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Here we discuss the physics of quantum entanglement. At first, undergraduate students who 

just want to know the essential points of the quantum entanglement, may encounter some difficulty 
in understanding the definition of technical words, such as spooky action at a distance, non-locality, 
locality, hidden variable theory, separability, qubit, and so on. The definition of these words is 
given in the APPENDIX (source: Wikipedia). 

The derivation of the Bell inequality is mathematically not so complicated. It is essential for 
ones to verify that the Bell inequality is not satisfied for the quantum entanglement phenomena 
from the experimental sides with the use of entangled spins or photons. So far so many books on 
the quantum entanglement, quantum information, and quantum computer have been published. 
Even after I read these books including textbooks of quantum mechanics, I have not understood 
sufficiently what is going on the spooky action at a distance. In order to teach the quantum 
entanglement undergraduate students, I felt it necessary to understand such a weirdness of the 
quantum entanglement in much more detail. While I struggled to understand the spooky action at 
a distance (named by Einstein), I had a good opportunity to read a book entitled, Einstein: His Life 
and Universe (by W. Issacson). I realize that the weirdness of the behavior of the quantum 
entanglement can be well described in this book. Of course, physicists who want to know the 
essence of the weird behavior based on the mathematics, may not be satisfied with the simple and 
clear explanations given by Issacson. 
 

Here the content of the book is summarized as follows. 
 
(a) Quantum mechanics asserts that particles do not have a definite state except when observed, 

and two particles can be in na entangled state so that the observation of one determines a 
property of the other instantly. As soon as any observation is made, the system goes into a 
fixed state. 

 
(b) This may be conceivable for the microscopic quantum realm, but it is baffling when one 

imagines the intersection between the quantum realm and observable everyday world. 
 
(c) The EPR paper would not succeed in showing that quantum mechanics was wrong. But it 

did eventually become clear that quantum mechanics was incompatible with our common 
sense understanding of locality- our aversion to spooky action at a distance. The odd thing 
is that Einstein, apparently, was far more right than he hoped to be. 
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(d) The idea of entanglement and spooky action at a distance is the quantum weirdness in 
which an observation of one particle can instantly affect another one far away. 

 
(e) The locality is not a feature of the quantum world. Spooky action at a distance or more 

precisely, the potential entanglement of distant particles, is a feature of the quantum world. 
 
(f) Might the spooky action at a distance - where something that happens to a particle in one 

place can be instantly reflected by one that is billions of miles away - violate the speed 
limit of light? No, the theory of relativity still seems safe. The two particles, though distant, 
remain part of the same physical entity. By observing one of them, we may affect its 
attributes, and is correlated to what would be observed of the second particle. But no 
information is transmitted, no signal sent, and there is no traditional cause-and-effect 
relationship. 

 
(W. Issacson, Einstein: His Life and Universe). 

 
_____________________________________________________________________________ 
John Stewart Bell FRS (28 June 1928 – 1 October 1990) was a physicist from Northern Ireland 
(Ulster), and the originator of Bell's theorem, a significant theorem in quantum physics regarding 
hidden variable theories. 
 
 

 
 

http://en.wikipedia.org/wiki/John_Stewart_Bell 
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The Bell test experiments serve to investigate the validity of the entanglement effect in quantum 
mechanics by using some kind of Bell inequality. John Bell published the first inequality of this 
kind in his paper "On the Einstein-Podolsky-Rosen Paradox". Bell's Theorem states that a Bell 
inequality must be obeyed under any local hidden variable theory but can in certain circumstances 
be violated under quantum mechanics. The term "Bell inequality" can mean any one of a number 
of inequalities — in practice, in real experiments, the CHSH or CH74 inequality, not the original 
one derived by John Bell. It places restrictions on the statistical results of experiments on sets of 
particles that have taken part in an interaction and then separated. A Bell test experiment is one 
designed to test whether or not the real world obeys a Bell inequality. 
_____________________________________________________________________________ 
Alain Aspect (born 15 June 1947) is a French physicist noted for his experimental work on 
quantum entanglement. Aspect is a graduate of the École Normale Supérieure de Cachan (ENS 
Cachan). He passed the 'agrégation' in physics in 1969 and received his master's degree from 
Université d’Orsay. He then did his national service, teaching for three years in Cameroon. 
 

 
 

http://en.wikipedia.org/wiki/Alain_Aspect 
 

In the early 1980s, while working on his PhD thesis from the lesser academic rank of lecturer, 
he performed the elusive "Bell test experiments" that showed that Albert Einstein, Boris Podolsky 
and Nathan Rosen's reductio ad absurdum of quantum mechanics, namely that it implied 'ghostly 
action at a distance', did in fact appear to be realized when two particles were separated by an 
arbitrarily large distance (EPR paradox). A correlation between their wave functions remained, as 
they were once part of the same wave-function that was not disturbed before one of the child 
particles was measured. 

If quantum theory is correct, the determination of an axis direction for the polarization 
measurement of one photon, forcing the wave function to 'collapse' onto that axis, will influence 
the measurement of its twin. This influence occurs despite any experimenters not knowing which 
axes have been chosen by their distant colleagues, and at distances that disallow any 
communication between the two photons, even at the speed of light. 

Aspect's experiments were considered to provide overwhelming support to the thesis that Bell's 
inequalities are violated in its CHSH version. However, his results were not completely conclusive, 
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since there were so-called loopholes that allowed for alternative explanations that comply with 
local realism. 

Stated more simply, the experiment provides strong evidence that a quantum event at one 
location can affect an event at another location without any obvious mechanism for communication 
between the two locations. This has been called "spooky action at a distance" by Einstein (who 
doubted the physical reality of this effect). However, these experiments do not allow faster-than-
light communication, as the events themselves appear to be inherently random. 
 
_____________________________________________________________________________ 
1. What is quantum entanglement? (summary of this chapter) 

Entanglement is one of the strangest predictions of quantum mechanics. Two objects are 
entangled if their physical properties are undefined but correlated, even when the two objects are 
separated by a large distance. No mechanism for entanglement is known, but so far experiments 
universally show that nonlocal entanglement is real. Something that happens to one particle does 
affect, instantaneously, what happens to the second particle, no matter how far it may be from the 
first one. 

 

 

Fig. Two objects are entangled if their physical properties are undefined but correlated, even 
when the two objects are separated by a large distance. 

 

The EPR paper would not succeed in showing the quantum mechanics was wrong. But it did 
eventually become clear that quantum mechanics was, as Einstein argued, incompatible with our 
common-sense understanding of locality - our aversion to spooky action at a distance. The odd 
thing is that Einstein, apparently, was far more right than he hoped to be. 
 

2. EPR (Einstein, Podolsky, and Rosen) (1935) 
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In 1935, Einstein, Podolsky, and Rosen (EPR) pointed out the incompleteness of quantum 
mechanics. This argument is one of the most remarkable attacks on quantum theory ever launched. 
Recall that, according to quantum theory, measurements can be made of only one of any pair of 
complementary variables: position or momentum, energy or time. But the simultaneous 
measurement of both members of such a pair is impossible. The Einstein, Podolsky and Rosen 
(EPR) paper argued that such measurements were quite possible, and it gave a simple description 
of how to carry them out. Thus, according to their analysis, it was possible to obtain a more 
complete description of physical reality. Their conclusion was that quantum theory was incomplete. 
 
