
circular motions on such an axis is simple harmonic motion. So that the light viewed in a 
direction parallel to the plane of motion will be polarized in a direction normal to the direction 
of viewing and parallel to the plane of electron motion. 
 

 
 
Fig. Viewed from the z axis. B = 0. There are two modes (circularly polarized, xy 

plane).  
 

w0 -w0CCW CW

w0

Viewed from the z axis B = 0

Circulary polarized 2 modes x-y plane
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Fig. Viewed from the x-y plane. B = 0. There are three modes at  = 0. 2 modes 

(linearly polalized, xy plane) and 1 mode (linearly polarized, z axis). 
 
_______________________________________________________________________ 
(c) Magnetic field along the z axis: B ≠ 0. 

In the presence of an external magnetic field along the z axis, the components of the 
motion in the z direction are left unchanged, while the components of motion in the xy plane 
are altered. Those atoms with counterclockwise orbits will have their frequencies of rotation 

in the xy plane increased by L , while clockwise orbits will have their frequencies decreased 

by L , where  

 

2
c

L

   

 
with 
 

mc

eB
c   (Larmor angular frequency). 

 

 

w0

Viewed from the x-y plane

Linearly polarized 1 mode z, 2 mode x-y plane

w0+wL -w0+wLCCW CW
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Fig. Schematic diagram for the classical explanation of the normal Zeeman effect. 
 

When viewed along the z axis (the direction of the magnetic field), the radiated line will 
therefore split into two lines, with opposite circular polarization. The electrons moving in the 
z direction cannot radiate in the z direction; as a result, there will be no un-deviated lines in 
the light emitted in the z direction. 
 

 
 
Fig. Viewed from the z axis. B ≠ 0. 
 

If the atom is viewed normal to the z direction, then there will be un-deviated line, 
produced by electrons which move in the z direction. This will be polarized in the z direction. 
The components of electron motion in the xy plane will produce two deviated lines, each 
linearly polarized in a direction normal to z.  
 

 
 
Fig. Viewed from the xy plane. 
 
3. Experimental configuration 
 

w0-wL w0+wLw0

Viewed from the z axis

Circulary polarized x-yCirculary polarized x-y
No linearly polarized z

w0-wL w0+wLw0

Viewed from the xy plane

Linearly polarized xy
Linearly polarized z

Linearly polarized xy
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Fig. B//z. Isometric depiction of the polarization in the longitudinal and transverse Zeeman 

effect. Longitudinal observation (parallel to the field B). No -line can be observed. 
Transverse observation (perpendicular to the field B). Three linearly polarized beams 

are seen. One () is parallel to the field B. Two others () are perpendicular to the 
field B. The magnetic field B is along the z direction. 

 
In 1896 Zn observed that the transition lines split when the field is applied.  The “Zeeman 

effect” is the energy shift of atomic states due to the coupling of the electron orbital angular 
momentum to the external magnetic field. The normal Zeeman effect occurs when there is 
no effect from the spin magnetic moment. The energy shift in the presence an external 
magnetic field can be observed by the wavelength shift of the radiation emitted in atomic 
transitions between these states 
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Fig. Normal Zeeman effect in Cd. Schematic diagram for the Zeeman splitting in Cd. 

643.8 nm. g = 1 for 5 1D2 (j = 2, l = 2, s = 0) and 5 1P1 (j = 1, l = 1, s = 0). m = 0 for 

linearly polarized light (). m = 1 for the right-hand circularly polarized light (  ). 

m = -1 for the left-circularly polarized light (  ). Normal Zeeman effect: 
transversal and longitudinal observation of the splitting of the red 643.847 nm Cd-

line in the magnetic field showing the normal Zeeman effect. The definition of m is 

as followed. m = the value of m for the lower state minus the value of m for the 
upper state. The light is emitted when the state of electron changes from the upper 
state to the lower state. The Landé g factor is g = 1 for both 5 1D2 and 5 1P1. 

 
The selection rule for the transition due to the electric dipole moment  

A transition in which 1'  mm  results in the right-hand circularly polarized light, at 
least for a wave going in the z direction, while 1'  mm  yields a wave of opposite 
polarization; right-hand circularly polarized light.  

For light which is emitted normal to the z axis (transverse configuration, along the x axis), 
the polarization will be linear in any transition in which the change of m is defined. A 
transition in which 0m  can produce only light which is polarized in the z direction, while 
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if 1m  must be linearly polarized to the z direction. See the discussion in the section for 
the selection rule for the radiation due to the electric dipole moment. 
 
Longitudinal 

If the radiation is viewed along the direction of the magnetic field, then only x and y can 
appear in the matrix element Dfi, so that the transition with 0m  does not contribute to 
this line. The transition with  
 

 
 
Fig. Longitudinal observation for the transition with 1m . k is the wavevector of light, 

propagating along the magnetic field direction. The lights are right-hand and left-

hand circularly polarized (+, -). 
 
Transverse 
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If the light is viewed normal to the magnetic field, say in the x direction, then it can be 

polarized either the z or in the y direction. In a transition in which m = 0, we see that the 
matrix element of the electric dipole moment Dfi is along the z axis. This means that the 

transition with m = 0 leads to the light polarized in the z direction, which propagates in the 
x direction. electric polarization vector should be parallel to the z axis. The net result is that 
the line is split into three parts; first a linearly polarized light with the polarization along the 
z axis. Second, two parts polarized in the direction normal to the z axis. The transition with 
Dm = 1 leads to the right-hand circularly polarized light, while Dm = -1 yields the left-hand 
circularly polarized light. As a result, only two lines appear along the direction of the 
magnetic field. 
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Fig. Transverse observation for the transition with .0m . k is the wavevector of light 

(linearly polarized, ), propagating along the magnetic field direction. The 
polarization vector is parallel to the magnetic field B. 

 

 
 
Fig. Transverse observation for the transition with .1m . k is the wavevector of light 

(linearly polarized,  ), propagating along the magnetic field direction. The 
polarization vector is perpendicular to the magnetic field B and the wavevector k. 

 
((Normal Zeeman effect in Cd)) 
The Hamiltonian due to the Zeeman energy is given by 
 

z
BJBJ

J J
Bgg

H ˆˆˆˆ



 BJBμ  
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mjmBgmjJ
Bg

mjH BJz
BJ ,,ˆ,ˆ 




 

 
BmgEE B 22202  ,   for 5 1D2 level 

 
BmgEE B 12101     for 5 1P1 level 

 
where 
 

m2 = 2, 1, 0, -1, -2, m1 = 1, -1,  
 

12 g ,  12 g . 

