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Abstract:

In 1897, Pieter Zeeman observed the splitting of the atomic spectrum of cadmium (Cd)
from one main line to three lines. Such a splitting of lines is called the normal Zeeman effect.
According to the oscillation model by Hendrik Lorentz, the Zeeman splitting arises from the
oscillation of charged particles in atoms. The discovery of the Zeeman effect indicates that
the charged particles are electrons. In 1897 - 1899, J.J. (Joseph John) Thomson independently
found the existence of electrons from his explorations on the properties of cathode rays.

There are few atoms showing the normal Zeeman effect. In contrast, many atoms shows
anomalous Zeeman effects. For the spectra of sodium (Na). for example, there are two D-
lines (yellow) in the absence of the magnetic field. When the magnetic field is applied, each
line is split into four and six lines, respectively. Although Zeeman himself observed the
spectra of Na, he could not find the splitting of the D lines in the presence of the magnetic
field because of the low resolution of his spectrometer. The electron configuration of Na is
similar to that of hydrogen. There is one electron outside the closed shell. Instead, he chose
Cd for his experiment and found the normal Zeeman effect (three lines). In the electron
configuration of Cd, there are two electrons outside the closed shell. The three lines observed
in Cd was successfully explained in terms of the Lorentz theory. It seems that the choice of
Cd by Zeeman is fortunate to the development of atomic physics. If Zeeman found the
anomalous Zeeman effect in Na by using spectrometer with much higher resolution, Lorentz
might have some difficulty in explaining such a complicated phenomenon. In fact, only the
quantum mechanics can explain the normal Zeeman effect, the anomalous Zeeman effect,
and the Paschen-Back effect (Zeeman effect in an extremely large magnetic field). Here we
note that the Fabry-Perot interferometer (which is used for the measurement of Zeeman effect
in our laboratory ), designed in 1899 by C. Fabry and A. Perot, represents a significant
improvement over the Michelson interferometer.

In our Advanced laboratory [Senior Laboratory (Phys.427, Phys.429) and Graduate
Laboratory (Phys.527)], students (both undergraduate and graduate students) are supposed
to do the experiment for the Zeeman splitting of mercury (Hg), using an equipment consisting
of magnetic field, Hg light source, polarizer, Fabry-Perot Etalon, CCD camera, and computer.
The normal Zeeman splitting is observed in Hg. The electron configuration of Hg is similar
to that of Cd, where two electrons are outside the closed shell. The introduction of such new
techniques may lead to clear visualization of the Zeeman effect in the laboratory class.



In this lecture note, we present both classical and quantum mechanical theories on the
Zeeman effect. (1) Lorenz theory, (2) the Zeeman effect of Na using quantum mechanics, (3)
the Zeeman effect of Cd and Hg. These notes will be helpful to understanding the Zeeman
effect from a view point of quantum mechanics. "The atomic spectra are sort of voices which
can be heard from the quantum world."

Pieter Zeeman (25 May 1865 — 9 October 1943) was a Dutch physicist who shared the 1902
Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect.

http://en.wikipedia.org/wiki/Pieter Zeeman

1. Introduction

In 1897, Pieter Zeeman observed the splitting of the atomic spectrum of cadmium (Cd)
from one main line to three lines. Such a splitting of lines is called the normal Zeeman effect.
According to the oscillation model by Hendrik Lorentz, the Zeeman splitting arises from the
oscillation of charged particles in atoms. The discovery of the Zeeman effect indicates that
the charged particles are electrons. In 1897 - 1899, J.J. (Joseph John) Thomson independently
found the existence of electrons from his explorations on the properties of cathode rays.

There are few atoms showing the normal Zeeman effect. In contrast, many atoms shows
anomalous Zeeman effects. For the spectra of sodium (Na). for example, there are two D-
lines (yellow) in the absence of the magnetic field. When the magnetic field is applied, each
line is split into four and six lines, respectively. Although Zeeman himself observed the



spectra of Na, he could not find the splitting of the D lines in the presence of the magnetic
field because of the low resolution of his spectrometer. The electron configuration of Na is
similar to that of hydrogen. There is one electron outside the closed shell. Instead, he chose
Cd for his experiment and found the normal Zeeman effect (three lines). In the electron
configuration of Cd, there are two electrons outside the closed shell. The three lines observed
in Cd was successfully explained in terms of the Lorentz theory. It seems that the choice of
Cd by Zeeman is fortunate to the development of atomic physics. If Zeeman found the
anomalous Zeeman effect in Na by using spectrometer with much higher resolution, Lorentz
might have some difficulty in explaining such a complicated phenomenon. In fact, only the
quantum mechanics can explain the normal Zeeman effect, the anomalous Zeeman effect,
and the Paschen-Back effect (Zeeman effect in an extremely large magnetic field). Here we
note that the Fabry-Perot interferometer (which is used for the measurement of Zeeman effect
in our laboratory ), designed in 1899 by C. Fabry and A. Perot, represents a significant
improvement over the Michelson interferometer.

In our Advanced laboratory [Senior Laboratory (Phys.427, Phys.429) and Graduate
Laboratory (Phys.527)], students (both undergraduate and graduate students) are supposed
to do the experiment for the Zeeman splitting of mercury (Hg), using an equipment consisting
of magnetic field, Hg light source, polarizer, Fabry-Perot Etalon, CCD camera, and computer.
The normal Zeeman splitting is observed in Hg. The electron configuration of Hg is similar
to that of Cd, where two electrons are outside the closed shell. The introduction of such new
techniques may lead to clear visualization of the Zeeman effect in the laboratory class.

In this lecture note, we present both classical and quantum mechanical theories on the
Zeeman effect. (1) Lorenz theory, (2) the Zeeman effect of Na using quantum mechanics, (3)
the Zeeman effect of Cd and Hg. These notes will be helpful to understanding the Zeeman
effect from a view point of quantum mechanics. "The atomic spectra are sort of voices which
can be heard from the quantum world."

2 History: explanation of the normal Zeeman effect
(a) The discovery of the normal; Zeeman effect

The explanation for the atomic spectra is due to the oscillation of charged particles inside
atoms. There was no positive evidence that the particle should be an electron. The
experimental evidence for the atomic spectra due to an electron was found by Pieter Zeeman
in 1897. He observed splitting of Cd lines into three components (normal Zeeman effect)
when an external magnetic field B is applied. He showed that the angular frequency of these
lines are given by
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where ax is the angular frequency in the absence of B. The angular frequency @, is given by
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where - € is the charge of electron (we assume that €>0) and m is the mass of electron.

In 1897, Hendrik Lorentz presented a theoretical interpretation for the observation by
Zeeman. The Zeeman effect is the splitting of the energy levels of an atom when it is placed
in an external magnetic field. The splitting occurs because of the interaction of the magnetic
moment g of the atom with the magnetic field B slightly shifts the energy of the atomic levels
by an amount,

As=—-u-B.
The magnetic moment g of electron can be expressed by

Y7,
m=y kb

where L is the orbital angular momentum, s is the Bohr magneton of electron, and 7 is the
Planck's constant,
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Fig. Schematic diagram, where a magnetic field is applied along the z axis.

(b) Oscillation model of Lorentz
We consider a particular orbit, in which the particle is rotating around the z axis with
angular frequency +an, where +ap indicates the counterclockwise (CCW) rotation, and -an



indicates clockwise (CW) rotation. If we view the atoms in the z direction, we will obtain
light that is circularly polarized with the electric vector rotating in the same direction as the
electron.