3. Bohm’s version of EPR (1951) and Bell’s inequality 

Their original gedanken experiment was revised by Bohm (1951) as the form of Stern-Gerlach 
measurements of two spin 1/2 particles; Bohm's version of EPR. Suppose that two particles with 
spin 1/2 are generated from the system with spin 0. Before the measurement, we do not know the 
spin directions of these two particles with spin 1/2. Suppose that the spin direction (the quantized 
axis +z) of the particle-1 is determined by Alice (the observer of the SG-1). Then the spin direction 
of the particle -2 can be uniquely determined by Bob (the second observer) to be the -z axis. This 
result is consistent with that derived from the spin angular momentum conservation. This result is 
rather different from that in quantum mechanics. After the first measurement (by Alice), the 
original state is changed into the new state. The second measurement is influenced by the first 
measurement. There is some probability of finding the partice-2 having the +z spin direction, as 
well as the probability of finding the particle having the -z direction.  
 

 
 
((Penrose)) 



 

6 
 

In the simplest EPR situation considered by David Bohm (1951), we consider a pair of spin 
1/2 particles. The particle 1 and particle 2 start together in a combined spin 0 state, and then travel 
away from each other to the left and right to respective detectors A (Alice) and B (Bob) at a great 
distance apart. 

 

 

 
Fig. The EPR–Bohm thought experiment. A pair of spin 1/2 particles 1 and 2 originate in a 

combined spin 0 state, and then travel out in opposite directions, left and right, to respective 
widely separated detectors A (Alice) and B (Bob). Each detector is set up to measure the 
spin of the approaching particle, but in some direction which is decided upon only after the 
particles are in full flight. Bell’s theorem tells us that there is no way of reproducing the 
expectations of quantum mechanics with a model in which the two particles can act as 
classical-like independent objects that cannot communicate after they have become 
separated. 

http://www.youtube.com/watch?v=qXvZpn_dnMs&list=TLwELoPwvGH1pgMhPqpa6ojOCe2
M6yhUU4 

 
Suppose that each of the detectors is capable of measuring the spin of the approaching particle 

in some direction that is only decided upon when the two particles are well separated from each 
other. The problem is to see whether it is possible to reproduce the expectations of quantum 
mechanics using a model in which the particles are regarded as unconnected independent classical-

like particles, each one being unable to communicate with the other after they have separated. It 
turns out, because of a remarkable theorem due to the Northern Irish physicist John S. Bell, that it 
is not possible to reproduce the predictions of quantum theory in this way. Bell derived inequalities 
relating the joint probabilities of the results of two physically separated measurements that are 
violated by the expectations of quantum mechanics, yet which are necessarily satisfied by any 
model in which the two particles behave as independent entities after they have become physically 
separated. Thus, Bell-inequality violation demonstrates the presence of essentially quantum-
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theoretic effects—these being effects of quantum entanglements between physically separated 
particles—which cannot be explained by any model according to which the particles are treated as 
unconnected and independent actual things. 
 
4. Locality (by Einstein) 

Suppose that Alice is very far from Bob such that the propagation time for informing the result 
of Alice to Bob is long enough. Bob may measure the spin direction of the partricle-2, just before 
the result of the measurement by Alice is informed to Bob. In this case, if the spin direction of the 
particle 1 is measured by Alice as +z direction, before the second experiment (by Bob), we can 
conclude the spin direction of the particle-2 (measured by Bob) as -z direction according to the 
spin angular momentum conservation law. How can we explain such gedanken experiments in 
terms of quantum mechanics? Is there some possibility of hidden variables to determine the result 
of spin directions of the two particles during the production of two particles? 
 
(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 
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(g) 

 

http://www.youtube.com/watch?v=qXvZpn_dnMs&list=TLwELoPwvGH1pgMhPqpa6ojOCe2
M6yhUU4 

 

Fig. Suppose that the distance between Alice and source is much shorter than that between Bob 
and source. The distance between Alice and Bob is long so that it takes long times for them 
to communicate with the speed of light. The particle 1 with up-state spin from the source 
moves to Alice, while the particle 2 with down-state spin from the source simultaneously 
moves to Bob. Because of the short distance, Alice first measures the spin direction of the 
particle 1 as the up-spin. At this time, the particle 2 does not reach Bob. Immediately after 
the measurement by Alice. Alice lets Bob know about her result at the speed of light. Before 
the light reaches Bob, the particle 2 reaches Bob. So Bob measures the spin direction of 
the particle 2 as the spin-down, before the information from Alice reaches Bob. At this 
moment, Bob comes to know the result of Alice without information from Alice. 

 
5. Significance of the Bell's inequality (Aczel)  

Bell’s theorem concerns a very general class of local theories with hidden, or supplementary, 
parameters. The assumption is as follows: suppose that the quantum theory is incomplete but that 
Einstein’s ideas about locality are preserved. We thus assume that there must be a way to complete 
the quantum description of the world, while preserving Einstein’s requirement that what holds true 
here cannot affect what holds true there, unless a signal can be sent from here to there (and such a 
signal, by Einstein’s own special theory of relativity, could not travel faster than light). In such a 
situation, making the theory complete means discovering the hidden variables, and describing 
these variables that make the particles or photons behave in a certain way.  

Einstein had conjectured that correlations between distant particles are due to the fact that their 
common preparation endowed them with hidden variables that act locally. These hidden variables 
are like instruction sheets; and the particles’ following the instructions, with no direct correlations 
between the particles, ensures that their behavior is correlated. If the universe is local in its nature 
(that is, there is no possibility for super-luminal communication or effect, i.e., the world is as 
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Einstein viewed it) then the information that is needed to complete the quantum theory must be 
conveyed through some pre-programmed hidden variables. 

John Bell had demonstrated that any such hidden-variable theory would not be able to 
reproduce all of the predictions of quantum mechanics, in particular the ones related to the 
entanglement in Bohm’s version of EPR. The conflict between a complete quantum theory and a 
local hidden variables universe is brought to a clash through Bell’s inequality. 
 
6. EPR argument on the simultaneous measurement (Bellac Quantum Physics) 

(a) Perfect anticorrelation 

Let us suppose that we are capable of making a state  

 

][
2

1
zzzz  , 

 

of two identical spin-1/2 particles, with the two particles traveling with equal momenta in opposite 
directions. For example, they could originate in the decay of an unstable particle of zero spin and 
zero momentum, in which case momentum conservation implies that the particles move in 
opposite directions. An example which is simple theoretically (but not experimentally) is the decay 
of a 0  meson into an electron and a positron: 
 

  ee0 . 
 
Two experimentalists, conventionally named Alice and Bob, measure the spin component of each 
particle on a certain axis when the particles are very far apart compared with the range of the force 
and have not interacted with each other for a long time. For clarity, in this figure the axes used for 
spin measurement are taken to be perpendicular to the direction of propagation, though this is not 
essential. 
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Fig. Configuration of an EPR type of experiment (using SG system and photon). 

 
Using a Stern–Gerlach device in which the magnetic field points in the direction a, Alice 

measures the spin component on this axis for the particle traveling to the left, particle 1, while Bob 
measures the component along the b axis of the particle traveling to the right, particle 2. Let us 

first study the case where Alice and Bob both use the z axis, zeba  . We assume that the decays 
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are well separated in time, and that each experimentalist can know if he or she is measuring the 
spins of particles emitted in the same decay. In other words, each pair (e+, e−) is perfectly well 
identified in the experiment. 