 
The energy separation is given by 
 

)(

)(

12
0

12

1122
0

12

1212

mmBE

gmgmBE

EEE

B

B









  

 
with 
 

)85.643(
0

12 nm

hc
E


  

 
Then we have three lines with 
 

0,112  mm  

 
 
5. Zeeman effect for Na D lines: Separation of 3p and 3s energy levels due to spin 

–orbit interaction 
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Fig.12 Energy levels of Na with and without spin-orbit interaction. The 3P level is 

slightly different from the 3S level. The 3P level is split into 3 2P3/2 (4 
degeneracies) and 3 2P1/2 (3 degeneracies) due to the spin-orbit interaction. 
The Lande g-factor is g = 4/3 for into 3 2P3/2, g = 2/3 for into 3 2P1/2, and g = 
2 for into 3 2SP1/2 

 

n=3, { = 1, s = 12
3P

n=3, { = 0, s = 12
3S

Spin-orbit interaction

3 2 P12

3 2 P32
xÑ2{2
xÑ2{+12
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Fig. Zeeman effect of the Na D lines (589.0 nm and 589.6 nm). The Landé g-factors for 3 

2P3/2, 3 2P1/2, and 3 2S1/2 are denoted in Fig. 
 

The well known bright doublet which is responsible for the bright yellow light from a 
sodium lamp may be used to demonstrate several of the influences which cause splitting of 
the emission lines of atomic spectra. The transition which gives rise to the doublet is from 
the 3p to the 3s level, levels which would be the same in the hydrogen atom. The fact that 
the 3s (orbital quantum number l = 0) is lower than the 3p (l = 1) is a good example of the 
dependence of atomic energy levels on angular momentum. The 3s electron penetrates the 1s 
shell more and is less effectively shielded than the 3p electron, so the 3s level is lower (more 
tightly bound). The fact that there is a doublet shows the smaller dependence of the atomic 
energy levels on the total angular momentum . The 3p level is split into states with total 
angular momentum j = 3/2 and j = 1/2 by the magnetic energy of the electron spin in the 
presence of the internal magnetic field caused by the orbital motion. This effect is called the 
spin-orbit effect. In the presence of an additional externally applied magnetic field, these 
levels are further split by the magnetic interaction, showing dependence of the energies on 
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the z-component of the total angular momentum. This splitting gives the Zeeman effect for 
sodium. 

When the wavefunctions for electrons with different orbital quantum numbers are 
examined, it is found that there is a different amount of penetration into the region occupied 
by the 1s electrons. This penetration of the shielding 1s electrons exposes them to more of 
the influence of the nucleus and causes them to be more tightly bound, lowering their 
associated energy states. In the case of Na with two filled shells, the 3s electron penetrates 
the inner shielding shells more than the 3p and is significantly lower in energy. 
 
6.  Lande g-factor in Na 

The Lande g-factor is given by 
 

)1(2

)1()1(

2

3





JJ

LLSS
gJ  

 
The total angular momentum J is defined by 
 

SLJ  . 
 

The total magnetic moment  is given by 
 

)2( SLμ 


B . 

 
The Landé g-factor is defined by 
 

Jμ


BJ
J

g 
 , 

 
where  
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Fig. Basic classical vector model of orbital angular momentum (L), spin angular 

momentum (S), orbital magnetic moment (L), and spin magnetic moment 

(S). J (= L + S) is the total angular momentum. J is the component of the 

total magnetic moment (L + S) along the direction (-J).  
 
Suppose that 
 

 LJL a  and  SJS b 
 

where a and b are constants, and the vectors S  and L  are perpendicular to J. 



 

19 
 

Here we have the relation 1 ba , and 0  SL . The values of a and b are determined 

as follows. 
 

2J

LJ 
a , 

2J

SJ 
b . 

 
Here we note that 
 

22
)(

222222
22 SLJSLJ

SSLSSSLSJ





 , 

 
or 
 

)]1()1()1([
22

2222




 SSLLJJ
SLJ

SJ , 

 

using the average in quantum mechanics. The total magnetic moment  is 
 

)]2()2[()2(   SLbaBB JSLμ



. 

 
Thus we have 
 

JJJμ


BJBB
J

g
bba


 )1()2( , 

 
with 
 

)1(2

)1()1(

2

3
11 2 







JJ

LLSS
bgJ J

SJ
. 

 

7. The states of 3 2S1/2 , 3 2P3/2, and 3 2P1/2 in Na 

The electron configuration of Na is given by 
 

Na: (1s)2(2s)2(2p)6(3s) 
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The inner 10 electrons can be visualized to form a spherically symmetrical electron cloud. 
We are interested in the excitation of the 11-th electron from 3s to a possible higher state. 
 
(a) The 3s state 

For the electron with 3s state (l = 0, s = 1/2),  
 

D0 x D1/2 = D1/2 

 

mj,  where j = 1/2 (m = 1/2, -1/2) 

 

Thus we have j = 1/2 (the degeneracy 2). The state is described by 3 2S1/2 (or simply 2S1/2). 

Here we use the notation of n 2S+1Lj where n is the principal quantum number, s is the spin 
number, l is the orbital angular momentum, and j is the resultant angular momentum. 
 

2/1,02/1,2/1  sl mmmj  

 

2/1,02/1,2/1  sl mmmj  

 

 
 

j=
1
2

ml

ms

-12

1,
1

2
> j=1

2
,m=

1

2
>=0,

1

2
>-1,

1

2
>

-1,-
1

2
>  j=1

2
,m=-

1

2
>=0,-

1

2
>  j=-1,-

1

2
>
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Fig. mj ,
2

1
 . (l = 0). m = 1/2. m = -1/2. The recursion relation to obtain the 

Clebsch-Gordan coefficients. 
 
(b) The 3p state 

For the electron with 3p state (l = 1, s = 1/2), we have 
 

D1 x D1/2 = D3/2 + D1/2 

 
or 
 

mj ,
2

3
 , where m = 3/2, 1/2,-1/2, -3/2 

 

mj ,
2

1
 , where m = 1/2, -1/2 

 
Thus we have j = 3/2 (the degeneracy 4) and j = 1/2 (degeneracy 2). These states are described 

by 3 2P3/2 (j = 3/2) and 3 2P1/2 (j = 1/2). 

 
Note that  

 

j=
3
2

 j=3

2
,m=

1

2
> j= 3

2
,m=-

1
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>
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2
,m=

3

2
>

 j=3

2
,m=-

3

2
>
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Fig. mj ,
2

3
 . (l = 1). The recursion relation to obtain the Clebsch-Gordan 

coefficients. 
 
The Clebsch-Gordon coefficients can be calculated using the Mathematica. 
 

