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Here we discuss the Zeeman effect using the perturbation theory. The discussion here 
consists of three parts, depending on the magnitude of magnetic field; (i) in the weak 
magnetic field limit where the spin-orbit interaction Hso is dominant: (i) the intermediate 
magnetic field where the spin-orbit interaction is comparable with the Zeeman energy, and 
(iii) the strong magnetic field where the Zeeman energy HB is dominant. 
 

 
 
Fig. Hso is the spin-orbit interaction. HB is the Zeeman energy.  
 
((Pieter Zeeman)) 
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Pieter Zeeman (25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 1902 
Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect. 
 
((Alfred Landé)) 
Alfred Landé (13 December 1888–30 October 1976) was a German-American physicist 
known for his contributions to quantum theory. He is responsible for the Landé g-factor and 
an explanation of the Zeeman Effect. 
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http://en.wikipedia.org/wiki/Alfred_Land%C3%A9 
 
1. Orbital magnetic moment and spin magnetic moment 

The total angular momentum J is defined by 
 

SLJ  . 
 

The total magnetic moment  is given by 
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B . 

 

The total magnetic moment along the direction of J, Jμ , is defined by 
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J
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 , 

 
where gJ is the Lande g-factor. 
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Fig. Basic classical vector model of orbital angular momentum (L), spin angular 

momentum (S), orbital magnetic moment (L), and spin magnetic moment 

(S). J (= L + S) is the total angular momentum. J is the component of the 

total magnetic moment (L + S) along the direction (-J).  
 
Suppose that 
 

 LJL a  and  SJS b 
 

where a and b are constants, and the vectors S  and L  are perpendicular to J. 
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Here we have the relation 1 ba , and 0  SL . The values of a and b are determined 

as follows. 
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using the average in quantum mechanics. The total magnetic moment  is 
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2. Derivation of Landé g-factor: approach from the classical model 

In the classical theory, the projection vectors of the spin angular momentum S and the 
orbital angular momentum L along the direction of the total angular momentum J 
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where 
 

SLJ  . 
 
The total magnetic moment along the direction of J is given by 
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Using SJL  , and squaring both sides, we get 
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Using LJS  , and squaring both sides, we get 
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The Landé g-factor is defined by 
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In quantum mechanics, we get 
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using the relations, )1(22  jjJ , )1(22  ssS , and )1(22  LLL . The total 

magnetic moment is given by 
 

Jμ j
B

J g



 . 

 
3. Derivation of Landé g-factor: approach from the Wigner-Eckhart  

The specific formula we need from the Wigner-Eckhart theorem relates the matrix 

element of any general vector component zV̂  to the matrix element of the total magnetic 

momentum. zĴ ; 
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For the Zeeman effect, L or S play the role of the vector V. This equation is called the 
projection theorem because of the role of the projection V.J in determining the constant of 
proportionality between the matrix of Vz and Jz. Note that the matrix element of the projection 
V.J is a diagonal element, but the Vz and Jz matrix elements are general matrix elements 
between different m states within a given j subspace.  
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The total magnetic moment along the z axis is given by 
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Then we have 
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where Jg is the Landé g-factor given by 
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Then magnetic moment is given by 
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4. Zeeman effect in the weak magnetic field 

In the presence of the magnetic field B along the z axis, the Zeeman energy is given by 
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The first-order Zeeman energy correction: 
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Fig. Weak-field Zeeman structure of the hydrogen 2 P fine structure levels labeled with 

the quantum numbers of the coupled basis states. n = 2. j = 3/2 and j = 1/2. l = 1 and 

s = 1/2. The splitting of the levels between 2/3
2P  and 2/1

2P  at B = 0 is due to the spin 

orbit interaction.  
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5. Zeeman effect in the intermediate magnetic field 

In the presence of magnetic field along the z axis, the Zeeman energy is given by 
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The perturbed Hamiltonian is the sum of the spin orbit interaction soĤ  and the Zeeman 

energy BĤ  as  
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Note that soĤ  is comparable to BĤ . The matrix of SL ˆˆ   under the basis of 

2

1
,

2

1
1  sl mmm  and 

2

1
,

2

1
2  sl mmm , is obtained as  

 
























)
2

1
()

2

1
)(

2

1
(

)
2

1
)(

2

1
()

2

1
(

ˆˆ2
2

mmlml

mlmlm
SL


. 

 
We note that 
 

2

1
,

2

1
)

2

1
(

2

1
,

2

1
)2(

1
 slslzz mmmmmmmSL


, 

 

2

1
,

2

1
)

2

1
(

2

1
,

2

1
)2(

1
 slslzz mmmmmmmSL


. 
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 under the basis of 1  and 2  is diagonal, 
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Thus the resultant matrix is given by 
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We solve the eigenvalue problem. For simplicity we put 
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The matrix (2x2) is given by 
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We solve the eigenvalue problem of the matrix 1Ĥ  (2 x 2 matrix). Thus the eigenvalues are  
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The first term is from the spin-orbit interaction and the second term is from the Zeeman 
effect. 
 
For 1  (strong field side) 
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((Mathematica)) 
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((Note)) 
 

 
 
Fig. From the book of E. Fermi, Notes on Quantum Mechanaics (The University of 

Chicago, 1961) 
 
6. Zeeman effect in the strong magnetic field (Paschen Back effect) 

We consider the case where the magnetic field is strong enough that the Zeeman shifts 
are much larger than the fine-structure shifts. The perturbation assumption regarding the 
Zeeman effect is no longer valid. It is more appropriate to include the Zeeman Hamiltonian, 
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We note that 
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0 SH , 
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We choose a simultaneous eigenket of BĤ , 0Ĥ , 2L̂ , 2Ŝ , zL̂ , and zŜ  
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in zeroth-order and treat the fine structure as a perturbation. We note that 
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The Zeeman energy is the expectation values, 
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Note that )1(
0sE  is independent of the magnetic field. Thus we get 
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where B0 is the characteristic magnetic field. 
 
((Example))  

The 2p state for the hydrogen. n = 2, l = 1, s = 1/2. ml = 1, 0, -1. ms = 1/2, -1/2. 
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Fig. Strong-field Zeeman structure of the 2p states of hydrogen. Solid lines show the the 

Zeeman levels, while the dashed lines shows the addition of the Zeeman contribution 
and the spin-orbit interaction. The quantum numbers indicate the uncoupled basis 

states. The vertical dashed line denotes 1
0


B

B
x . 

2/1,11  sl mm , 2/1,02  sl mm , 

2/1,13  sl mm , 2/1,14  sl mm ’ 

2/1,05  sl mm , 2/1,16  sl mm . 
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APPENDIX A. Landè g-factor 
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The magnetic moment is defined by 
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The total angular momentum is 
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The expectation value of the m-th component of the magnetic moment  can be obtained 
from the projection theorem (decomposition theorem of the second kind, see Rose), 
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Then the expectation value of the magnetic moment along the z axis is 
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since mj,  is a joint eigenstate of 2Ĵ , 2L̂ , 2Ŝ , and zJJ ˆˆ
0   with eigenvalues )1(2 jj , 

)1(2 ll , )1(2 ss , and m , respectively. 

Here we introduce the Landè g-factor as 
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APPENDIX-B. The expectation value of Sz 
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where we use the projection theorem. 
 