Using her Stern–Gerlach device, Alice measures the z component of the spin of particle 1, a

zS , 

with the result +ħ/2 or -ħ/2, and Bob measures b

zS  of particle 2. Alice and Bob observe a random 

series of results +ħ/2 or −ħ/2. After the series of measurements has been completed, Alice and Bob 
meet and compare their results. They conclude that the results for each pair exhibit a perfect (anti-) 
correlation. When Alice has measured +ħ/2 for particle 1, Bob has measured −ħ/2 for particle 2 
and vice versa. To explain this anticorrelation, let us calculate the result of a measurement in the 
state  
 

][
2

1
zzzz  , 

 

of the physical property ]ˆˆ[ b

z

a

z SS  , Hermitian operator acting in the tensor product space of the 

two spins. It is found that   is an eigenket of ]ˆˆ[ b

z

a

z SS   with eigenvalue -ħ2/4 

 


4

]ˆˆ[
2
ℏb

z

a

z SS . 

 

Measurement of ]ˆˆ[ b

z

a

z SS  must then give the result −ħ2/4, which implies that Bob must measure 

the value −ħ/2 if Alice has measured the value +ħ/2 and vice versa. Within the limit of accuracy 
of the experimental apparatus, it is impossible that Alice and Bob both measure the value +ħ/2 or 
−ħ/2. 

Upon reflection, this result is not very surprising. It is a variation of the game of the two 
customs inspectors. Two travelers 1 and 2, each carrying a suitcase, depart in opposite directions 
from the origin and eventually are checked by two customs inspectors Alice and Bob. One of the 
suitcases contains a red ball and the other a green ball, but the travelers have picked up their closed 
suitcases at random and do not know what color the ball inside is. If Alice checks the suitcase of 
traveler 1, she has a 50% chance of finding a green ball. But if in fact she finds a green ball, clearly 
Bob will find a red ball with 100% probability. Correlations between the two suitcases were 
introduced at the time of departure, and these correlations reappear as a correlation between the 
results of Alice and Bob. 

However, as first noted by Einstein, Podolsky, and Rosen (EPR) in a celebrated paper (which 
used a different example, ours being due to Bohm), the situation becomes much less commonplace 
if Alice and Bob decide to use the x axis instead of the z axis for another series of measurements. 

Since   is invariant under the rotation, if Alice and Bob orient their Stern–Gerlach devices in 

the x direction, they will again find that their measurements are perfectly anticorrelated, because 
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
4

]ˆˆ[
2
ℏb

x

a

x SS . 

 
For any direction n in the z-x plane, we also have the same relation 
 


4

]ˆˆ[
2
ℏba

SS nn . 

 

Measurement of ]ˆˆ[ ba
SS nn  must then give the result −ħ2/4, which implies that Bob must measure 

the value −ħ/2 if Alice has measured the value +ħ/2 and vice versa, when the magnetic field is 
applied along the direction n. 

Now we assume that  
 

)cos,0,(sin 111 n ,  )cos,0,(sin 222 n , 

 
Then we have 
 

1 2

2

1 2 1 2
ˆ ˆ[ ] [sin( ) cos( ) ]

4
a b

S S            
n n

ℏ
, 

 
where 
 

1
( )

2
z z z z         . 

 

When 21   , it is clear that   is the eigenket.  

 
2

ˆ ˆ[ ] ]
4

a b
S S    

n n

ℏ
 

 
((Mathematica)) 

Proof for 
1 1

2

1 2 1 2
ˆ ˆ[ ] [sin( ) cos( ) ]

4
a b

S S            
n n

ℏ
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(b) Possibility of simultaneous measurement: locality principle 

The viewpoint underlying the EPR analysis of these results is that of “realism”: EPR assume 
that microscopic systems possess intrinsic properties which must have a counterpart in the physical 
theory. More precisely, according to EPR, if the value of a physical property can be predicted with 

certainty without disturbing the system in any way, there is an “element of reality” associated with 

this property. For a particle of spin 1/2 in the state z . Sz is a property of this type because it can 

be predicted with certainty that 2/ℏzS . However, the value of Sx in this same state cannot be 

predicted with certainty (it can be 2/ℏ  or 2/ℏ  with 50% probability of each); xŜ  and zŜ  

cannot simultaneously have a physical reality. Since the operators xŜ  and zŜ  do not commute, in 

quantum physics it is impossible to attribute simultaneous values to them. 
In performing their analysis, EPR used a second hypothesis, the locality principle, which 

stipulates that if Alice and Bob make their measurements in local regions of space-time which 
cannot be causally connected, then it is not possible that an experimental parameter chosen by 
Alice, for example the orientation of her Stern–Gerlach device, can affect the properties of particle 
2. 

According to the preceding discussion, this implies that without disturbing particle 2 in any 

way, a measurement of a

zS  by Alice permits knowledge of b

zS  with certainty, and a measurement 

of a

xS  permits knowledge of b

xS  with certainty. If the “local realism” of EPR is accepted, the result 

of Alice’s measurement serves only to reveal a piece of information which was already stored in 
the local region of space-time associated with particle 2. A theory that is more complete than 

quantum mechanics should contain simultaneous information on the values of b

xS  and b

zS and be 

capable of predicting with certainty all the results of measurements of these two physical properties 

in the local region of space-time attached to particle 2. The physical properties b

xS  and b

zS  then 

simultaneously have a physical reality, in contrast to the quantum description of the spin of a 
particle by a state vector.  

EPR do not dispute the fact that quantum mechanics gives predictions that are statistically 
correct, but quantum mechanics is not sufficient for describing the physical reality of an individual 
pair. Within the framework of local realism such as that defined above, the EPR argument is 
unassailable and the verdict incontestable: quantum mechanics is incomplete! Nevertheless, EPR 
do not suggest any way of “completing” it, and we shall see in what follows that local realism is 
in conflict with experiment. 

According to local realism, even if an experiment does not permit the simultaneous 

measurement of b

xS  and b

zS , these two quantities still have a simultaneous physical reality in the 

local region of space-time attached to particle 2, and owing to symmetry the same is true for a

xS  
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and a

zS , of particle a. This ineluctable consequence of local realism makes it possible to prove the 

Bell inequalities, which fix the maximum possible correlations given this hypothesis.  
 
6. Hidden variable theory 

Suppose that Alice observes the spin—up state (denoted as }{ a using the SG with the 

direction a (arbitrary). Since the spin angular momentum is conserved, she also knows that Bob 
will observe the spin-down without any knowledge of the result from Bob. 
 

{a+, a-}. 
 
Similarly, Alice observes the spin-down state (denoted as }{ a  using the SG with the direction a 

(arbitrary). Since the spin angular momentum is conserved, she also knows that Bob will observe 
the spin-up }{ a , without any knowledge of the result from Bob. 

 
{a-, a+}. 

 
7. Prediction using quantum mechanics 

We consider the above argument using our knowledge of quantum mechanics. The original 
state before Alice measures,  
 

],,[
2

1
0 zzzz  . 

 

 
 

Fig. Stern-Gerlach experiment. Note that z  and z , for simplicity. zea  . 

 
After Alice measures using the SG with the z direction, she finds that the particle 1 is in the spin-
up state. The state is changed into 
 

»y0>

Alice Hparticle-1L

SG-z

»+>1

»->1



 

17 
 

1 1 2
,z z z z        . 

 
Then Bob measures using the SG with the direction b. 
 

222 2
sin

2
cos zez

i  
b , 

 

222 2
cos

2
sin zez

i  
b , 

 

 
 
where a is along the z direction. The angles  and  are the polar angles that give the orientation 
of b. Note that  
 

cosba , 
 

with 1 ba . 