(i) For j = 3/2 (3 2P3/2), 

 
 

2/1,12/3,2/3  sl mmmj  

 

2/1,1
3

1
2/1,0

3

2
2/1,2/3  slsl mmmmmj  

 

2/1,0
3

2
2/1,1

3

1
2/1,2/3  slsl mmmmmj  

 
j  3/ 2,m  3 / 2  ml  1, ms  1/ 2  

 
_________________________________________________________________________ 
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Fig. mj ,
2

1
 . l = 1. The recursion relation to obtain the Clebsch-Gordon 

coefficients. 
 

(ii) For j = 1/2 (3 2P1/2), 

 

2/1,1
3

2
2/1,0

3

1
2/1,2/1  slsl mmmmmj  

 

2/1,0
3

1
2/1,1

3

2
2/1,2/1  slsl mmmmmj  

 
(c) g factors 
 

The Lande g-factor is defined by 
 

j=
1

2

 j=1
2

,m=
1
2
> j=1

2
,m=-

1
2
>
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ms

-12

1,
1
2
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>
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>
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gJ 
3

2


s(s 1)  l( l 1)

2 j( j 1)
 

 
Table 
 

Term  j l S gJ 
 

3 2P3/2  3/2 1 1/2 4/3 

 

3 2P1/2  1/2 1 1/2 2/3 

 

3 2S1/2  1/2 0 1/2 2 

 
________________________________________________________________________ 
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Fig. Schematic diagram of energy levels in Na (n = 3) with and without magnetic 
field B. The splitting of energy levels occurs due to the spin-orbit interaction 
and the Zeeman effect. 

 
The wavelength of sodium D lines is given by 
 

 = 589.6 nm (3 3P1/2 - 3 3S1/2). 

 

 = 589.0 nm (3 3P3/2 - 3 3S1/2). 

 

The sodium D lines correspond to the 3p  3s transition. In the absence of a magnetic field 

B, the spin orbit interaction splits the upper 3p state into 3 2P3/2 and 3 2P1/2 terms separated 

by 17 cm-1. The lower 3 2S1/2 has no spin-orbit interaction.  

 
8. Anomalous Zeeman effect in Na 
 
The Hamiltonian due to the Zeeman energy is given by 
 

z
BJBJ

J J
Bgg

H ˆˆˆˆ



 BJBμ  

 

mjmBgmjJ
Bg

mjH BJz
BJ ,,ˆ,ˆ 




 

 
BmgEE B 23303  ,   for 3 2P3/2 level 

 
BmgEE B 22202  ,   for 3 2P1/2 level 

 
BmgEE B 11101     for 3 2S1/2 level 

 
where 
 

m3 = 3/2, 1/2, -1/2, -3/2, m2 = 1/2, -1/2,  m1 = 1/2, -1/2,  
 

3

4
3 g , 

3

2
2 g , 21 g  
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The energy separation is given by 
 

)( 1133
0

131313 gmgmBEEEE B    

 

)( 1122
0

121212 gmgmBEEEE B    

 
with 
 

)0.589(
0

13 nm

hc
E


 ,  

)6.589(
0

12 nm

hc
E


  

 
Then we have 
 

 1133 gmgm -5/3, -1, -1/3, 1/3, 1, 5/3  around 589.0 nm 

 

 1122 gmgm -3/2, -4/3, 4/3, 2/3   around 589.6 nm 

 
where 
 

0,113  mm , 0,112  mm  
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Fig. Zeeman splitting of the Na D lines in B = 3 T. [1/(589.0nm) - 1/(589.6nm)] = 17.28 

cm-1. 
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Fig. H. White, Introduction to Atomic Spectra 
 
 
8. Spin orbit interaction for one electron system 

We introduce a new Hamiltonian given by 
 

ˆ H  ˆ H 0  ˆ H LS , 

 
The total angular momentum J is the addition of the orbital angular momentum and the spin 
angular momentum, 
 

SLJ ˆˆˆ  , 
 
The spin-orbit interaction is defined by 
 

)ˆˆˆ(
2

1ˆˆˆ 222 SLJSL  LSH . 

 
where 
 

LLL ˆˆˆ i ,  SSS ˆˆˆ i  
 

The unperturbed Hamiltonian ˆ H 0  commutes with all the components of L̂  and Ŝ .  

 

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[ 0
2

0
2

0  zz LHLHH L , 

 

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[ 0
2

0
2

0  zz SHSHH S , 

 
and 
 

0]ˆˆ,ˆ[]ˆ,ˆ[ 00  zzz SLHJH  

 
We note that 
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0

)]ˆˆˆˆˆˆ(,ˆ[

]ˆˆ,ˆ[]ˆ,ˆ[

0

00







zzyyxx

LS

SLSLSLH

HHH



 SL

 

 
Then we have 
 

0]ˆˆˆ,ˆ[ 222
0  SLJH  

 
or 
 

0]ˆ,ˆ[ 2
0 JH  

 
We also note that 
 

0]ˆ,ˆˆ[2]ˆ,ˆˆ2ˆˆ[]ˆ,ˆ[ 222222  LSLLSLSLLJ  

 

0]ˆ,ˆˆ[2]ˆ,ˆˆ2ˆˆ[]ˆ,ˆ[ 222222  SSLSSLSLSJ  

 

0

ˆˆ2ˆˆ2ˆˆ2ˆˆ2

]ˆ,ˆ[ˆ2]ˆ,ˆ[ˆ2ˆ]ˆ,ˆ[2ˆ]ˆ,ˆ[2

0]ˆˆ,ˆˆ[2

]ˆˆ,ˆˆ2ˆˆ[]ˆ,ˆ[ 222











xyyxyxxy

zyyxzxyzyxxz

zz

zzz

SLiSLiSLiSLi

SSLSSLSLLSLL

SL

SLJ



SL

SLSLJ

 

 

Thus we conclude that   is the simultaneous eigenket of the mutually commuting 

observables{ ˆ H 0 , 2L̂ , 2Ŝ , 2Ĵ , and ˆ J z }. 

 

 )0(
0

ˆ
nEH   

 

 )1(ˆ 22  llL  

 

 )1(ˆ 22  ssS  



 

30 
 

 

 )1(ˆ 22  jjJ  

 

 mJ z ˆ  

 
The eigenket can be described by 
 

slmj ,;,  

 
Note that the expression of the state can be formulated using the Clebsch-Gordan coefficient 
(which will be discussed later). The value of j is related to l and s (=1/2) as 
 

2

1
 lslj , 

2

1
 lslj  

 
When the spin orbit interaction is the perturbation Hamiltonian, we can apply the degenerate 
theory for the perturbation theory. 