CCW wy CwW —wy

Fig.

If we view it normal to the z axis, the electric field that reaches us will depend only on
the projection of the electron motion on the axis normal to the viewing. The projection of
circular motions on such an axis is simple harmonic motion. So that the light viewed in a
direction parallel to the plane of motion will be polarized in a direction normal to the direction
of viewing and parallel to the plane of electron motion.

Viewed from the z axis (B = 0)

Circulary polarized [2 modes (x—y plane)]

A
!
Wy
Fig. Viewed from the z axis. B = 0. There are two modes (circularly polarized, xy

plane).



Viewed from the x—y plane

Linearly polarized [1 mode (z), 2 mode (x—y plane)]
A

>
Wy

Fig. Viewed from the Xx-y plane. B = 0. There are three modes at ® = av. 2 modes
(linearly polalized, Xy plane) and 1 mode (linearly polarized, z axis).

(¢) Magnetic field along the 7 axis: B # 0.

In the presence of an external magnetic field along the z axis, the components of the
motion in the z direction are left unchanged, while the components of motion in the Xy plane
are altered. Those atoms with counterclockwise orbits will have their frequencies of rotation
in the Xy plane increased by @, , while clockwise orbits will have their frequencies decreased

by o, , where

(0,_27

with

_B (Larmor angular frequency).
mc

c

CCW wytwi CW —wWot+wL



Fig. Schematic diagram for the classical explanation of the normal Zeeman effect.

When viewed along the z axis (the direction of the magnetic field), the radiated line will
therefore split into two lines, with opposite circular polarization. The electrons moving in the
Z direction cannot radiate in the z direction; as a result, there will be no un-deviated lines in
the light emitted in the z direction.

Viewed from the z axis

No linearly polarized (z)

Circulary polarized (x—y) Circulary polarized (x—y)

wWH)—wL wy wo+wL
Fig. Viewed from the z axis. B # 0.
If the atom is viewed normal to the z direction, then there will be un-deviated line,
produced by electrons which move in the z direction. This will be polarized in the z direction.
The components of electron motion in the Xy plane will produce two deviated lines, each

linearly polarized in a direction normal to z.

Viewed from the xy plane

Linearly polarized (xy) Linearly polarized (xy)
Linearly pplarized (z)

wy—w| wy wytw
Fig. Viewed from the Xy plane.
3. Experimental configuration
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Longitudinal

Transverse

Fig.  B//z. Isometric depiction of the polarization in the longitudinal and transverse Zeeman
effect. Longitudinal observation (parallel to the field B). No z-line can be observed.
Transverse observation (perpendicular to the field B). Three linearly polarized beams
are seen. One (7) is parallel to the field B. Two others (o) are perpendicular to the
field B. The magnetic field B is along the z direction.

In 1896 Zn observed that the transition lines split when the field is applied. The “Zeeman
effect” is the energy shift of atomic states due to the coupling of the electron orbital angular
momentum to the external magnetic field. The normal Zeeman effect occurs when there is
no effect from the spin magnetic moment. The energy shift in the presence an external
magnetic field can be observed by the wavelength shift of the radiation emitted in atomic
transitions between these states



Fig.
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Normal Zeeman effect in Cd. Schematic diagram for the Zeeman splitting in Cd.

643.8nm.g=1for5'D2(j=2,1=2,s=0)and 5 'P1 (j=1,1=1,5=0). Am =0 for
linearly polarized light (7). Am = 1 for the right-hand circularly polarized light (™).
Am = -1 for the left-circularly polarized light ( o~ ). Normal Zeeman effect:
transversal and longitudinal observation of the splitting of the red 643.847 nm Cd-
line in the magnetic field showing the normal Zeeman effect. The definition of Am is
as followed. Am = the value of m for the lower state minus the value of m for the

upper state. The light is emitted when the state of electron changes from the upper
state to the lower state. The Landé g factor is g = 1 for both 5 'D2 and 5 'P1.

The selection rule for the transition due to the electric dipole moment
A transition in which m'=m+1 results in the right-hand circularly polarized light, at

least for a wave going in the z direction, while m'=m—1 yields a wave of opposite

polarization; right-hand circularly polarized light.
For light which is emitted normal to the z axis (transverse configuration, along the X axis),
the polarization will be linear in any transition in which the change of m is defined. A

transition in which Am =0 can produce only light which is polarized in the z direction, while
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if Am=+1 must be linearly polarized to the z direction. See the discussion in the section for
the selection rule for the radiation due to the electric dipole moment.

Longitudinal
If the radiation is viewed along the direction of the magnetic field, then only X and y can

appear in the matrix element Ds, so that the transition with Am =0 does not contribute to
this line. The transition with

Am=+1

a o

Fig. Longitudinal observation for the transition with Am ==1. k is the wavevector of light,
propagating along the magnetic field direction. The lights are right-hand and left-
hand circularly polarized (o, o).

Transverse
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If the light is viewed normal to the magnetic field, say in the X direction, then it can be
polarized either the z or in the y direction. In a transition in which Am = 0, we see that the
matrix element of the electric dipole moment Dri is along the z axis. This means that the
transition with Am = 0 leads to the light polarized in the z direction, which propagates in the
x direction. electric polarization vector should be parallel to the z axis. The net result is that
the line is split into three parts; first a linearly polarized light with the polarization along the
Z axis. Second, two parts polarized in the direction normal to the z axis. The transition with
Dm = 1 leads to the right-hand circularly polarized light, while Dm = -1 yields the left-hand
circularly polarized light. As a result, only two lines appear along the direction of the
magnetic field.

Am=0

Dg//€

k(o)
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Fig. Transverse observation for the transition with Am=0.. k is the wavevector of light
(linearly polarized, 7), propagating along the magnetic field direction. The
polarization vector is parallel to the magnetic field B.

Am=+1

a o

k(o)

Fig. Transverse observation for the transition withAm = +1.. k is the wavevector of light

(linearly polarized, c* ), propagating along the magnetic field direction. The
polarization vector is perpendicular to the magnetic field B and the wavevector k.

((Normal Zeeman effect in Cd))
The Hamiltonian due to the Zeeman energy is given by

A

H =_‘[lJ.B=ngllqu_B= gJI;';BBJZ
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AL B - .

H|j,m) = ngB J,|j,m) =g, mB| j,m)
E,=E, +0,1;Mm,B, for 5 'D2 level
E, =E,+0,4,MmB for 5 Py level

where
m=2,1,0,-1,-2, mi=1,-1,
g,=1, g,=1.

The energy separation is given by

AE, =E, -E,
= AElzo + (zB(M,g, —-m,g,)
= AE120 + g B(m, —m,)

with

AE —— ¢
2 1(643.85nm)

Then we have three lines with

m,—-m, ==x1,0

5. Zeeman effect for Na D lines: Separation of 3p and 3s energy levels due to spin
—orbit interaction

14



Fig.12

Spin—orbit interaction

32P3p
n=3,0=1,s= 1/2/ £
3P R
Ent(r+1)/2
L 3P,

n=3,{=0,s=1/2
3S

Energy levels of Na with and without spin-orbit interaction. The 3P level is
slightly different from the 3S level. The 3P level is split into 3 *P3» (4
degeneracies) and 3 ?P12 (3 degeneracies) due to the spin-orbit interaction.
The Lande g-factor is g = 4/3 for into 3 *P312, g = 2/3 for into 3 2P12, and g =

2 for into 3 5P,

15



m=3/2

‘ =1/2 4
‘ Tn:ilf?. &3
m=-3/2

m=1/2

32Py)) —T< A ‘ A ‘ me1p 53

589.0 hm| Am=1 —1 1 1 0 -1 -1

58P.6 nm

3%S12 u< v ' H ' ' ‘ 7 v Y T::_ﬁm g=2

Fig.  Zeeman effect of the Na D lines (589.0 nm and 589.6 nm). The Landé g-factors for 3
P31, 3 2P1s2, and 3 2S12 are denoted in Fig.