»y1>

Bob Hparticle-2L

SG-b

»b+>2

»b->2
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Fig. The direction of a for Alice and b for Bob. a is along the z direction. The angles  and  
are the polar angles that give the orientation of b. Note that cosba  

 
The probability that Bob measures +1/2 is  
 

2 2
2 2

1
( ) sin (1 cos )

2 2BP z


      b b . 

 
The probability that Bob measures -1/2 is  

x

y

z Ha; AliceL

q

dq

f df

r

dr
r cosq

r sinq

r sinq df

rdq

èr Hb; BobL

èf

èq
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)1(
2

1
)cos1(

2

1

2
cos)( 22

22 babb  


zPB . 

 
In other words, these probabilities depend on the angle . When ba  ,  
 

1)( bBP . 

 
as Alice predicted. So the quantum mechanics is consistent with common sense. 
 
((Note)) 

We note that the probability for finding the state  b,z is evaluated as 

 

2
cos

2

1

2

1
, 222

0


  zzP bb , 

 
with 
 

],,[
2

1
0 zzzz  . 

 
When  = 0, the probability becomes P = 1/2 (50%), which is consistent with the result described 
later. 
 
8. One type of SG system for the measurement 

We consider a two-electron system in a spin singlet state, with a total spin zero. 
 

],,[
2

1
zzzz  . 
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Fig. A schematic of the EPR experiment in which A measures the spin of particle 1 and B 

measures the spin of particle 2 
 
Suppose we make a measurement on the spin component of one of the electrons. If one of the spins 
is shown to be in the spin-up state, then the other is necessarily in the spin-down state. In this case, 

measurement apparatus selects the first term  zz, , a subsequent measurement of the spin 

component of electron 2 must ascertain that the state ket of the system is given by zz  , . 

Suppose that a pair of spin 1/2 particles (two particles) originate in a combined spin 0 state, and 
then travel out in opposite directions, left and right, to respective widely separated detectors. Each 
detector is set up to measure the spin of the approaching particle, but in some direction which is 
decided upon only after the particles are in full flight.  
 

 
 
((Hidden variable theory; locality)) 

Note that the angular momentum is conserved. If Alice measures the spin up state using the 
SG with a direction, Bob will measure the spin-down state using the SG with z direction. If Alice 
measures the spin down state using the SG with z direction), Bob will measure the spin-up state 
using the SG with a direction: {+z, -z}; {-z, z}. Note that the event {+z, -z} means that Alice 
measures the state +z and Bob measures the state –z. 

A BSpin zero source

particle-1 particle-2

aa
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If A makes measurements of S1z and obtain the value 2/ℏ , and B makes measurements of S2z, 
50 % of B's measurements will yield 2/ℏ . 
 

 
There are two cases: {+z, -z} and {-z, +z}. In this case the state {+z, -z} can be observed. Therefore, 
the probability is 50 %. 
 
((Quantum mechanics, non-locality)) 
 

 
 

],,[
2

1
0,0 zzzz  , 

 

2

1

],,
2

1
,,

2

1
0,0,



 zzzzzzzzzz

 

 
or 
 

2

1
0,0,

2
 xzP . 

 
The probability is 50 %. Then both models give the same value for the probability. 
 
((Note)) 
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Suppose that Alice first does her measurement and find the state z . After that, Bob does 

his measurement. Before his measurement, the state of the system already collapses into the z . 

 

21
2

1
0,0 zz  . 

 

The probability: 
2

2 2 2

1 1

22
P z z      (50%) 

 

Suppose that Bob first does his measurement and find the state z . After that, Alice does her 

measurement. Before her measurement, the state of the system already collapses into the state 

z . 

 

12
2

1
0,0 zz  . 

 

The probability: 
2

1 1 1

1 1

22
P z z      (50%) 

 
9. Two types of SG systems for the measurement 

For a particular pair, there must be a perfect matching between particle 1 and particle 2 to 
ensure zero total angular momentum. If the particle 1 is of type {+z, -x}, then the particle 2 must 
belong to type {-z, +x}, and so on. The results of correlation measurements can be reproduced if 
the particle 1 and particle 2 are matched, as follows. 
 

 
 

Particle 1  Particle 2  Population  Event 
 

{a+, b+}  {a-, b-}  N1 = 25%  E1 
{a+, b-}  {a-, b+}  N2 = 25%  E2 

A BSpin zero source

particle-1 particle-2

a

b

a

b
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{a-, b+}  {a+, b-}  N3 = 25%  E3 
{a-, b-}  {a+, b+}  N4 = 25%  E4 

 
where a = ez and b = ex. 
 
or 
 

{+z, +x}  {-z, -x}   N1 = 25%  E1 
{+z, -x}  {-z, +x}  N2 = 25%  E2 
{-z, +x}  {+z, -x}  N3 = 25%  E3 
{-z, -x}   {+z, +x}  N4 = 25%  E4 

 
and that each of these distinct groups of particles is produced in equal number. Note that a new 
{..} notation provides a non-quantum description of the state of the particle. 
 
((Hidden variable theory; locality)) 
(i) 
 

If A makes measurements of S1z and obtain the value 2/ℏ , and B makes measurements of 

S2z, 50 % of B's measurements will yield 2/ℏ . The events E1 and E2 are allowed. 

 

 
 

Particle-1 Particle-2 

{+z, +x} {-z, -x}   1E   

{+z, -x} {-z, +x}  2E  

{-z, +x} {+z, -x}  3E  

{-z, -x} {+z, +x}  4E  

 
If A makes measurements of S1z and obtain the value - 2/ℏ , and B makes measurements 
of S2z, 50 % of B's measurements will yield 2/ℏ . The events E3 and E4 are allowed. 
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Particle-1 Particle-2 
{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 

 
(ii) 
 

If A makes measurements of S1x and obtain the value 2/ℏ , and B makes measurements of 

S2x, 50 % of B's measurements will yield 2/ℏ . The events E1 and E3 are allowed. 

 

 
 

Particle-1 Particle-2 
{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 

 
If A makes measurements of S1x and obtain the value - 2/ℏ , and B makes measurements 
of S2x, 50 % of B's measurements will yield 2/ℏ . The events E2 and E4 are allowed. 

 

 
 

Particle-1 Particle-2 
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{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 

 
_____________________________________________________________________________ 
(iii) 
 

If A makes measurements of S1z and obtain the value 2/ℏ , and B makes measurements of 

S2x, 25 % of B's measurements will yield 2/ℏ  and 25 % will yield 2/ℏ . E1 for Bob to 

measure of S2x ( 2/ℏ ) and E2 for Bob to measure of S2x (- 2/ℏ ). 
 

 
 

Particle-1 Particle-2 
{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 

 
If A makes measurements of S1z and obtain the value - 2/ℏ , and B makes measurements 

of S2x, 25 % of B's measurements will yield 2/ℏ  and 25 % will yield 2/ℏ . E4 for Bob to 
measure of S2x ( 2/ℏ ) and E3 for Bob to measure of S2x (- 2/ℏ ). 

 

 
 

Particle-1 Particle-2 
{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 
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_____________________________________________________________________________ 
(iv) 
 

If A makes measurements of S1x and obtain the value 2/ℏ , and B makes measurements of 

S2z, 25 % of B's measurements will yield 2/ℏ  and 25 % will yield 2/ℏ . E3 for Bob to 

measure of S2z ( 2/ℏ ) and E1 for Bob to measure of S2z (- 2/ℏ ) and  

 

 
 

Particle-1 Particle-2 
{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 

 
If A makes measurements of S1x and obtain the value - 2/ℏ , and B makes measurements 

of S2z, 25 % of B's measurements will yield 2/ℏ  and 25 % will yield 2/ℏ . E4 for Bob to 

measure of S2z ( 2/ℏ ) and E2 for Bob to measure of S2z (- 2/ℏ ). 