 

slmjE

slmjsslljj

slmjslmjH

SO

LS

,;,

,;,)1()1()1([
2

,;,)ˆˆˆ(
2

,;,ˆ

)1(

2

222










SLJ

 

 
where 
 

)]1()1()1([
2

2
)1(  sslljjESO


 

 
with s = 1/2. Here we note that 
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4
2

3322

2

322

2

)1)(2/1(

1

2

1

)1)(2/1(

1

2

1

2

nlll
cm

anlllcm

e

rcm

e

e

Be

ave















 

 
where 
 

333 )1)(2/1(

11

Bav anlllr 
 . 

 
with 
 

2

2

em
a

e
B


 , 

c

e



2

  

 
Then we have 
 

)1)(2/1(2

]
4
3

)1()1([

2

1

)1)(2/1(

)]1()1()1([

4

1

)1()1()1([
2

3

4
2

3
42

2
)1(













lll

lljj

n
cm

llln

sslljj
cm

sslljjE

e

e

SO







 

 

When  
2

1
 lj  

 

)1)(2/1(22

1
3

4
2)1(




lll

l

n
cmE eSO


 

 

When 
2

1
 lj  
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)1)(2/1(2

)1(

2

1
3

4
2)1(





lll

l

n
cmE eSO


 

 

 
 
Fig. The degenerate states with the same l (≠ 0) are separated into the energy level with 

2

1
 lj  and 

2

1
 lj  due to the spin-orbit interaction. The state with l = 0 (s-state) 

remains unchanged. 
)1)(2/1(2

1

2

1
3

4
2




llln
cme

  depends on n and l. 

 
9. Eigenstates for j = l +1/2, 
 

Spin-orbit interaction

l = 0

l¥1

j = l+12

j = l-12

D2=d l

D1=d l+1
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Fig. mlj ,
2

1
 . The recursion relation to obtain the Clebsch-Gordan 

coefficients. 
 

mljEmljH LSLS ,2/1,2/1ˆ  , 

 
with 
 

lllllELS
22

2
]4/3)1()2/3)(2/1[(

2



 . 

 
We note that 
 

J-
m+12,12m-12,12

m-12,-12 m+12,-12

m
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2/1,2/1
12

2/1

2/1,2/1
12

2/1
,2/1













sl

sl

mmm
l

ml

mmm
l

ml
mlj

 

 

The expectation values of ˆ L z  and ˆ S z  are obtained as follows. 

 

2/1,2/1)2/1(
12

2/1

2/1,2/1)2/1(
12

2/1
,2/1ˆ













sl

slz

mmmm
l

ml

mmmm
l

ml
mljL





 

 

12

2

)2/1(
12

2/1
)2/1(

12

2/1

)2/1(
12

2/1

)2/1(
12

2/1

12

2/1

12

2/1
,2/1ˆ,2/1








 




















































l

lm

m
l

ml
m

l

ml

m
l

ml

m
l

ml

l

ml

l

ml
mljLmlj z







 

 
Similarly, 
 

2/1,2/1)2/1(
12

2/1

2/1,2/1)2/1(
12

2/1
,2/1ˆ













sl

slz

mmm
l

ml

mmm
l

ml
mljS





 

 

12

)2/1(
12

2/1
)2/1(

12

2/1
,2/1ˆ,2/1



















l

m

l

ml

l

ml
mljSmlj z





 

 
Then we have 
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)
12

1
1(,2/1ˆ2ˆ,2/1




l
mmljSLmlj zz   

 
___________________________________________________________________ 
10. Eigenstates for j = l -1/2 
 

 
 

Fig. 
2

1
 lJ . The recursion relation to obtain the Clebsch-Gordan coefficients. 

 

mljEmljH LSLS ,2/1,2/1ˆ  , 

 
with 
 


ELS 


2
2 [(l 

1

2
)(l 

1

2
)  l(l 1) 

3

4
]  


2
2 (l 1), 

 

J-
m+12,12m-12,12

m-12,-12 m+12,-12

m
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2/1,2/1
12

2/1

2/1,2/1
12

2/1
,2/1













sl

sl

mmm
l

ml

mmm
l

ml
mlj

 

or 
 

mljlmljH LS ,2/1)1(
2

,2/1ˆ 2  


. 

 

The expectation value of ˆ L z  and ˆ S z  

 

12

)1(2

)2/1(
12

2/1
)2/1(

12

2/1
,2/1ˆ,2/1










 










l

lm

m
l

ml
m

l

ml
mijLmij z





 
 

12

)2/1(
12

2/1
)2/1(

12

2/1
,2/1ˆ,2/1



















l

m

l

ml

l

ml
mljSmlj z





 

 
Then we have 
 

)
12

1
1(,2/1ˆ2ˆ,2/1




l
mmljSLmlj zz  . 

 
In summary, the energy shift due to the spin-orbit interaction is given by 
 
 


E  ELS 


2
2l , for j = l+1/2, 

 


E  ELS  


2
2 (l  1), for j = l-1/2, 
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

ˆ H LS 


2
 2l 0

0 
2
 2(l 1)

















 

 

under the basis of mlj ,2/1  and mlj ,2/1 , 

 
where 
 



2
En


e4 Z2

c2n22l(l 1/ 2)(l 1)


(Z)2

n2

1

l(l 1/ 2)(l 1)
, 

 
or 
 


2  R 2 Z 4

n4

1

l(l 1/ 2)(l  1)
. 

 
11. Pachen-Back effect 

We consider the Hamitonian given by 
 

)2(
1ˆˆ1

2
ˆˆ

2

2

0 zzB SLBHH 


 
SL . 

 

The matrix of SL ˆˆ   under the basis of 
2

1
,

2

1
 sl mmm  and 

2

1
,

2

1
 sl mmm , is 

obtained as  
 
























)
2

1
()

2

1
)(

2

1
(

)
2

1
)(

2

1
()

2

1
(

ˆˆ2
2

mmlml

mlmlm
SL


 

 
We note that 
 

2

1
,

2

1
)

2

1
(

2

1
,

2

1
)2(

1
 slslzz mmmmmmmSL


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2

1
,

2

1
)

2

1
(

2

1
,

2

1
)2(

1
 slslzz mmmmmmmSL


 

 

So we have the matrix of )2(
1

zz SL 


 under the basis of 
2

1
,

2

1
 sl mmm  and 

2

1
,

2

1
 sl mmm , as 

 






















2

1
0

0
2

1

)2(
1

m

m
SL zz


 

 
Thus the resulting matrix is given by 
 













































2

1
0

0
2

1

)
2

1
()

2

1
)(

2

1
(

)
2

1
)(

2

1
()

2

1
(

4
)2(

1
)ˆˆ2

(
4

2

2

2

m

m
B

mmlml

mlmlm
SLB

B

zzB



 




SL

 

 
We solve the eigenvalue problem.  
 