The well known bright doublet which is responsible for the bright yellow light from a
sodium lamp may be used to demonstrate several of the influences which cause splitting of
the emission lines of atomic spectra. The transition which gives rise to the doublet is from
the 3p to the 3s level, levels which would be the same in the hydrogen atom. The fact that
the 3s (orbital quantum number | = 0) is lower than the 3p (I = 1) is a good example of the
dependence of atomic energy levels on angular momentum. The 3s electron penetrates the 1S
shell more and is less effectively shielded than the 3p electron, so the 3s level is lower (more
tightly bound). The fact that there is a doublet shows the smaller dependence of the atomic
energy levels on the total angular momentum . The 3p level is split into states with total
angular momentum j = 3/2 and j = 1/2 by the magnetic energy of the electron spin in the
presence of the internal magnetic field caused by the orbital motion. This effect is called the
spin-orbit effect. In the presence of an additional externally applied magnetic field, these
levels are further split by the magnetic interaction, showing dependence of the energies on
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the z-component of the total angular momentum. This splitting gives the Zeeman effect for
sodium.

When the wavefunctions for electrons with different orbital quantum numbers are
examined, it is found that there is a different amount of penetration into the region occupied
by the 1s electrons. This penetration of the shielding 1s electrons exposes them to more of
the influence of the nucleus and causes them to be more tightly bound, lowering their
associated energy states. In the case of Na with two filled shells, the 3s electron penetrates
the inner shielding shells more than the 3p and is significantly lower in energy.

6. Lande g-factor in Na

The Lande g-factor is given by

:§+ S(S+1)—-L(L+1)

%75 2J(J +1)

The total angular momentum J is defined by
J=L+S.
The total magnetic moment u is given by

p:—%(L+ZS).

The Landé g-factor is defined by

_ g.]:uB J

n;, = 7

where

17



Fig. Basic classical vector model of orbital angular momentum (L), spin angular
momentum (§), orbital magnetic moment (L), and spin magnetic moment
(us). J (= L +8) is the total angular momentum. g is the component of the
total magnetic moment (L + us) along the direction (-J).

Suppose that

L=aJ+L and S=bJ+S,

where a and b are constants, and the vectors S, and L, are perpendicular to J.
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Here we have the relation a+b =1, and L, +S, =0. The values of a and b are determined

as follows.

Here we note that

J-S=(L+S)-S=S"+L-S=8"+

J-r-s* yr-r+s’

or

J-L'+S ®

J$=" =TI+ D - LL+D +S(S + 1],

2

b

2

using the average in quantum mechanics. The total magnetic moment u is

p= —%(L +28) = —%[(a +20)J +(L, +25))].

Thus we have
Hp Hp 0,45
=—"P@+2b) J=—-LE(1+h)J=-2EJ,
n, 5 ( ) 5 (I+Db) 5

with

0, :1+b:1+J_-2$:§+S(S+1)—|_(|_+1).
2 2JJ +1)

7. The states of 3 2S;, , 3 2P3/5, and 3 2Py, in Na

The electron configuration of Na is given by

Na: (15)2(25)2(2p)°(3s)
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The inner 10 electrons can be visualized to form a spherically symmetrical electron cloud.
We are interested in the excitation of the 11-th electron from 3s to a possible higher state.

(a) The 3s state
For the electron with 3s state (I =0, s =1/2),

DoxDyp=Djp

j.m) wherej=1/2 (m=1/2,-1/2)
Thus we have j = 1/2 (the degeneracy 2). The state is described by 3 2S5 (or simply 2S ).

Here we use the notation of n 25"'L; where n is the principal quantum number, S is the spin
number, | is the orbital angular momentum, and j is the resultant angular momentum.

li=1/2,m=1/2)=|m =0,m, =1/2)

lj=1/2,m=-1/2)=|m =0,m =-1/2)

ms
A
1
2
1 1 1 1
|-1,—> lj==,m=1>=[0,—> 1,=->
2 27 ] 2 2
[ ] [
> M
.1 | @12 o |
-1,-=> j=—,m=—1>=|0,—-> j=—1,-->
=175 =3 3771073 l 2
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Fig. ‘ J :%,m>. (I=0). m=1/2. m = -1/2. The recursion relation to obtain the

Clebsch-Gordan coefficients.

(b) The 3p state
For the electron with 3p state (I =1, s = 1/2), we have

Dy xDypp=D3p+Djp

or

j= ,m>, where m=3/2, 1/2,-1/2, -3/2

0o | W

j=

,m>, where m=1/2, -1/2

N | =

Thus we have j = 3/2 (the degeneracy 4) and j = 1/2 (degeneracy 2). These states are described
by 3 2P3/2 (J = 3/2) and 3 2P1/2 (_] = 1/2)

Note that

21



Fig.

j:%,m>. (I = 1). The recursion relation to obtain the Clebsch-Gordan

coefficients.
The Clebsch-Gordon coefficients can be calculated using the Mathematica.

()  Forj=3/2(32Pyp),

|j=3/2,m=-3/2)=|m =-1,m =-1/2)

|j=3/2,m=-1/2) =\E|m, =0,m, :—1/2>+i3|m, =-1,m,=1/2)

NE]

: 1 2
|j =3/2,m:1/2>=$|ml =1,m, =—1/2>+\/;|m, =0,m, =1/2)

li=3/2,m=3/2)=|m =1m =1/2)
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Fig.

j=%,m> . I = 1. The recursion relation to obtain the Clebsch-Gordon

coefficients.

(i)  Forj=1/2 (3 2Pyp),

|j=1/2,m =—1/2>=%|ml =0,m, :—1/2>—\E|m, =-1,m,=1/2)

|j=1/2,m :1/2>:\E|m, =1,m, =—1/2>—L|m, =0,m, =1/2)

V3

(©) g factors

The Lande g-factor is defined by

23



§+s(s+1)—l(l+l)

977 2ji(j+1)
Table
Term J I S g
32pP;), 32 1 1/2 4/3
3 2P1/2 1/2 1 1/2 2/3
3 281/2 1/2 0 172 2
m=3/2 4
A LT
‘ ‘ m=-3/2
2 _ m=1/2 :%
3°P T< ‘ ‘ ‘ ‘ me_1p2 g=3
589.0 hm| Am=1 d 1 0 0 —1 -1
58P.6 nm
YY YY ol Y.vlLy
328”2 Y ' v I:l:jlfz g:2
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Fig. Schematic diagram of energy levels in Na (n = 3) with and without magnetic
field B. The splitting of energy levels occurs due to the spin-orbit interaction
and the Zeeman effect.

The wavelength of sodium D lines is given by

A=1589.6 nm (3 3P1/2 -3 381/2).

A=589.0 nm (3 3P3/2 -3 381/2).

The sodium D lines correspond to the 3p — 3s transition. In the absence of a magnetic field
B, the spin orbit interaction splits the upper 3p state into 3 2P3/, and 3 2Py, terms separated

by 17 cmrl. The lower 3 23, has no spin-orbit interaction.