 

 
 

Particle-1 Particle-2 
{+z, +x} {-z, -x} 
{+z, -x} {-z, +x} 
{-z, +x} {+z, -x} 
{-z, -x} {+z, +x} 

 
_____________________________________________________________________________ 
10. Quantum mechanics (non-locality) 

In quantum mechanics, we express the state 0,0  as 
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],,[
2

1
0,0 zzzz   

 

The ket x and the ket x  are defined by 

 

)(
2

1
zzx   

 

)(
2

1
zzx   

 

(a) Probability: particle 1 (
1

z ) and particle 2 (
2

z ) 

 

 
 

2

1

],,
2

1
,,

2

1
0,0,



 zzzzzzzzzz

 

 
or 
 

2

1
0,0,

2
 xzP  

 

(b) Probability: particle 1 (
1

z ) and particle 2 (
2

z ), 
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2

1
,,

2

1
0,0,



 zzzzzzzzzz

 

 
or 
 

2

1
0,0,

2
 zzP . 

 
____________________________________________________________________________ 

(c) Probability: particle 1 (
1

z ) and particle 2 (
2

x ) 

 

 
 

1 1
, 0,0 , , , , ]

2 2
1

2
1

2

z x z x z z z x z z

x z

           

  



 

 
or 
 

4

1
0,0,

2
 xzP . 

 

(d) Probability: particle 1 (
1

z ) and particle 2 (
2

x ) 
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2
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2

1

],,
2

1
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2

1
0,0,





zx

zzxzzzxzxz

 

 
or 
 

4

1
0,0,

2
 xzP  

 
In conclusion, the non-quantum model in which each of the particles in the two-particle system 
has definite attributes, is able to reproduce the results of quantum mechanics. 
_____________________________________________________________________ 
12. Three types of SG systems: Bell's inequality (Townsend, Sakurai) 

We now consider more complicated situation where the model leads to predictions different 
from the usual quantum-mechanical predictions. We start with three-unit vectors, a, b, and c, which 
are, in general, not mutually orthogonal. We define {a-, b+, c+} as follows. The Stern-Gerlach 
experiment along the a direction yields - 2/ℏ . The Stern-Gerlach experiment along the b direction 
yields 2/ℏ . The Stern-Gerlach experiment along the c direction yields 2/ℏ . There must be a 
perfect matching in the sense that the other particles necessarily belong to type {a-, b+, c+} to 
ensure zero angular momentum. 
 

 
 
((Hidden variable theory)) 

Note that the angular momentum is conserved. If Alice measures the spin up state using the 
SG with a direction), Bob will measure the spin-down state using the SG with a direction.  
 
(i) 
 

Particle 1  Particle 2  Population Events 
 

{a+, b+, c+}  {a-, b-, c-}  N1  E1 

A BSpin zero source

particle-1 particle-2

a

b c

a

b c
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{a+, b+, c-}  {a-, b-, c+}  N2  E2 
{a+, b-, c+}  {a-, b+, c-}  N3  E3 
{a+, b-, c-}  {a-, b+, c+}  N4  E4 
{a-, b+, c+}  {a+, b-, c-}  N5  E5 
{a-, b+, c-}  {a+, b-, c+}  N6  E6 
{a-, b-, c+}  {a+, b+, c-}  N7  E7 
{a-, b-, c-}  {a+, b+, c+}  N8  E8 

 

Probability: particle 1 (
1

a ) and particle 2 (
2

b ), 

 





 8

1

43),(

i

iN

NN
P ba  

 

Probability: particle 1 (
1

a ) and particle 2 (
2

c ), 

 





 8

1

42),(

i

iN

NN
P ca  

 

Probability: particle 1 (
1

c ) and particle 2 (
2

b ), 

 





 8

1

73),(

i

iN

NN
P bc  

 
We note that 
 

)()( 734243 NNNNNN   

 
since Ni is positive. Then we have 
 

0),(),(),(  bcbaca PPP . 

 
This is the Bell's inequality. 
 
(ii) 

Similarly, we get the Bell’s inequality as 
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0),(),(),(  cbcaba PPP . 

 

This inequality can be derived as follows. The probability: particle 1 (
1

b ) and particle 2 (
2

c ) 

is given by 
 





 8

1

62),(

i

iN

NN
P cb  

 
We note that 
 

)()( 624342 NNNNNN   

 
since Ni is positive. This leads to the above inequality. 
 
_____________________________________________________________________________ 

Before we discuss this case, we note that 
 

][
2

1
],,[

2

1
0,0

2121
nnnn   iezzzz  

 
Here we use the notations 
 

zez
i 

2
sin

2
cos

 
n , zez

i 
2

cos
2

sin
 

n  

 
and 
 

nn 
2

sin
2

cos


z  

 

nn  

2
cos

2
sin

  ii
eez  

 
Then we have 
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((Mathematica)) 
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_____________________________________________________________________________ 

In quantum mechanics, we express the state 0,0  as 

 

],,[
2

1
0,0 aaaa  , ],,[

2

1
0,0 bbbb  , 

 
except for the phase factor.  
 
(1) 
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ab

aabaaababa





2

1

],,
2

1
,,

2

1
0,0,

 

 

2
sin

2

1

2

1

2

1
),( 222

abP


 baabba  

 
where 
 

aab 
2

sin
2

cos abab 
, 

 

aab 
2

cos
2

sin abab 
. 

 

where ab  is the angle between two unit vectors a and b. 

 
(2) 
 

 
 

ab

aabaaababa
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1
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1
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abP
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 baabba . 

 
(3) 
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 baabba . 

 
(4) 
 

 
 

ab

aabaaababa





2

1

],,
2

1
,,

2

1
0,0,

 

 

2
sin

2

1

2

1

2

1
),( 222

abP


 baabba . 

 
_________________________________________________________________________ 
Similarly, we have 
 

 
 

2
sin

2

1

2

1
),( 22

acP
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 caca . 
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____________________________________________________________________________ 
 

 
 

2
sin

2

1

2

1
),( 22

cbP


 bcbc . 

 
Since 
 

( , ) ( , ) ( , )P P P       a b a c c b   (Bell’s inequality) 

 
we have 
 

2
sin

2
sin

2
sin 222 cbacab 

 , 

 
or 
 

cbacab  cos1cos1cos1  , 

 
or 
 

1coscoscos  abcbac  ,  (Bell's inequality) 

 

Suppose that  2ab ,   acbc , 

 
 cos2)2cos(1)( f . 

 
We make a plot of ( )f   as a function of  . 
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Fig. f()<0 for 0<</2, which means that the Bell's inequality is violated. So, the quantum 
mechanical predictions are not compatible with the Bell's inequality. 

 
((Note)) 
 

2 2 21 1
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Fig. P1: 2cos
2
ab 

 
 

. P2: 2sin
2
ab 

 
 

. ab  is the angle between the unit vectors a and b. The 

green lines denote the values predicted from the hidden variable theory. 
 
13. Probability for finding two particles in the specified state 

We assume the population Ni (i = 1, 2, 3, …., 8). For example, N1 is the population for the case 
when the particle 1 (spin 1/2) is in the states {a+, b+, c+} and the particle 2 (spin 1/2) is in the 
state {a-, b-, c-}. 
 