2

1

4

2




, BB   

 
The matrix (2x2) is given by 
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











































2

1
0

0
2

1

)
2

1
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2

1
)(

2

1
(

)
2

1
)(

2

1
()

2

1
(

2 m

m

mmlml

mlmlm
A 

; 

 
or 
 











































2

1
0

0
2

1

)
2

1
(

2

1

2 m

m

mk

km
A 

 

 
where for simplicity we use 
 

)
2

1
)(

2

1
(  mlmlk  

 
The eigenvalues are  
 

)2)
2

1
(

2

1

4
222

1   mlm , 

 

)2)
2

1
(

2

1

4
222

2   mlm  

 

We introduce the ratio  as 
 


  . 

 
Then we have 
 

)2)
2

1
(

2

1
41(

4
22

1   mlm  

 
and 
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)2)
2

1
(

2

1
41(

4
22

2   mlm  

 
For 1 , 
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22

21 



l

l
ml   

 

12

2
)1(

22 


l

l
ml   

 
For 1 , 

 

)
2

1
()

2

1
(1  mm  ,  )

2

1
()

2

1
(2  mm   

 

 

z=ba

DEa

j=32

j=12

m=32

m=12

m=-12
m=12

m=-12
m=-32

1 2 3 4 5

-5

5
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((Mathematica)) 
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Clear"Global`"; rule1   k2  m2  L 
1

2
;

rule2  k  L  m 
1

2
L  m 

1

2
;

A1 


2

m  1

2
k

k m  1

2
  

m  1

2
0

0 m  1

2
 ;

eq1  EigensystemA1;

1  eq11, 2 . rule1 . rule2  Simplify, L  0 &

1
4
  4 m     2 L 2  8 m    4 2 

2  eq11, 1 . rule1 . rule2  Simplify, L  0 &



4
 m  

1
4

  2 L 2  8 m    4 2

11  1 .      Simplify,   0 &

1
4
 1  4 m   1  4 L  4 L2  8 m   4 2 

22  2 .      Simplify,   0 &


1
4
 1  4 m   1  4 L  4 L2  8 m   4 2 

Series11, , 0, 2  Simplify, 2 L  1  0 &

L 
2


2 1  L m  

1  2 L

1  4 L  4 L2  4 m2  2

2 1  2 L3  O3

Series22, , 0, 2  Simplify, 2 L  1  0 &


1
2
1  L   2 L m  

1  2 L

1  4 L  4 L2  4 m2  2

2 1  2 L3  O3
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12. Zeeman effect in a system with a single electron such as Na 

The magnetic moment is given by a sum of the orbital magnetic moment and spin 
magnetic moment as 
 

)ˆ2ˆ(ˆ SLμ 


B , 

 

where 

B 

e

2mec
 (>0) is the Bohr magneton. The Zeeman energy is given by 

 

)ˆˆ()ˆˆ()ˆ2ˆ(ˆˆ
zz

BBB
B SJ

B
H 




BSJBSLBμ , 

 
for B//z. We now calculate 
 

2/1,2/1
12

2/1
)ˆ2ˆ(

2/1,2/1
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2/1
)ˆ2ˆ(,2/1ˆ
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









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B

slzz
B

B
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l
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SL

B
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l
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SL

B
mljH









 

 
or 
 

2/1,2/1
12

2/1
)

2

1
(

2/1,2/1
12

2/1
)

2

1
(,2/1ˆ













slB

slBB

mmm
l
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mB

mmm
l
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mBmljH




 

 
Noting that 
 

mljEmljH LSLS ,2/1,2/1ˆ 
,
 

 
we have 
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2/1,2/1
12

2/1
)]

2

1
(

2
[

2/1,2/1]
12

2/1
)]

2

1
(

2
[,2/1)ˆˆ(

2

2



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Similarly, 
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)ˆ2ˆ(
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)ˆ2ˆ(,

2

1ˆ
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B
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

 

 
or 
 

2/1,2/1
12

2/1
)

2

1
(

2/1,2/1
12

2/1
)

2

1
(,

2

1ˆ













slB
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l

ml
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mmm
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


 

 
or 
 

2/1,2/1
12

2/1
)]

2

1
()1(

2
[

2/1,2/1
12

2/1
)]

2

1
()1(

2
[,2/1)ˆˆ(

2

2













slB

slBBLS

mmm
l

ml
mBl
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l
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mBlmljHH








 

 
Note that 
 

2/1,2/1
12

2/1
2/1,2/1

12

2/1
,

2

1









 slsl mmm
l

ml
mmm

l

ml
mlj  

 

2/1,2/1
12

2/1
2/1,2/1

12

2/1
,

2

1









 slsl mmm
l

ml
mmm

l

ml
mlj  

 

Then the matrix elements of BLS HH ˆˆ   in the basis { mlj ,2/1 , mlj ,2/1 } can 

be obtained as 
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)
12

1
1()1(

212

)2/1(
,

2

1

12

)2/1(
)

12

1
1(

2
,

2

1

,2/1,2/1

2
22

22
2



















l
Bml

l

mlB
mlj

l

mlB

l
Bmlmlj

mljmlj

B
B

B
B








  

 
for the same l and m. The eigenvalues of this matrix are given by 
 

422222
2

1 )12(84
4

1

4



 lBmBBm BBB  , 

 

422222
2

2 )12(84
4

1

4



 lBmBBm BBB  . 

 
________________________________________________________________ 
13. Zeeman effect in Na 

We now consider the D lines of Na. 
 

 
 
Fig. Energy levels for Na in the presence of weak magnetic field. In the presence 

of a strong magnetic field, the states 2/1,2/3  mj  in 3 2/3
2P  

m=32
m=12
m=-12
m=-32

m=12
m=-12

m=12
m=-12

32S12

32 P12

32 P32
1

1

1
1

2 2
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2/1,2/1  mj  in 3 2/1
2P are no loner eigenstate. The appropriate linear 

combination of 2/1,2/3  mj  in 3 2/3
2P  and 2/1,2/1  mj  in 3

2/1
2P  for the same m (= ±1/2) becomes eigenstates of BLS HH ˆˆ  . 

 
(a) l = 1 
 

The mixed state of 2/3
23 P  (j = 3/2, l = 1, s = 1/2), and 2/1

23 P  (j = 1/2, l = 1, s = 1/2) is 

the eigenstate. 
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3
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,
2
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3
4
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4

2
,
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,
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1
,

2
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Bm
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Bmmj

mjmj

B

B

B

B



















  

 
with m = ±1/2, where the factors 4/3 and 2/3 of the Zeeman terms correspond to the g factors 

for 2/3
2P  and 2/1

2P , respectively. The eigenvalue can be obtained from the eigenvalue 

problem for the (2 x 2) matrix. We get 
 

42222
2

2 984
4

1

4
)3()( 

   BmBBmpEmE BBB , 

 
for m = ±1/2, and 
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4 984
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4
)3()( 

   BmBBmpEmE BBB , 

 

for m = ±1/2. We note that 
2

3
,

2

3
 mj  is the eigenket of BLS HH ˆˆ  , where 
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3
,

2

3
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2
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,
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3
)ˆˆ( 2  mjBmjHH BBLS 

 , 
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with 
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2
2

)3( 2
5   , 

 
for m = 3/2,  
 
and  
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2
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,
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3
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
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with 
 

BpEE B


2
2

)3( 2
3   , 

 
for m = -3/2. 
 