8. Anomalous Zeeman effect in Na

The Hamiltonian due to the Zeeman energy is given by

A=y = Slle j g SuleZ

h z
A B - .
H|j,m)= ngB J,|j,m) =g, mB| j,m)
E,=E, +0,4;m,B, for 3 P32 level
E,=E,, +0,4,MmB, for 3 2P12 level
E, =E,+0,4,mB for 3 2S12 level
where
ms =3/2, 1/2,-1/2, -3/2, m2=1/2,-1/2, mi=1/2,-1/2,
4 2
93255 gzzgﬂ 9,=2
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The energy separation is given by
AE,, =E, —E, = AE,," + 5B(m,g, - m,g,)
AE, =E, —E, = AE.’ + uzB(m,g, —m,g,)
with

AES = NC AE =N
A(589.0nm) A(589.6nm)

Then we have

m,g, —m,g, =-5/3,-1,-1/3, 1/3, 1, 5/3 around 589.0 nm

m,g, —m,g, =-3/2,-4/3,4/3,2/3 around 589.6 nm
where

m, —m, =+1,0, m, —m, =%£1,0
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Fig. Zeeman splitting of the Na D linesinB=3 T. [1/4(589.0nm) - 1/4(589.6nm)] = 17.28

cm™.

Sodium Principal Doublet

No field

Weak field
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Fig. H. White, Introduction to Atomic Spectra

8. Spin orbit interaction for one electron system

We introduce a new Hamiltonian given by

~

I:|:H0+I:|LS,

The total angular momentum J is the addition of the orbital angular momentum and the spin
angular momentum,

A

J=L+

>

b

The spin-orbit interaction is defined by
Ao =dl-§ =2 (° -1~ §).
where
LxL=inlL, SxS =inS

The unperturbed Hamiltonian I:|0 commutes with all the components of L and S.

and

We note that
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Then we have
[H,,J> - I*-8*1=0
or
[H,,J?]1=0
We also note that
[J2, 2= +S8*+2L-S,[*1=2[L-S,I*]=0

[J2,8*)=[L*+8*+2L-S,8*1=2[L-S,8*]=0

<
()
Il
=
+
>
+
[\
&~
>
.

=-2[L,, L3S, +2[L,,L,1S, —2L,[S
=-2inl, S, +2inL, S, - 2iAL,S, +2in
=0

Thus we conclude that |l//> is the simultaneous eigenket of the mutually commuting

observables{ H,, >, §%, J*,and J.}.
Hily)=E."v)
l:2|z//>:h2|(| +1)|w)

$?|ly)=h’s(s+1)|y)
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Jly)=n*j(j+Dy)
JJy)=nmly)

The eigenket can be described by

) =[im.s)

Note that the expression of the state can be formulated using the Clebsch-Gordan coefficient
(which will be discussed later). The value of j is related to | and s (=1/2) as

. 1 . 1
=l+s=1+—, =l-s=1-=
J 2 J 2

When the spin orbit interaction is the perturbation Hamiltonian, we can apply the degenerate
theory for the perturbation theory.

] Lmil,s) =77 - £ - §) jmil.s)
2
:%[j(j+1)—l(l+1)—s(s+l) ji.m;l,s)
=Eg"| j.m;1,s)

where
Eso' =%2[j<j +D) =11 +1) = s(s +1)]

with s = 1/2. Here we note that
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e’ 1
95 = 2 2\ 3
2m, ¢TI/ 4

@ 1
am e I(1+1/2)(1 + Dn’as’
1mcza—4 !
2 B I +1/2)1+ D)’

where

(7).~
r*/, 10+1/2)1+Dn*as’

with

Then we have

= :ﬂz[j(jﬂ)—l(l +1)—s(s+1)

2
> 4 [JO+D =1 +1)—s(s+1)]

:lmec a
4 n’I(1+1/2)(1+1)

. 3
:lmcza_4[1(1+1)—l(l+1)—z]
2 200+1/2)(1+1)

When j=I7Ll
2

.0 -ln 020[—4 !
27 pdald+1/2)(1+1)

When j=I-1
2
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E (1):lmcza—4 —(1+D
27 P2l +1/2)(1+1)

| =1+1/2
A,=0 |
D A S
A
A =0 (1+1)
v
] =1-1/2
| =0

Spin—orbit interaction

Fig.  The degenerate states with the same | (# 0) are separated into the energy level with

j=1 +% and j=I —% due to the spin-orbit interaction. The state with | = 0 (s-state)

. 1 ,al 1
remains unchanged. 6 =—m.c” —

L — depends on nand I.
2 2l +1/2) 1 +1)

9. Eigenstates for j=1+1/2,
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-9
4

-B—----------
L4

I
(m-1R,12) “.‘(m+1/2,1/2)
.
[
(m-1/2,-1/2) (m+1)%,-1/2)
. 1 : : .
Fig. j=|+5,m> . The recursion relation to obtain the Clebsch-Gordan
coefficients.
Hili=l+1/2,m)=E|j=1+1/2,m),
with

E.. :%hz[a 1/2)1+3/2) -1 +1)-3/4]:§h2|.

We note that
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The expectation values of I:Z and éz are obtained as follows.

Cli=t+2,m)=n Y2 0 oym = m-1/2,m =1/2)
21 +1
1M l/2 o 12)m = m e 1/2,m, =—1/2)
21 +1
l+m+1/2
. - EMEE m-1/2)
(j=1+1/2,ml0j=1+1/2,m)=n \/'+m+1/2 \/' m+l/2 )V 2041
21+1 21 +1 I-m+1/2
S mt1/2)
21 +1
4 I+m+1/2(m_1/2)+I—m+1/2(m+1/2)
L 21+1 21+1
_ h2Im
21 +1
Similarly,
SAz|j=|+1/2,m>=h Ier—Jr1/2(1/2)|m|=m—1/2,ms=1/2>
21 +1
e Y2 oy m = m1/2,m, = -1/2)
21 +1
(j=1+1/2,m$,j=1+1/2,m) =h[|+m—+l/2(l/2)——l _m+1/2(l/2)}
21 +1 21 +1
_ hm
21 +1

Then we have
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(j=1+1/2,m|, +2S,|j=1+1/2,m)=m(1+——)
21 +1
10.  Eigenstates for j=17-1/2
1
E Lo
(m-1R,18) “s‘(m+1/2,1/2)
L} ~'
(m-1/2,-1/2) (m+1)%,-1/2)
Fig. J=1 —% . The recursion relation to obtain the Clebsch-Gordan coefficients.
Hgli=1-1/2,m)=E|j=1-1/2,m),
with
S 2 A 1 3 S 2
Es=2n[-)1+)-1d+D)—=]=-2#"(1+1),
s =SR2 =10+ ) =J1= =2 +1)
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or

Hli=1 —1/2,m>:—§h2(l +D|j=1-1/2,m).