Particle-1  Particle-2  Population 
 

{a+, b+, c+}  {a-, b-, c-}  N1 
{a+, b+, c-}  {a-, b-, c+}  N2 
{a+, b-, c+}  {a-, b+, c-}  N3 
{a+, b-, c-}  {a-, b+, c+}  N4 
{a-, b+, c+}  {a+, b-, c-}  N5 
{a-, b+, c-}  {a+, b-, c+}  N6 
{a-, b-, c+}  {a+, b+, c-}  N7 
{a-, b-, c-}  {a+, b+, c+}  N8 

 
Then we get the probability for each case, 
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Note that for example, ),( ba P  is the probability of finding the particle 1 in the state a+ and the 

particle 2 in the state b+. Then we have the inequalities such as 
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It is noted that the sign of the following equation cannot be determined,  
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14. Bell’s inequality (I): McIntyre, Quantum Mechanics 
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Bell's argument relies on observers A (Alice) and B (Bob) making measurements along a set 
of different directions. We consider three directions a, b, and c. Each observer makes 
measurements of the spin projection along one of these three directions, chosen randomly. Any 
single observer's result can be only spin up or spin down along that direction, but we record the 
results independent of the direction of the SG analyzers, so we denote one observer's result simply 
as + or -, without noting the axis of measurement. The results of the pair of measurements from 
one correlated pair of particles are denoted + -, for example, which means observer A recorded a+ 
and observer B recorded a-. There are only four possible system results: ++, +-, -+, or --. Even 
more simply, we classify the results as either the same, ++, --, or opposite, +-, or -+. 
 
 

 
 
 

 
 

Fig. The direction of position vectors a, b, and c on the unit circle in the z-x plane. a , is the 

angle of vector a from the z axis. 
 

A BSpin zero source

particle-1 particle-2

a

b c

a

b c
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((Hidden variable theory))  
Note that the angular momentum is conserved. If Alice measures the spin up state using the SG 
with a direction, Bob will measure the spin-down state using the SG with a direction. There are 
eight types measurements. 
 

Particle 1  Particle 2  Population 
 

{a+, b+, c+}  {a-, b-, c-}  N1   Type-1 
{a+, b+, c-}  {a-, b-, c+}  N2   Type-2 
{a+, b-, c+}  {a-, b+, c-}  N3   Type-3 
{a+, b-, c-}  {a-, b+, c+}  N4   Type-4 
{a-, b+, c+}  {a+, b-, c-}  N5   Type-5 
{a-, b+, c-}  {a+, b-, c+}  N6   Type-6 
{a-, b-, c+}  {a+, b+, c-}  N7   Type-7 
{a-, b-, c-}  {a+, b+, c+}  N8   Type-8 

 
There are nine different combinations of measurement directions for the pair of observers: aa, ab, 
ac, ba, bb, bc, ca, cb, cc. 
 
Type-1:  N1 
 

{a+, b+, c+},  {a-, b-, c-}, 
 
The probability of observing the same spin directions: Psame 

The probability of observing the opposite spin directions: Popp 

 
Popp=1,  Psame = 0, 

 
{a+, a-}, {a+, b-}, {a+, c-}, {b+, a-}, {b+, b-}, {b+, c-}, {c+, a-} 
{c+, b-}, {c+, c-},  

 
Type-8:  N8 
 

{a-, b-, c-}  {a+, b+, c+} 
 

Popp=1,  Psame = 0, 
 

{a-, a+}, {a-, b+}, {a-, c+}, {b-, a+}, {b-, b+}, {b-, c+}, {c-, a+} 
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{c-, b+}, {c-, c+},  
 
Type-2:  N2 
 

{a+, b+, c-}  {a-, b-, c+}  N2 
 

Popp=5/9,  {a+, a-},{a+, b-}, {b+, a-},{b+, b-}, {c-, c+} 
Psame = 4/9  {a+, c+},{b+, c+}, {c-, a-},{c-, b-},  

 
Type-3 – 7 (similar to Type-2), N3, N4, N5, N6, N7 
 

{a+, b-, c+}  {a-, b+, c-}  Type-3 
{a+, b-, c-}  {a-, b+, c+}  Type-4 
{a-, b+, c+}  {a+, b-, c-}  Type-5 
{a-, b+, c-}  {a+, b-, c+}  Type-6 
{a-, b-, c+}  {a+, b+, c-}  Type-7 

 
Popp=5/9,  Psame = 4/9 

 
Then we have 
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9

5
oppP . 

 
((Prediction by Quantum mechanics)) 
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Then we get 
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2
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for {a, b}. 
 

The angle ab between the measurement directions of the observers A and B is  = 0 in 1/3 of the 

measurements, bc = 2/3 in 1/3 and ca = 4/3 in 1/3. So the average probabilities are 
 

2 2 2

2 2

1 1 1
sin sin sin

3 2 3 2 3 2
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sin sin
3 2 3 3
1 4

2 9

ab bc ca
sameP

  



  

 

 

 

 

9

5

2

1
3

cos
3

2

2

0
cos

3

1
2

cos
3

1

2
cos

3

1

2
cos

3

1

22

222









 cabcab
oppP

 

 
These predictions of quantum mechanics are inconsistent with the range of possibilities that we 
derived for local hidden variable theories. 
 
15. Bell's inequality (II) 

We have shown the inequality based on the same argument which is derived above 
 

0),(),(),(  cbcaba PPP . 

 
This can be rewritten as 
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When 
 

acbcab   ,  abac  2 ,  ab  

 
then we have 
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f  

 

We make a plot of f() as a function of . It is clearly shown that f() becomes negative between 

/4 and /2. 
 

 
 
16. Spin correlation function (I) 

Measurements of the spin components along two arbitrary directions a and b are performed on 

two spin 1/2 particles in the singlet 0,0 . The results of each measurement find the parallel spin-

up or spin-down along that particular axis. Denoting ),(  baP  the probabilities of obtaining ±1 

along a for particle 1 and ±1 along b for particle 2, the average value for the product of spins is 
given by 
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if a and b are unit vectors. E(a, b) is the spin correlation function and defined by 

 

).()(ˆ)(ˆ),( 21 bababa  E
 

 

17. Derivation of the spin correlation function (II): )(ˆ)(ˆ),( 21 baba E  

Here we show that 
 

abcos
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ℏ
 bSaS , 

 
or 
 

1 2ˆ ˆ0,0 ( )( ) 0,0 cos ab   σ a σ b  

 

where ab is the angle between the unit vectors a and b. Therefore, we have the spin correlation 
function which is defined by 
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((Proof)) 
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where ab  is the angle between a and b (see the APPENDIX for the derivation in detail). Here 

we write the state 0,0  as 
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We see that 
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Then, we have 
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since 1 aa , and 1 aa . Thus, we have the spin correlation function, 
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1 1ˆ ˆ( )  a σ a ,  2 2ˆ ˆ( )  b σ b  

 
_____________________________________________________________________________ 
((Mathematica-1)) 
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((Mathematica-2)) 
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18. Proof of Bell's theorem in terms of the hidden variables 

Suppose that the complete state of the system (such as the state of electron-positron system) is 
characterized by the hidden variables v. The spin-up and down states are described by 
 

1),(1 av ,  1),(2 bv , 

 
where v is n-vector of hidden variables. Since the angular momentum is conserved, 
 

),(),( 21 bvbv   . 