(b) j = 1/2, l = 0, s = 1/2 
 

2

1
,2/1  mj  is the eigenket of BLS HH ˆˆ  , 

 
with the eigenvalue 
 

BmsEmE B2)3()(1  , 

 

for 
2

1
m . 

 
14. Paschen-Back effect in Na 

The Paschen-Back effect is the splitting of atomic energy levels in the presence of a 
strong magnetic field. This effect is the strong-field limit of the Zeeman effect. The effect 
was named after the German physicists Friedrich Paschen and Ernst E. A. Back. 
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In the limit of strong magnetic field B, the energy levels of Na are strongly dependent 
on the magnetic field, and are given by  
 

BsEmE B )3()
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)3( 2
5   . 

 
((Mathematica)) 
We use  

B = 1, 1  

E(3p) - E(3s)=  -7.  = 1. 
 
for the calculation using the Mathematica. 
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Fig. Splitting of energy levels of Na in a magnetic field B (anomalous Zeeman 

effect). 
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Fig. Paschen-Back effect. Zeeman splitting in the very large magnetic field for Na. 
 
15. Paschen-Back effect in Na; quantum mechanical treatment 

Suppose that an extremely strong magnetic field is applied for the case of Na. The 
Zeeman term of the Hamiltonian is much significant compared to the spin-orbit interaction. 
in this case, the Hamiltonian H is simply given by 
 

BSLH zz
B

B )ˆ2ˆ(ˆ 



 

 
in the presence of the magnetic field along the z axis. 
 
(1) 3p states 
 

l = 1, s = 1/2. 
 

pslslBpslB mmmmBmmH
33

,)2(,ˆ    

 

psl mm
3

,  is the eigenket of BĤ  with the eigenvalue )2( slB mmB  . 
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psl mm
3

,   (ml = 1, 0, -1, ms = 1/2, -1/2). 

 
(2) 3s states 
 

l = 0, s = 1/2. 
 

sslslBsslB mmmmBmmH
33

,)2(,ˆ    

 

ssl mm
3

,  is the eigenket of BĤ  with the eigenvalue )2( slB mmB  . 

 

ssl mm
3

,   (ml = 0, ms = 1/2, -1/2). 

 
In the extremely high magnetic fields, the energy levels of 3s and 3p states split into five 

levels. The difference between adjacent energy levels is the same and is equal to BB. 
_______________________________________________________________ 
Table 
 

Energy (BB)   Eigenkets 

2   
p3

2/1,1  

1   
p3

2/1,0  
s3

2/1,0  

0   
p3

2/1,1   
p3

2/1,1  

-1   
p3

2/1,0   
s3

2/1,0   

-2   
p3

2/1,1   
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Fig. The level splitting of Na for the Pashen-Back effect. 
psl mm

3
,  is the eigenket 

for 3p states (6, states; ml = 1, 0, -1, ms = 1/2, -1/2). 
ssl mm

3
,  is the eigenket 

for 3s states (2 states; ml = 0, ms = 1/2, -1/2).  
 
_____________________________________________________________________ 
16. Zeeman splitting in Cd 

The electron configuration of Cd is given by (Kr) 4d10 5s2. This is similar to the outer 
electron configuration of He but also of Hg. 
 
(a) 5s5s 
 

D0 x D0 = D0   l = 0 
 

D1/2 x D1/2 = D1 + D0  s = 1, s = 0 
 
 

l = 0 and s = 1 
D0 x D1 = D1  j = 1 
      5 3S1 

 
l = 0 and s = 0 

D0 x D0 = D0  j = 0 
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      5 1S0 
 
 
(b) 5s5p 
 

D1 x D0 = D1   l = 1 
D1/2 x D1/2 = D1 + D0  s = 1, s = 0 

 
l = 1 and s = 1 

D1 x D1 = D2 + D1  + D0 
 
j = 2     5 3P2 
j=1     5 3P1 
j = 0     5 3P0 

 
l = 1 and s = 0 

D1 x D0 = D1    j = 1 
5 1P1  (g = 1) 

 
(c) 5s5d 
 

D2 x D0 = D2   l = 2 
D1/2 x D1/2 = D1 + D0  s = 1, s = 0 

 
l = 2 and s = 1 

D2 x D1 = D3 + D2 + D1 
 
j = 3     5 3D3 
j = 2     5 3D2 
j = 1     5 3D1 

 
l = 2 and s = 0 

D2 x D0 = D2    j = 2 
      5 1D2  (g = 1) 
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Fig. Schematic diagram for the Zeeman splitting in Cd. 643.8 nm. g = 1 for 5 1D2 

(j = 2, l = 2, s = 0) and g = 1 for 5 1P1 (j = 1, l = 1, s = 0). 
 
 
We can observe the normal Zeeman effect in the red spectral line of Cd (643.8 nm). It 
corresponds to the transition 
 

5 1D2 (j = 2, l = 2, s = 0) → 5 1P1 (j = 1, l = 1, s = 0).  
 
In the presence of the magnetic field, the 5 1D2 level splits into 5 Zeeman components and 
the 5 1P1 level splits into 3 Zeeman component. The optical transitions between these levels 
are only possible in the form of electrical dipole radiation. The following selection rules apply 
for the magnetic quantum number m of the states involved; 
 

1m   for  components, 
 

0m   for  components, 

643.8 nm Dm=1 Dm=0 Dm=-1

m=2
m=1
m=0
m=-1
m=-2

m=1
m=0
m=-1

5 1 P1

5 1 D2
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Thus we observe three spectral lines 
 
________________________________________________________________________ 
17. Energy levels in Hg: system with two electrons 

The neutral mercury (Hg) atom in its ground state has 80 electrons in the configuration 
1s22s22p63s23p63d104s24p64d104f145s25p65d106s2 in which the n = 1, 2, 3, 4, and 5 electrons form 
an inert core for two 6s valence electrons. The optical emission spectrum of Hg results from 
transitions of the two valence electrons between various excited two-electron configurations. 
The Hg spectrum therefore has many features in common with the two-electron helium 
system.  
 