The expectation value of I; and éz

(i =i—1/2,m|I:Z|j=i—1/2,m>=h[|_m—+1/2(m—1/2)+lﬂn—+l/2(m+1/2)}
21+1 21+1

_2am(l +1)

o 20+1
. A l-m+1/2 l+m+1/2
(j=1-1/2,m[S,|j=1-1/2,m) =h[T(l/2)—T(l/2)}

_ mm

T 20+l

Then we have
) ~ . 1
=1-1/2,m|L,+2S |j=1-1/2,m)=hm(1-—).
(i L, +2S,[] ) =hm( TS

In summary, the energy shift due to the spin-orbit interaction is given by

AE=E, =§h2|, for j = 1+1/2,

s

AE=E,=-2

A+,  forj=1-1/2,
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< p2l 0
|:|LS =| 2
0 —ghz(l +1)

under the basis of|j =|+1/2,m> and |J =1 —1/2,m>,

where
we - 'z _(az) 1
E| cn*#ld+1/2)+1) n° 1d+1/2)1+1)°
or
z* 1
n’E=Ra’

nt 1012+

11. Pachen-Back effect
We consider the Hamitonian given by

2
H= +@iL S+ Bl(LZ+2SZ).
2 R h

The matrix of L-S under the basis of

S

1
m, =m+§,mS =

1 1
m =m-—,m,=—) and
2 2

obtained as

1 1
2 (m-=) \/(I+m+5)(l—m+5)

h? 1 1 1
\/(I+m+5)(l—m+5) —(m+5)

We note that

1 1 1 1 1
m=m-—m,=—)=(M+=-)m=m-—m, =—
2 2 2

1
—(L, +2S
h(z 2 )
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m —m+lm _ 1 —(m—l)
| 29 S 2

1
—(L, +2S
h( , 2) 5

1 1
m=m-—,m, =—
2 2

So we have the matrix of %(LZ +2S,) under the basis of |m, =m —%,ms = %> and

1 1
m =m+—,m =——),as
2 2

Thus the resulting matrix is given by

1 1 1
> o > (m--) \/(I+m+—)(l—m+—)
E%L-S)WBBl(Lﬁzsz):ﬂ 2 2 2
4 h i 4 \/(I+m+l)(l—m+l) —(m+l)
2 2 2
m+— 0

+ 1B 1
0 m-——
2

We solve the eigenvalue problem.

/|
%ZE(Z, B =B

The matrix (2x2) is given by
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A:% 1 1 1
l+m+—)(-m+— —-(m+—
\/( 2)( 2) ( 2)
or
o m—% k m+% 0
AZE 1 +ﬂ 1
k  —(m+-o) 0 m-—
2 2

where for simplicity we use

1 1
k:\/(l+m+5)(l—m+5)

The eigenvalues are

h= S el oo g,

L =2 -t l2a+Ly s 20pm+ 57
4 2 2
We introduce the ratio {as
B
a

g:

Then we have

a 1 1
=—(-1+4em+—_ [(I +=)* +2cm +¢*
A 4( gm 2\/( 2) M+¢7)
and

39
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a 1 1
A =—(-1+4cm—=—_[(1+=)> +2cm+¢’
) 4( ¢m 2\/( 2) gM+¢7)
For ¢ <<1,

a 2142

A=A

a 21
A =——{+1)+pm——
? 2( ) ﬂm2|+1

For ¢ >>1,

il=ag(m+%)=ﬁ(m+%), zz=ag(m—%)=ﬂ(m—%)

10

-AE/a
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((Mathematica))
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1
Clear["Global *"]; rulel = {\/ k> +m? L+ 5}
1 1
rule2={k->\/(L—m+—) (L+m+—) };
2 2

a m- 2 k m+ < 0
Al= — 2 | +B ? N
2 k —(m+z) 0 (m—;)

eql = Eigensystem[Al];

Al=eql[[1, 2]] /- rulel /. rule2 // Simplify[#, L>0] &

1

4 (—a+4m5+J<a+2La>2+8ma5+452)

A2 =eql[[1, 1]] /- rulel /. rule2 // Simplify[#, L>0] &

—%+mB—%\/(a+2Loc)2+8monB+4/32

AM1=21/. {B>Ca} //Simplify[#, a>0] &

1
Za(—1+4m§+\/1+4|_+4|_2+8m§+4§2)

A22=22 /. {B->Ea} // Simplify[#, a>0] &

-%a(1-4m§+J1+4L+4L2+8m§+4§2)

Series[all, {£, 0, 2}] // Simplify[#, 2L +1>0] &

La 2(1l+L)ymac (1+4L+4L%-4m?)ac?
+

3
— + +0
2 1+2L 2 (1+2L)3 o

Series[A22, {£, 0, 2}] // Simplify[#, 2L +1>0] &

2Lmac  ((1+4L+4L%-4m?) o) &?
1+2L 2 (1+2L)3

3

+0[C]

(1+L) a+

NP
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12. Zeeman effect in a system with a single electron such as Na
The magnetic moment is given by a sum of the orbital magnetic moment and spin
magnetic moment as

ﬁ:_%(i-’_z‘g‘)a

where = en >0) is the Bohr magneton. The Zeeman energy is given b
Mg 5 g gy 18 g Y
m

H, =—ﬁ-B=%(i+2§)-3=%(i+3‘)-3: “;B(jz+§z),

for B//z. We now calculate

Hlj=t+1/2.my=4eB (0 408 M2 o y)om, =1/2)
h 21+1
2 4B a8 T2 12m, = -1/2)
h 21+1

or
Hy| ] =|+1/2,m>=,uBB(m+%) '*;‘—:/ﬂm, —m-1/2,m, =1/2)
+,uBB(m—%) I_;:—:/2|m, —m+1/2,m, =—1/2)
Noting that
Hili=1+1/2,m)=E|j=1+1/2,m)
we have
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(HB+HQ“=I+ULm%ﬂ§MAH%Mm+%Hﬂi§i¥zmm=m_UZME:U®
+

S 152 1. [1-m+1/2
+[Z 1R + pgB(M— =), ————=|m, =m+1/2,m, =—-1/2
[2 1gB( 2)] N+1 | [ >
Similarly,
HB j:l_l,m :—ﬂLB(l:Z'FzSAZ) I_n‘lﬁhﬂl:m_1/2’,rnszl/2>
2 h 21+1
+ﬁ£(g+2ixﬁimiﬂ3my=m+u2mg=—u@
h 21+1
or
| 1 1. [I-m+1/2
Hglj=1-=,m)=—py,B(Mm+—-),[————m, =m-1/2,m  =1/2
Ji=1-3m) =m0 )
1. [l+m+1/2
g Bm— ) A —mrl/2,m, = —1/2
#55( ? 20+1 m )
or
(s + Fg) i =1-1/2.m) =[2 (14 17 — rgB(m + 11, L= 210 1/2,m, = 1/2)
2 2 21 +1
g 2 1. [l+m+1/2
+[-Z (1 + DA% + 1, B(M =), ———=|m, =m+1/2,m, =—1/2
(=5 (D7 + B =)} = ——=m, . =-1/2)
Note that

j=telm = M2 o, =12 Y 2 s 2m, =1/
2 21+1 21+1

=1L = (M2 s 2m, =12 2 m12,m, =102
2 21+1 21+1

j:|—1/2,m>} can

Then the matrix elements of H ¢ + H, in the basis {| j=1+1/2, m> ,

be obtained as
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|j=1+1/2,m) |j=1-1/2,m)

2 _m?
j:|+l,m é|7’“12+,uBBm(1+L) _,UBB\/(I+1/2) m
2 12 21+1 20+1

< | ‘_yBB\/(IH/Z)z—mZ & 1

i=l——.m S A+ )R + B — ——
=173 A +1 o DA+ 1B =277

for the same | and m. The eigenvalues of this matrix are given by

ghz 1 22 2 2 214
/LzyBBm—T—Z\/MzB B” + 844, BME + &2 (21 +1)27°
n’

A, = ﬂBBm_T“L%\/“/IBsz +8uBm&n” + E2 (21 +1)°h* .