 
The spin correlation is defined by 
 

 ),(),()()()(),( 2121 bvavvvbaba  ndE , 

 
where )(v  is the probability density. Using the angular momentum conservation, we have 
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Then we get 
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where 
 

1 1( )[1 ( , ) ( , )] 0   v v b v c   

 
),(),( 21 cvcv   , 

 
Thus we have 
 

),(1),(),( cbcaba EEE   , (Bell's theorem) 

 
since 
 

),(),( 12 cvcv   , 

 
where the spin correlation function, 
 

)()(),( 21 baba E , )()(),( 21 caca E , 

 
and 
 

)()(),( 21 cbcb E . 
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The Bell’s inequality holds for any local hidden variable theory. Here we put 
 

baba ),(E . 

 
Then we have 
 

)(),(),( cbacaba  EELHS , 

 
cb  1RHS . 

 
We now choose that 
 

0ba ,  cossin bac  . 

 
Thus 
 

sin caLHS , cos1RHS . 

 

 
Fig. LHS and RHS as a function of the angle   between b and c.  

 

LHS>RHS except for  = 0 and /2. This means that the quantum mechanics is inconsistent with 
hidden variable theory (locality). 
 
19. RegionPlot of the Bell’s inequality 
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Bell’s inequality (by Bell) 
 

( , ) ( , ) 1 ( , )E E E  a b a c b c   

 
where 
 

( , ) cos( ) cos( )ab a bE          a b a b   

 

( , ) cos( ) cos( )ac a cE          a c a c   

 

( , ) cos cos( )bc b cE          b c b c   

 

We find the region of ( , , )a b c    satisfying the inequality 

 

( , , ) cos( ) cos( ) cos( ) 1a b c a b a c b cf                 

 

using the RegionPlot3D of as a function of a , b  and c , where 0 a   , 0 b   , and 

0 c   . 
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Fig. RegionPlot3D in the 3D space denoted by the angles ( , , )a b c   . The regions denoted by 

green for 1f   (satisfying the Bell’s inequality). The regions denoted by pink for 1.f 

(violation of the Bell inequality) 
 

For simplicity we assume that 0a  . In this case, we need to consider the RegionPlot in the 2D 

space denoted by the angles ( , )b c   

 

( 0, , ) cos( ) cos( ) cos( ) 1a b c b c b cf              

 

where b      and b     . 
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Fig. RegionPlot of ( 0, , ) cos( ) cos( ) cos( ) 1a b c b c b cf             . The region (green) 

for the inequality 1f   (satisfying the Bell’s inequality) 

 
20. Bell's states for the spin 1/2 system 

The Bell's states are defined by 
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Using the total spin angular momentum along the z axis, which is given by 
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we have 
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z z zS S S z z z z         . 

 

So that 
12

  and 
12

  are the eigenkets of zŜ  with the eigenvalue 0. On the other hands, 

12

  and 
12

  are not the eigenkets of zŜ . 

 
((Mathematica)) 
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21. Mathematics for spin 1/2 system 

(1) Inner product between eigenkets of spin 1/2 system 

The eigenkets n  and n  for the spin 1/2 system are obtained as 
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Here we choose a phase factor for n  which is a little different from the conventional notation 
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We now calculate the inner product 
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Then we have the scalar product 
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(2) Matrix elements of spin operator 
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where σS ˆ
2

ˆ ℏ
 , a and b are unit vectors. bbbσ ˆ , and bbbσ ˆ . Similarly, we 

have 
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(3) Probability 
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Then we have the probability 
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Then we have the probability 



 

68 
 

 








 


2
cos

2

1

2

1
),( 22

baP


abba . 

 

(iii) 
2

0,0,),( baba P  

 

ab

aabaaababa





2

1

],,
2

1
,,

2

1
0,0,

 

 








 


2
cos

2

1

2

1
),( 22

baP


abba . 

 

(iv) 
2

0,0,),( baba P  

 

ab

aabaaababa





2

1

],,
2

1
,,

2

1
0,0,

 

 








 


2
sin

2

1

2

1
),( 22

baP


abba . 

 
22. CHSH inequality 

The CHSH inequality can be used in the proof of Bell's theorem, which states that certain 
consequences of entanglement in quantum mechanics cannot be reproduced by local hidden 
theories. Experimental verification of violation of the inequalities is seen as experimental 
confirmation that nature cannot be described by local hidden variables theories. CHSH stands for 
John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-
cited paper published in 1969. They derived the CHSH inequality, which, as with John Bell's 
original inequality (Bell, 1964), is a constraint on the statistics of "coincidences" in a Bell test 
experiment which is necessarily true if there exist underlying local hidden variables (local realism). 
This constraint can, on the other hand, be infringed by quantum mechanics. 
http://en.wikipedia.org/wiki/CHSH_inequality. 
 

Clauser et al.'s 1969 derivation was oriented towards the use of "two-channel" detectors, and 
indeed it is for these that it is generally used, but under their method the only possible outcomes 
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were +1 and −1. In order to adapt to real situations, which at the time meant the use of polarized 
light and single-channel polarizers, they had to interpret '−' as meaning "non-detection in the '+' 
channel", i.e. either '−' or nothing. They did not in the original article discuss how the two-channel 
inequality could be applied in real experiments with real imperfect detectors, though it was later 
proved (Bell, 1971) that the inequality itself was equally valid. The occurrence of zero outcomes, 
though, means it is no longer so obvious how the values of E are to be estimated from the 
experimental data. The mathematical formalism of quantum mechanics predicts a maximum value 
for S of (Tsirelson's bound),[4] which is greater than 2, and CHSH violations are therefore predicted 
by the theory of quantum mechanics. 
https://en.wikipedia.org/wiki/CHSH_inequality 
 
___________________________________________________________________________ 
The usual form of the CHSH inequality is given by 
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where a and a′ are detector settings on side A, b and b′ on side B, the four combinations being 
tested in separate sub-experiments. The terms ( , )E a b  etc. are the quantum correlations of the 

particle pairs, where the quantum correlation is defined to be the expectation value of the product 
of the "outcomes" of the experiment, i.e. the statistical average of A(a)·B(b), where A and B are 
the separate outcomes, using the coding +1 for the '+' channel and −1 for the '−' channel. 
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The CHSH inequality is predicted as 
 

− 2 ≤ S ≤ 2, 
 
from the local hidden theories. On the other hand, the mathematical formalism of quantum 

mechanics predicts a maximum value for S of 22 , which is greater than 2, and CHSH violations 
are therefore predicted by the theory of quantum mechanics. 

Here we consider the operator defined by 
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We calculate the square of this operator based on the quantum mechanics. 
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Here we use the formula 
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Fig. a and a′ are detector settings on side A (Alice), b and b′ on side B (Bob), The four 

combinations are tested in separate sub-experiments. 
 
Suppose that the four vectors a , 'a , b  and 'b  are in the same plane and each of them makes an 

angle of 
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
 with the preceding vector. 