J
S L12   

 
Orbital angular momentum 
 

Dl1 x D1/2 = Dl1+l2 +..... + D|l1-l2| 
 
Spin: 
 

D1/2 x D1/2 = D1 + D0 
 
(a) 6s6s 
 

l = 0 and l = 0→ D0 x D0 = D0 
 

l = 0 and s = 1 
 

D0 x D1 = D1 

j = 1   6 3S1 
 

l = 0 and s = 0 
 

D0 x D0 = D0 

j = 0   6 1S0 
 
(b) 6s6p 
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l = 0 and l = 1→ D0 x D1 = D1 
 

l = 1 and s = 1 
 

D1 x D1 = D2 + D1 + D0 
 

j = 2   6 3P2     (g = 3/2). 
j = 1   6 3P1 
j = 0   6 3P0 

 
l = 1 and s = 0 

 
D1 x D0 = D1 

j = 1   6 1P1 
 
(c) 6s6d 
 

l = 0 and l = 2→ D0 x D2 = D2 
 

l = 2 and s = 1 
 

D2 x D1 = D3 + D2 + D1 
 

j = 3   6 3D3 
j = 2   6 3D2 
j = 1   6 3D1 

 
l = 2 and s = 0 

D2 x D0 = D2 

j = 2   6 1D2 
 
(d) 6s7s 
 

l = 0 and l = 0→ D0 x D0 = D0 
 

l = 0 and s = 1 
 

D0 x D1 = D1 
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j = 1   7 3S1   (g = 2) 

 
l = 0 and s = 0 

D0 x D0 = D0 

 
j = 0   7 1S0 

 
(e) 6s7p 
 

l = 0 and l = 1→ D0 x D1 = D1 
 

l = 1 and s = 1 
 

D1 x D1 = D2 + D1 + D0 

 
j= 2   7 3P2 
j = 1   7 3P1 
j = 0   7 3P0 

 
l = 1 and s = 0 

D1 x D0 = D1 

j = 1   7 1P1 
 
(f) 6s7d 
 

l = 0 and l = 2→ D0 x D2 = D2 
 

l = 2 and s = 1 
 

D2 x D1 = D3 + D2 + D2 
 

j = 3   7 3D3 
j = 2   7 3D2 
j = 1   7 3D1 

 
l = 2 and s = 0 

D2 x D0 = D2 
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j = 2   7 1D1 
 
_________________________________________________________________________ 
18. Zeeman splitting in Hg 
 

 
 
Fig. Schematic diagram for the Zeeman splitting in Hg. 546.07 nm (Green line). 

7 3S1 (6s7s). 6 3P2 (6s6p). 7 3S1 (j = 1, l = 0, s = 1) and 6 3P2 (j = 2, l = 1, s = 
1). 

 
The Hg green line corresponds to the transition from 7 3S1 to 6 3P2.  
 
The state of the 7 3S1 level is described by 
 

22 ,1 mj    (j2= 1, s2= 1, l2 = 0, g2= 2) 

 
with m2 = 1, 0, and -1. The state of 6 3P2 level is described by 
 

11 ,2 mj    (j1 = 2, s1= 1, l1= 1, g1= 3/2) 

Dm=0Dm=-1 Dm=1

m=2
m=1
m=0
m=-1
m=-2

m=1
m=0
m=-1

6 3 P2

7 3S1 g=2

g=
3
2
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with m1 = 2, 1, 0, -1, and -2. According to the selection rule (m = 1, 0, and -1), there are 9 
lines. 
 

m = ±1 (6 lines):   lines. 
 

m = 0 (3 lines):   lines. 
 
20. Evaluation of observed wavelenghts 
 

BmgEE B 22202  ,   for 7 3S1 level 

 
BmgEE B 12101     for 6 3P2 level 

 
The energy separation is given by 
 

)( 1122
0

121212 gmgmBEEEE B    

 
 
with 
 

12 mmm   = -1, 0, or 1. 

 
m2 =1, 0, -1. m1 = 2, 1, 0, -1, -2. 

 
g2=2  g1 = 3/2 

 
Here we note that 
 

12
12 

c
hE  ,  0

12

0
12 

c
hE   

 
Then we have 
 

)(
2

1
)

11
( 11220

1212

12
0

12
0

1212

gmgmB
c B 


 




 
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or 
 

  )(
2

1
112220

12

12
0

1212

12
0

12 gmgmB
c B 




 







 

 
or 
 

  )
2

3
2(

2

1
1220

12

12 mmB
c B 

 





 

 
where 
 

51066865.4
2

1 Bc


 
 (Oe-1cm-1) 

 
and 
 

0
12  = 546.07 nm (Green) 

 
We note that 
 

f(m1, m2) = )
2

3
2( 12 mm   

takes discrete values of 3/2, 1, 1/2, 0, -1/2, -1, and -3/2. 
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APPENDIX 
A. Paschen-Back effect in Na 
Mathematica calculation 

 
 

Calculation of Matrix element for the Zeeman effect

Eigenvalue problem for the Zeeman effect

Clear"Global`";

M1   —2

2
l  B B m 1 

1

2 l  1
, 

B B l  122  m2

2 l  1
,

 B B l  122  m2

2 l  1
, 

 —2

2
l  1  B B m 1 

1

2 l  1
;

eq1  EigensystemM1  Simplify;

The eigenvalues; 

1  eq11, 1

B m B 
 —2

4


1

4
4 B2 B2  8 B m B  —2    2 l 2 —4

2  eq11, 2
1

4
4 B m B   —2  4 B2 B2  8 B m B  —2    2 l 2 —4



 

62 
 

 
 
B. Zeeman splitting for Na 

Here we discuss the eigenvalue problem in more detail. 
 
j = 3/2, l = 1, s = 1/2 
Clebsch-Gordan coefficient 
 

 1,1
2

3
,

2

3
lmlmj  

 

 0,1
3

2
1,1

3

1

2

1
,

2

3
ll mlmlmj  

 

 1,1
3

1
0,1

3

2

2

1
,

2

3
ll mlmlmj  

 

 1,1
2

3
,

2

3
lmlmj  

 
____________________________________________________________________ 
j = 1/2, l = 1, s = 1/2 
Clebsch-Gordan coefficient; 
 

The eigenvectors:

1  eq12, 1

 2 B 1  4 l  4 l2  4 m2 B

4 B m B  1  2 l 1  2 l  —2  4 B2 B2  8 B m B  —2    2 l 2 —4
, 1

1  eq12, 2  FullSimplify

 2 B 1  2 l2  4 m2 B

4 B m B  1  2 l 1  2 l  —2  4 B2 B2  8 B m B  —2    2 l 2 —4
, 1
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 0,1
3

1
1,1

3

2

2

1
,

2

1
ll mlmlmj  

 

 1,1
3

2
0,1

3

1

2

1
,

2

1
ll mlmlmj  

 
Note that 
 






























































2

1
,

2

3
2

1
,

2

1

3

2

3

1
3

1

3

2

0,1

1,1

mj

mj

ml

ml

l

l  

 






























































2

1
,

2

3
2

1
,

2

1

3

1

3

2
3

2

3

1

1,1

0,1

mj

mj

ml

ml

l

l  

 
The Hamiltonian is expressed by 
 

BSLH zz
BB )2()(

2
)2( 222 



 SLJBSLSL . 