13. Zeeman effect in Na
We now consider the D lines of Na.

i
3’p ~ m=1/

2 T m=_3/3
=1/2

3P $=—/1/2
} =1/2

51— —

Fig. Energy levels for Na in the presence of weak magnetic field. In the presence

of a strong magnetic field, the states |j=3/2,m=i1/2> in 3 °P,,
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| j=1/2,m=+1/ 2> in 37P,,,are no loner eigenstate. The appropriate linear
combination of |j :3/2,m:il/2> in 3°P,,, and |J =1/2,m zil/2> in 3

2p, for the same m (= +1/2) becomes eigenstates of H ¢ +Hy.
@ I=1

The mixed state of 3°P,,, (j=3/2,1=1,5s=1/2),and3’P,, (j=1/2,1=1,5=1/2)is

the eigenstate.

J_é m J_l m
2’ 2’
9
HgBy[——m
3 S .2 4
=—,m| =h +uBm— -
<J 5 > Hg 3
HgB,y[ —m”
1 4 ) 2
=—, —&h” + ugBm—
<J 5 3 Sh™ + g 3

with m ==£1/2, where the factors 4/3 and 2/3 of the Zeeman terms correspond to the g factors

for °P,,, and ’P,, , respectively. The eigenvalue can be obtained from the eigenvalue

problem for the (2 x 2) matrix. We get

E,(m)=E@G3p)+ 1,8 m————\/4 B + 844, BM&H’ +9&7h°

for m==+1/2, and

2
E,(m) = E(3p)+ 1,Bm —% +%\/4sz82 +8u,BMER? + 987K

for m = +1/2. We note that

i :%,m = i%> is the eigenket of H ¢ +Hg, where

3

(HLS +HB) J —E

3\ &, 3
=—)=(=h 2u.B =—,M=—),
=G s 2uefi=2im=3)
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with
_ )
ES—E(3p)+Eh +2u,B
form=3/2,

and

(Hs +Hg)

. 3 3 <L, . 3 3
=2 m=—2)=(En -2uB)j=>.m=—>
J 5 > (2 Hg )‘J 5 2>

with
E,=E(3p) +§h2 -2u,B,
for m=-3/2.
b)) j=12,1=0,s=1/2
‘j =1/2,m= i%> is the eigenket of I-AlLS + I:IB,
with the eigenvalue

E,(m) = E(35)+21,Bm

for m=+

| =

14. Paschen-Back effect in Na

The Paschen-Back effect is the splitting of atomic energy levels in the presence of a
strong magnetic field. This effect is the strong-field limit of the Zeeman effect. The effect
was named after the German physicists Friedrich Paschen and Ernst E. A. Back.
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In the limit of strong magnetic field B, the energy levels of Na are strongly dependent
on the magnetic field, and are given by

E,(m =%) = E(3S)+ 3B,
1
E,(M =) = E(3) ~ 41,8,

_ e
Ey(m=—)=E(3p)-= -,

1 h?
E.(M=-) = EGP) - T~ 4B,

E,=EQ3 p)+§h2 —2u,B,

1 7
(M=) = EGP)- =+ 8.

_ L eap
E,(m=-2)=EGP)-=,-,

E,=EQ p)+§h2 +24,B.
((Mathematica))
We use
w=1, h=1
EQp)-E@Bs)= -7. &= 1.

for the calculation using the Mathematica.
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Energy levels

St
Es
E4(1/2)
E(3p) 7 Py —————— | E4( ! 1/2) S | B
1. 5 o W (o}
| BT 1.0 K Et P25 30
spin—orbit
Ex(-1/2)
7 Es _
-5t
E1(1/2)
EQ3s) ===
| Ei(—1/2)
—10t —
Fig. Splitting of energy levels of Na in a magnetic field B (anomalous Zeeman
effect).
Energy levels
20
10}

Fig.
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Energy levels
200 -

100 -

E1(1/2)

L Ea(=1/2) o o
& 7

==

60 Eo(1/2) 80 100
Ex(=1/2)

~100 |
i E
—200 - 3
Fig. Paschen-Back effect. Zeeman splitting in the very large magnetic field for Na.

15. Paschen-Back effect in Na; quantum mechanical treatment

Suppose that an extremely strong magnetic field is applied for the case of Na. The
Zeeman term of the Hamiltonian is much significant compared to the spin-orbit interaction.
in this case, the Hamiltonian H is simply given by

ﬁ8=%(|ﬁz+2§z)8

in the presence of the magnetic field along the z axis.

(1) 3p states

I=1,s=1/2.
|_,]B mlams>3p :/uBB(mI +2ms)|mlams>3p
|m|,ms>3p is the eigenket of H, with the eigenvalue zzB(m, +2m,).
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|m|,ms>3 (m=1,0,-1, ms=1/2, -1/2).

p
(2) 3s states

I=0,s=1/2.

A

Hg

m,, mg >3S = ppB(m, + 2ms)| m, ms>3s
|mI , ms>35 is the eigenket of H, with the eigenvalue ugB(m, +2m,).

|my,m,) (mi =0, ms=1/2,-1/2).

3s

In the extremely high magnetic fields, the energy levels of 3s and 3p states split into five
levels. The difference between adjacent energy levels is the same and is equal to usB.

Table

Energy (18B) Eigenkets
2 L12)
1 0,1/2) 0,1/2),,
0 L-1/2) 0 |=L1/2)
-1 0-1/2)  [0-1/2)
-2 ~1-1/2),
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Fig.

1
|19 §>3p

2ugB
|0, =>3p, [0 1—>
’ 2 3ps IYs 2 3s ILLBB
1
|19 _3>3 P |_1>3>3p 0
1 1
|0: — 5 >3ps IOa = >3ss
23—+ 2 —peB
1
-1, —=>
| 230 2B

The level splitting of Na for the Pashen-Back effect. | m,,m; > i is the eigenket

for 3p states (6, states; m=1, 0, -1, ms=1/2, -1/2). |m, ,m5>
for 3s states (2 states; mi =0, ms=1/2, -1/2).

55 1s the eigenket

16.

Zeeman splitting in Cd
The electron configuration of Cd is given by (Kr) 4d'® 5s2. This is similar to the outer

electron configuration of He but also of Hg.

(@)

I=0ands=1

I=0ands=0

Do x Do = Do =0

D1z x Diz2=D1+ Do s=1,s=0
Do x D1 =Du i=1
Do x Do = Do j=0

538,



(b)

(©

51So

5s5p
D1 x Do = D1 I=1
Di2 x Di2=Di1 + Do s=1,s=0
I=1lands=1

DixDi=D2+Di1 +Do

j=2 53P2

=1 53Py

j=0 53Po
I=1ands=0

D1 x Do=Di i=

5P =1

5s5d
D2 x Do = D2 1=2
D12 x Di2=D1 + Do s=1,s=0
I=2ands=1

Do xDi=D3+ D2+ Di

]=3 53D;3
|=2ands=0

D2 x Do = D2 j=2

5Dy a=1)
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|
5 B B
Ov—‘lg)

m=-—1

A m=-2

643.8 nm nl= n=0 Am=-1

m=1
51p, V< " Vv Vv =0

m=-—1

Fig. Schematic diagram for the Zeeman splitting in Cd. 643.8 nm. g =1 for 5 'D
(G=2,1=2,s=0)andg=1for5'Pi (j=1,1=1,s=0).

