Definition of the uncertainty:

The Heisenberg's uncertainty of principle is frequently discussed in the quantum mechanics. The uncertainty Δx is sometimes called as the standard deviation. The fluctuation $(\Delta x)^2$ is sometimes called as the variance or the square of the uncertainty.

Uncertainty	$\Delta x = \sqrt{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2}$
Standard deviation	$\Delta x = \sqrt{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2}$
Fluctuation	$(\Delta x)^2 = \left\langle x^2 \right\rangle - \left\langle x \right\rangle^2$
The square of the uncertainty	$(\Delta x)^2$
Variance	$(\Delta x)^2$
Mean (or expectation)	$\langle x \rangle$

((Gaussian)) Normal distribution

A random variable with a Gaussian distribution is said to be **normally distributed** and is called a **normal deviate**.

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$\left\langle x^2 \right\rangle = \int_{-\infty}^{\infty} x^2 f(x;\mu,\sigma) dx = \sigma^2 + \mu^2, \quad \left\langle x \right\rangle = \int_{-\infty}^{\infty} x f(x;\mu,\sigma) dx = \mu$$
$$\left(\Delta x\right)^2 = \left\langle x^2 \right\rangle - \left\langle x \right\rangle^2 = \sigma^2$$

The parameter μ in this definition is the *mean* or *expectation* of the distribution (and also its median and mode). The parameter σ is the standard deviation. σ^2 is called as the variance.

The Compton wavelength

$$\lambda_c = \frac{h}{m_e c} = \frac{2\pi\hbar}{m_e c}$$
$$\lambda_c = \frac{\lambda_c}{2\pi} = \frac{\hbar}{m_e c} = 3.8616 \text{ x } 10^{-3} \text{ Å}.$$

Bohr radius

$$a_{B} = \frac{\hbar^{2}}{m_{e}e^{2}} = \frac{\hbar^{2}}{m_{e}\alpha\hbar c} = \frac{\hbar}{m_{e}\alpha c} = \frac{\hbar_{c}}{\alpha} = 5.29177 \text{ x } 10^{-1} \text{ Å}$$

The fine structure constant is defined by

$$\alpha = \frac{e^2}{\hbar c} = 7.2973525376 \text{ x } 10^{-3}.$$
$$\frac{1}{\alpha} = 137.036$$

((Mathematica))

Clear ["Global`*"]; rule1 = { $c \rightarrow 2.99792 \times 10^{10}$, $\hbar \rightarrow 1.054571628 10^{-27}$, me $\rightarrow 9.10938215 10^{-28}$, qe $\rightarrow 4.8032068 \times 10^{-10}$, eV $\rightarrow 1.602176487 \times 10^{-12}$, $A \rightarrow 10^{-8}$, $\alpha \rightarrow 7.2973525376 \times 10^{-3}$ }; Lc = $\frac{\hbar}{\text{me c} A}$ /. rule1; Lc // ScientificForm 3.8616 $\times 10^{-3}$ LB = $\frac{\hbar^2}{\text{me qe}^2 A}$ /. rule1; LB // ScientificForm 5.29177 $\times 10^{-1}$ α LB /. rule1 0.00386159