 

We need to calculate mjH ,  with j = 1/2 ( 2/1m ) and j = 3/2 (m = ±3/2, ±1/2).  

 

2

1
,

2

1

2

1
,

2

1
)(

22

1
,

2

1

)
2

1
,

2

3
2

2

1
,

2

1
(

3

0,1
3

1

)1,1
3

2
)2(0,1

3

1
)2(

2

1
,

2

1

2222 







 mjmjmjH

mjmj
B

mlB

mlSLBmlSLBmjH

orbitspin

B

lB

lzz
B

lzz
B

Zeeman













SLJ
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_________________________________________________________________________ 

2

1
,

2

1

2

1
,

2

1
)(

22

1
,

2

1

2

1
,

2

3
2

2

1
,

2

1
(

3

2

1
,

2

3

3

2

2

1
,

2

1

3

1
(

3

1

0,1
3

1

0,1
3

1
)2(1,1

3

2
)2(

2

1
,

2

1

2222 









 mjmjmjH

mjmj
B

mjmjB

mlB

mlSLBmlSLBmjH

orbitspin

B

B

lB

lzz
B

lzz
B

Zeeman















SLJ

 
_______________________________________________________________________ 

2

3
,

2

3

2

1

2

3
,

2

3
)(

22

3
,

2

3

2

3
,

2

3
21,12

1,1)2(
2

3
,

2

3

2222 





 mjmjmjH

mjBmlB

mlSLBmjH

Borbitspin

BlB

lzz
B

Zeeman











SLJ

 

______________________________________________________________________ 

2

1
,

2

3

2

1

2

1
,

2

3
)(

22

1
,

2

3

)
2

1
,

2

3
2

2

1
,

2

1
2(

3

)
2

1
,

2

3

3

2

2

1
,

2

1

3

1
(

3

2

0,1
3

2

)1,1
3

1
)2(0,1

3

2
)(2(

2

1
,

2

3

2222 









 mjmjmjH

mjmj
B

mjmjB

mlB

mlSLBmlSLBmjH

Borbitspin

B

B

lB

lzz
B

lzz
B

zeeman















SLJ
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2

1
,

2

3

2

1

2

1
,

2

3
)(

22

1
,

2

3

)
2

1
,

2

3
2

2

1
,

2

1
2(

3

2

1
,

2

3

3

2

2

1
,

2

1

3

1
(

3

2

0,1
3

2

)0,1
3

2
)2(1,1

3

1
)(2(

2

1
,

2

3

2222 









 mjmjmjH

mjmj
B

mjmjB

mlB

mlSLBmlSLBmjH

Borbitspin

B

B

lB

lzz
B

lzz
B

zeeman















SLJ
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2

3
,

2

3

2

1

2

3
,

2

3
)(

22

3
,

2

3

2

3
,

2

3
21,12

1,1)2(
2

3
,

2

3

2222 





 mjmjmjH

mjBmlB

mlSLBmjH

Borbitspin

BlB

lzz
B

Zeeman











SLJ

 

________________________________________________________________________ 
Then we have 
 

2

3
,

2

3
)

2

1
2(

2

3
,

2

3 2  mjBmjH B 

 

 

2

1
,

2

1

3

2

2

1
,

2

3
)

2

1

3

2
(

2

1
,

2

3 2  mjBmjBmjH BB    

 

2

1
,

2

1

3

2

2

1
,

2

3
)

2

1

3

2
(

2

1
,

2

3 2  mjBmjBmjH BB  

 

 

2

3
,

2

3
)

2

1
2(

2

3
,

2

3 2  mjBmjH B 

 

 

2

1
,

2

3

3

2

2

1
,

2

1
)(

3

1
(

2

1
,

2

1 2  mjBmjBmjH BB 
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2

1
,

2

3

3

2

2

1
,

2

1
)

3
(

2

1
,

2

1 2  mjBmj
B

mjH B
B   

 
From this, we find that 
 

2

3
,

2

3
 mj  is the eigenket of H with the energy )

2

1
2( 2 BB . 

2

3
,

2

3
 mj

 

is the eigenket of H with the energy )
2

1
2( 2  BB . 

 

There are two subspaces of the matrices for the basis of {
2

1
,

2

3
 mj , 

2

1
,

2

1
 mj , 

and {
2

1
,

2

3
 mj , 

2

1
,

2

1
 mj }  

 

(i) For the basis of {
2

1
,

2

3
 mj , 

2

1
,

2

1
 mj

,
 

 
























2

2

1

3

1

3

2
3

2

2

1

3

2









BB

BB
H

BB

BB

sub  

 
((Mathematica)) 
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(ii) For the basis of {
2

1
,

2

3
 mj , 

2

1
,

2

1
 mj } 

Clear"Global`";

m  12;

M1 

 —2

2
 B B 4 m

3
 B B

3
9
4
 m2

 B B
3

9
4
 m2  —2  B B 4 m

3

;

eq1  EigensystemM1  Simplify

 1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1,  9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1

E1  eq11, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2 
2 B B

3


4 B2 B2

27  —2  OB4

E2  eq11, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2

2


2 B B
3


4 B2 B2

27  —2  OB4

1  eq12, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

2 2 B B

9  —2 
16  2 B3 B3

729 3 —6  OB4, 1

2  eq12, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &

 9  —2
2  2 B B


2  2 B B

9  —2 
16 2 B3 B3

729 3 —6  OB4, 1
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
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2
3

2
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Clear"Global`";

m  12;

M1 

 —2

2
 B B 4 m

3
 B B

3
9
4
 m2

 B B
3

9
4
 m2  —2  B B 4 m

3

;

eq1  EigensystemM1  Simplify

 1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

1
12

8 B B  3  —2  32 B2 B2  81 2 —4 ,

9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1,  9  —2  32 B2 B2  81 2 —4

4 2 B B
, 1

E1  eq11, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2 
2 B B

3


4 B2 B2

27  —2  OB4

E2  eq11, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &

 —2

2


2 B B
3


4 B2 B2

27  —2  OB4

1  eq12, 1  Series, B, 0, 3 &  Simplify,   0, —  0 &

2 2 B B

9  —2 
16  2 B3 B3

729 3 —6  OB4, 1

2  eq12, 2  Series, B, 0, 3 &  Simplify,   0, —  0 &

 9  —2
2  2 B B


2  2 B B

9  —2 
16 2 B3 B3

729 3 —6  OB4, 1