We can observe the normal Zeeman effect in the red spectral line of Cd (643.8 nm). It
corresponds to the transition

5D (j=2,1=2,5=0)—5Pi(j=1,1=1,5s=0).
In the presence of the magnetic field, the 5 'D2 level splits into 5 Zeeman components and
the 5 'Pi level splits into 3 Zeeman component. The optical transitions between these levels
are only possible in the form of electrical dipole radiation. The following selection rules apply
for the magnetic quantum number m of the states involved;

Am=+1 for o components,

Am=0 for 7 components,

54



Thus we observe three spectral lines

17. Energy levels in Hg: system with two electrons

The neutral mercury (Hg) atom in its ground state has 80 electrons in the configuration
1522522ps3s23pe3dieds:4psddidfisSs:5ps5dr6s: in which the n =1, 2, 3, 4, and 5 electrons form
an inert core for two 6s valence electrons. The optical emission spectrum of Hg results from
transitions of the two valence electrons between various excited two-electron configurations.
The Hg spectrum therefore has many features in common with the two-electron helium
system.

2S+1 L
J

Orbital angular momentum
Dii x D12 =Du+i2 +..... + Djii-i2
Spin:
D12 x Di2=Di1+ Do
(a) 6s6s
I=0and|=0— Do x Do = Do
I=0ands=1

Dox D1 =Di
j=1 6 3S1

I=0ands=0

Do x Do=Do
j=0 6 'So

(b) 6s6p
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(©)

(d)

I=0and l=1— Dox D1 =D1

I=1lands=1

DixDi=D2+ D1+ Do

=2 6 °P» (a=3/2).
j=1 6 °Pi
j=0 6 *Po
I=1ands=0
D1 x Do=D1
j=1 6 'Pi

6s6d

I=0and | =2— Dox D2=D»

I=2ands=1

Dax D1 =D3+ D2+ D

j=3 6 °D3

j=2 6 °D2

j=1 6 °Di
|=2ands=0

DoxDo=D»>

j=2 6 'D2

6s7s

I=0and |=0— Do x Do = Do

I=0ands=1

Do x D1 = D1
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(e)

®

i=1 73S @=2)

I=0ands=0
Do x Do = Do

j=0 71So
6s7p
I=0andl=1— Do x D1 =D
I=Tands=1

DixDi=D2+ D1+ Do

j=2 73P2

j=1 73P

j=0 7 3Po
I=1ands=0

D1 x Do =D

j=1 7Py

6s7d

I=0and | =2— DoxDa=D>

I=2ands=1

DoxDi=D3+D2+ D>

j=3 73Ds

j=2 73D2

j=1 73D1
|=2ands=0

D2xDo=D2
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j=2 7Dy

18.  Zeeman splitting in Hg

(R —" N— — —
A B

m=2
S e s
N\

Y Y m=0 - g=3

m=-1
m=-2

Fig. Schematic diagram for the Zeeman splitting in Hg. 546.07 nm (Green line).
7381 (657s). 6 °P2 (6s6p). 73S1 (j=1,1=0,s=1)and 6 °P2 (j=2,1=1,s5=
1).

The Hg green line corresponds to the transition from 7 3Si to 6 *Pa.

The state of the 7 3Si level is described by
|j2:1,m2> (J=1,%=1,12=0, g2=2)
with m2 =1, 0, and -1. The state of 6 P2 level is described by

|j1=2am1> (1=2,51=1, Lh=1,91=3/2)
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with m; =2, 1, 0, -1, and -2. According to the selection rule (4m =1, 0, and -1), there are 9
lines.

Am ==+1 (6 lines): o lines.

Am =0 (3 lines): 7 lines.

20.  Evaluation of observed wavelenghts
E,=E,, +0,4;m,B, for 7 3S1 level
E, =E,+0,4,MmB for 6 °P2 level

The energy separation is given by

AE,=E,-E = AElzo + pgB(M,g, —mg,)

with
Am=m,-m, =-1,0,or I.
mx=1,0,-1. m=2,1,0,-1, -2.
02=2 g1=3/2

Here we note that

C C
AE12 = hﬂ‘l_, AE120 = h_O

2 2

Then we have

11 - 1
(—- 0):]“I2 /112: HgB(m,g, —m,g,)

Ao Ay AyA,' 2aCh
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or

2120_212 ~ _Aﬂn — 1
Aok (a0 2ch

HzB(m,g, —m,g,)

or
A 3
4R =———HsB(=2m, + m, )
(] 2men 2
where
1
— 1. =4.66865x107° (Oe'cm!
2ch e ( )
and

A," =546.07 nm (Green)

We note that

f(mi, m2) = (-2m, + m, %)

takes discrete values of 3/2, 1, 1/2, 0, -1/2, -1, and -3/2.
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APPENDIX

A. Paschen-Back effect in Na
Mathematica calculation

Calculation of Matrix element for the Zeeman effect

Eigenvalue problem for the Zeeman effect

Clear["Global "%"7];

£ B2 1 uBB\/(I+1/2)2—m2
M1={{—I+uBBm(l+ ),—
2 21 +1 21+1

BB 1+1/2)2-m? 72 1
{-” Va2 ,-§ (I+1)+uBBm(1— ]}}
21+1 2 21+1

eql = Ergensystem[M1] // Simplify;
The eigenvalues;

21 =eql[[1, 1]]

n2 1
BmuB—gT —Z\/4Bzu82+88mu85h2+ (£+2186)%n

A2 =eql[[1, 2]]

1
" 4BmuB—§h2+\/4BzuBZ+8BmuB§h2+ (E+218)2%n
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The eigenvectors:

¥l =eql[[2, 1]]

ZB\/1+4I+4I2—4m2 1B 1}

ABmuB+ (1+21) [(1+2|) §h2+\/482u82+88mu85h2+ (§+2I§)2h4]

¥l = eql[[2, 211 // FullSimplify

ZB\/(1+2I)274m2 uB 1}

4BmuB+ (1+21) [(1+2|) §ﬁ2—x/482u82+88mu85h2+ (§+2I§)2ﬁ4]

B. Zeeman splitting for Na
Here we discuss the eigenvalue problem in more detail.

j=32.1=1.s=1/2
Clebsch-Gordan coefficient

.33

J=5,m=5>=|lzl,mlzl>n>

_ 1\ 1 2
J=5’”‘=E>=$|'=Lml=1>H>+\/§|'=““'=0>”>

j =%,m=—%>=\/%|l =1,m, =O>H«>+%|I =1,m =-1) )

.3 3
j=2m :—5>:|I =1,m, :—1>‘~L>

j=12,1=1,s=1/2
Clebsch-Gordan coefficient;
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% > \ﬂl—lml—l\i ||_1mI o)1)

1 1\ 1 2
j=2m=—2)= Lt =0f4)- Zr=m =)
Note that
2 1 '—l m—l
[||—1,m|—1>\¢> R EEE |
H=tm=0)M]"| 1 [2]]._3 :l>
" = 5][i=3m=3
1o 2Y. 1
(|I_1,m|_0>‘¢> R EN IR
[1=1,m =-1)|T _\/z 1 |:§ :_l>
3 3 =M=

The Hamiltonian is expressed by

H :§L-S+%(L+2S)-B:§(J2 12 —sz)+%(|_z +25,)B.

) withj=1/2(m==%1/2) and j = 3/2 (m = £3/2, £1/2).

1 1>—“BB(L 28)\/_|I_1m o\i B(L +2S)\/7|I_1m_ )

H -:—,m:—— —

Zeeman J 2 2

_ ﬂBBT“ 1,m =0))

_ 4B 1 1 Al 3 1

= =—,M=——)++2|]=—,m=——

(|J 2’ 2 |J 2 2)
1 1 S 1 1 1 1
Hspin—orbit ngam:_5> (JZ L2 E m:—5>:—§h2 J:E,m:_5>
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N Mg _ [
HZeeman J_E __> B(L +2S )\/7“ 1“’ B(L +2SZ)$|I_1’mI_O>‘T>
=—,uBBT|I =1,m =0)|T)
L)L (J_z _1
\/_ VB2 2
L (- j:—,m=l +x/51=—,m=l
3 2 2 2 2
.1 1 5 2 g2 Q2 1 1 ) 1 1
Hoo ol j=—,M= P o2-8) jeem=—)=—&% j=—.m=—
spin—orbit J 2 2> ( ) J 2 2> é: J ) 2>
HZeeman j:%am:_%>:%8(l—z +2SZ)||:1,m| :—1>‘~L>
.3 3
= 2Bl =1,m, =1 {) =24, B J=§am=‘5>
.3 3 $.v2 12 @ .3 3 1., 3 3
Hoinomit| J =—-M=—=)==(J"-L" -8§ 2 m=-2)=—&j=2m=-2
spin—orbit J 2 2> 2( ):uB J 2 2> 2 é: 2 2>
.3 1 Y7
HzeemanJ:E’m:_5> BB(L +2S )(\/7||—1m|_0|‘1'>+ B(L +ZS)\/—||—1m,_ 1|1\>
:—,uBB\/:“ =1,m,
e S -—-> ﬂ -3
N =M=
__He® _l
s
1 3 1 5 2 2 . 3 1 1 2 3 1
H inomit| ] = =>M=—— J'-L =2 m=——)=—&|j=2m=—=
spin—orbit J 2 H m 2> ( S ):uB 2 m 2> 2 § J 2 b m 2>
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1

H oran| J =

Zeeman

3
2 2
:yBB\Eusz,:o)\T)
2 1 2. 3 1
“BBF(‘—‘ =" H‘—z’m—ﬁ

’m:_> s (L 425 )([||_1m|_1\¢>+ B(L, +2S )\/7|I—1m, 0) ™)

1 1 .3 1
\/_ =— M=—)+2/|j=—M=—
( ] 2 5 J 5 5 )
.3 1 § > g2 3 1 1., 3 1
spin—orbit J 2 2> ( )IUB 2 2> 25 J 2 2
.3 3\ ug B B
Hoyooran J_E,m_5>_7B(Lz+2sz)|l =1,m, =1)|T)
3 3
=24B|l=1,m =1)|T)=2 ==,m==
Hg | ‘ > 4Bl ] 2 2>
.3 3V &, o .3 3 1 _,. 3 3
H. lj=—m==—)==J"-L"-S == m==—)==&"|j=—,m==
spin—orbit J 2 2> 2( ):uB J 2 2 25 J 2 2
Then we have
.3 3 3 3
Hij=—,m= 2 ==,m==
‘J > 2> (2 ] 5 2>
H -_zm_1>_(z 3 _1>_£ _lm_l>
1_27 _2_3/uB 1_2: _2 3;uB 2: _2
3 1 3 1\ V2 |1 1
Hj==m=-—= = =~ M=——)———pyBlj=—. m=—
3 3 3 3
H =—,m= 2 = — = ——
J > 2> (—2 g J 2 2>
o1 1 1 1 2 3 1
H j=—,m= h? +— 1B =— M=—)—— == m=—
i=5 2>(§ ﬂs)(‘lz 2>3B 5 2>
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o I 1B
H :—,m:—— =(— hz——B =
‘J 5 2> (=& )‘J

From this, we find that

I

-

%, m= %> is the eigenket of H with the energy (24, B +%.§h2) .
3 3\ . : . 1.,
> m= > is the eigenket of H with the energy (—2,B + Eé:h ).

There are two subspaces of the matrices for the basis of {‘ j= %, m= %> ,

3 1 1 1
and :—,m:——, :—,m:__
{|J 2 z> 2 2>}
.3 1 1 1
1 Forthebasisof {| j=—m=—), |j=—,m=—
v {|J 2 2> =3 z>
2 1 V2
ZugB+—&’  ———u,B
Hsub1: 3 ﬁ 2 1 3
T 6B B
((Mathematica))
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Clear["Global " *"];

m=1/2;
M1 =

eql = Eigensystem[M1] // Simplify

({35 [sBuB-3cm2 328282 81621 |,

1—12 (BBHB3§h2+\/3282u82+81§2h4)},

—9§ﬁ2+\/3282u82+81§2ﬁ4 9§h2+\/3282u82+81§2h4
{{ 4-/2 BB ’1}’{_ 4-/2 BB 1}}}

El=eql[[1, 1]] // Series[#, {B, 0, 3}]1 & // Simplify[#, {§>0, A>0}] &

2.BB 4 .B2B?

_ 4
3 27 (& n?) +O[B]

—en®s

E2=eql[[1, 2]] // Series[#, {B, 0, 3}]1 &// Simplify[#, {§>0, A>0}] &

En® 2.BB 4uB?B?
+ +
2 3 27 € n?

+0[B]*

Yl =eql[[2, 1]] // Series[#, {B, 0, 3}] &// Simplify[#, {§>0, A>0}] &

{2ﬁuBB 16 (v/2 1B®) B3
9 € n? 729 (&3 n°)

+ O[B4, 1}

Y2 =eql[[2, 2]] // Series[#, {B, 0, 3}] & // Simplify[#, {§>0, A>0}] &

9(¢n?)  2(vJ2.B)B 16+/2 B3B3
{_2 (V2 18] B 9 (en?) | 7296348

+0[B]4, 1}

(i1) For the basis of {| j==,m=——

o | W
N | —
-~
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((Mathematica))
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Clear["Global " *"];

m=-1/2;

M1 =

eql = Eigensystem[M1] // Simplify

({55 [8BuB-3£1®-\[a282 .82 8121 |,

1
12

(8BuB3§h2+\/3282u82+81§2h4)},

—9§f12+\/3282u82+81§2ﬁ4 9¢n? \/3252 B2 +81&2nt
{{ 4-/2 BB ’1}’{_ - 4\/§/;u|3+ 1}}}

El=eql[[1, 1]] // Series[#, {B, 0, 3}]1 & // Simplify[#, {§>0, A>0}] &

2.BB 4 .B2B?

_ 4
3 27 (& n?) +O[B]

S

E2=eql[[1, 2]] // Series[#, {B, 0, 3}]1 &// Simplify[#, {§>0, A>0}] &

£n’ 2.BB 4 .B?B?
2 3 " 27en?

+0[B]*

Yl =eql[[2, 1]] // Series[#, {B, 0, 3}] &// Simplify[#, {§>0, A>0}] &

{2ﬁuBB 16 (v/2 1B®) B3
9 € n? 729 (&3 n°)

+ O[B4, 1}

Y2 =eql[[2, 2]] // Series[#, {B, 0, 3}] & // Simplify[#, {§>0, A>0}] &

[- 9(¢n?)  2(V21B)B 16+/2 ;B3 B®
2(V2 B)B 9 (cn?) = 72931

+0[B]4, 1}
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