 

'' sinz   aaa a e  '' sinz   bbb b e  

 
2

' ' 1 2
ˆ ˆ ˆ ˆ41 4sin sin ( )z zQ      

aa bb
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When ' ' 4


  

aa bb
, 

 

2
1 2

0 0 0 0

0 1 0 0ˆ ˆ ˆ ˆ41 4( ) 8
0 0 1 0

0 0 0 0

z zQ  

 
 
    
 
 
 

 

 
or 
 

2ˆ , 0Q z z    

 

,z z   is the eigenket of 2
Q̂  with the eigenvalue 0 (minimum value)  

 
2ˆ , 8 ,Q z z z z      

 

,z z   is the eigenket of 2
Q̂  with the eigenvalue 8 (maximum value)  

 
2ˆ , 8 ,Q z z z z      

 

,z z   is the eigenket of 2
Q̂  with the eigenvalue 8 (maximum value)  

 
2ˆ , 0Q z z    

 

,z z   is the eigenket of 2
Q̂  with the eigenvalue 0 (minimum value)  

 
Note that 
 

1

1 1 0
,

0 0 0

0

z z

 
 

                 
 
 

 ,  

0

1 0 1
,

0 1 0

0

z z

 
 

                 
 
 
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0

0 1 0
,

1 0 1

0

z z

 
 

                 
 
 

 ,  

0

0 0 0
,

1 1 0

1

z z

 
 

                 
 
 

 

 

Thus, the average value of the operator 2
Q̂  over the state vector   is given by 

 

82 Q  or 222 Q . 

 

where the equality holds for ,z z     or ,z z   

 
((Note)) Classical case (local hidden theory) 

In the local hidden theory where the commutation relations hold,  
 

0)]'(ˆ),(ˆ[ 11 aa  , 0)]'(ˆ),(ˆ[ 22 bb  . 

 
(which can be regarded as the classical case), we get 
 

2
1 1 2 2 2 2

1 1 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ41 ( ) ( ')[ ( ) ( ') ( ') ( )]

ˆ ˆ ˆ ˆ ˆ ˆ( ') ( )[ ( ) ( ') ( ') ( )]

ˆ41

Q      

     

  

 



a a b b b b

a a b b b b  

 
Thus we have 
 

42 Q , or 22 Q . 

 
The value of 2 is called the Tsirelson bound for the CHSH inequality. The Tsirelson bound is 
named after B.S. Tsirelson (or Boris Cirel’son). 
 
REFERENCES 

F. Laloe, Do we really understand Quantum Mechanics (Cambridge University Press, 2012). 
 
23. Derivation of CHSH inequality by Mathematica 

Here we show a proof of the CHSH inequality by using the KroneckerProduct (Mathematica). 
To this end, we use the following notations for the 2D vectors in the x-z plane with the magnitudes 
of unity, 
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(sin ,0,cos ) a ,  ' (sin ,0,cos ) a   

 
(sin ,0,cos ) b ,  ' (sin ,0,cos ) b   

 
We now calculate the KroneckerProduct 
 

1 2 2 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) [( ) ( ')] ( ') [( ) ( ')]Q            σ a σ b σ b σ a σ b σ b  

 
Using the Mathematica we get 
 

2

4 0 0 4sin( )sin( )

0 4 4sin( )sin( ) 0ˆ
0 4sin( )sin( ) 4 0

4sin( )sin( ) 0 0 4

Q

   
   

   
   

  
    
   
 

  

 

 
2ˆ 4 4sin( )sin( ) 8B BQ             

 

where B is the Bell tate, 

  
1

( , , )
2

0

11

12

0

B z z z z      

 
 
 
 
 
 

 

 
((Mathematica)) 
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24. Evaluation of S 

Here we evaluate the value of S. We choose the directions of the unit vectors a, b, a', and, b' 
as shown in Fig. 
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a = z, a' = x. The angle between a and b is .  
 









sin)
2

cos()',(

sin)
2

cos(),'(

cos)','(),(







ba

ba

baba

E

E

EE

 

 
leading to  
 

x

y

a

b

a'

b'

2

2
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)
4

sin(22

)cos(sin2

cossinsincos

)','(),'()',(),(













 babababa EEEES

 

 

We make a plot of S as a function of . The value of |S| becomes larger than 2 for 2/0    and 

2/3  .  

When  = /4, we have 
 

2

1
)','(),'(),(  bababa EEE , 

 

2

1
)

4

3
cos()','( 


baE . 

 
Then we have 
 

22

)','(),'()',(),(



 babababa EEEES
 

 

 
 
((Note)) 

Suppose that   ''' babaab , and  3' ab . We find the maximum and the minimum of 

S for  20   When the maximum is larger than S = 2, this yields the greatest conflict 

between a quantum mechanical calculation of S and the Bell’s inequality ( 2S ). 

S

4 2

3

4

5

4

3

2

7

4

2

3

2

1

1

2

3



 

80 
 

 

)(

)3cos(cos3

coscoscoscos

)','(),'()',(),(

''''







f

EEEES

babaabab







 babababa

 

 

where 

 

  ''' babaab , and  3' ab . 

 

We make a plot of )(f  as a function of . It is found that )(f  has a maxim 22  which is 

larger than 2 predicted from the hidden local theory.  

 

 

 

Fig. Plot of )(fS   vs . The yellow region where 2S , violating the Bell's inequality. 
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APPENDIX 

Definitions of key words in quantum entanglement from the Wikipedia 

 
Action at a distance 

In physics, action at a distance is the nonlocal interaction of objects that are separated in space. 
This term was used most often in the context of early theories of gravity and electromagnetism to 
describe how an object responds to the influence of distant objects. More generally "action at a 
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distance" describes the failure of early atomistic and mechanistic theories which sought to reduce 
all physical interaction to collision. The exploration and resolution of this problematic 
phenomenon led to significant developments in physics, from the concept of a field, to descriptions 
of quantum entanglement and the mediator particles of the standard model.  
 
Spooky action at a distance [spukhafte Fernwirkung (in german)] 

Entanglement arises naturally when two particles are created at the same point and instant in 
space, for example. Entangled particles can become widely separated in space. But even so, the 
mathematics implies that a measurement on one immediately influences the other, regardless of 
the distance between them. Einstein and co-authors pointed out that according to special relativity, 
this was impossible and therefore, quantum mechanics must be wrong, or at least incomplete. 
Einstein famously called it spooky action at a distance. The basic idea here is to think about the 
transfer of information. Entanglement allows one particle to instantaneously influence another but 
not in a way that allows classical information to travel faster than light. This resolved the paradox 
with special relativity but left much of the mystery intact. 
 
Wave function collapse 

In quantum mechanics, wave function collapse is said to occur when a wave function—initially 
in a superposition of several eigenstates—appears to reduce to a single eigenstate due to interaction 
with the external world; this is called an "observation". It is the essence of measurement in quantum 
mechanics and connects the wave function with classical observables like position and momentum.  
 
Separability 

Different particles or systems that occupy different regions in space have an independent reality. 
 
Locality 

An action involving one of these particles or systems cannot influence a particle or system in 
another part of space unless something travels the distance between them, a process limited by 
the speed of light. 
 
Nonlocality 

In physics, nonlocality or action at a distance is the direct interaction of two objects that are 
separated in space with no intermediate agency or mechanism. Regarding the unexplained nature 
of gravity, Isaac Newton (1642-1727) considered action-at-a-distance "so great an Absurdity that 
I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall 
into it". Quantum nonlocality refers to what Einstein called the "spooky action at a distance" of 
quantum entanglement. 
 
(Local) hidden variable theory 

Historically, in physics, hidden variable theories were espoused by some physicists who argued 
that the state of a physical system, as formulated by quantum mechanics, does not give a complete 
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description for the system; i.e., that quantum mechanics is ultimately incomplete, and that a 
complete theory would provide descriptive categories to account for all observable behavior and 
thus avoid any indeterminism. The existence of indeterminacy for some measurements is a 
characteristic of prevalent interpretations of quantum mechanics; moreover, bounds for 
indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle. 
 
Principle of locality 

In physics, the principle of locality states that an object is influenced directly only by its 
immediate surroundings. Experiments have shown that quantum mechanically entangled particles 
must either violate the principle of locality or engage in superluminal communication.  
 
Local realism 

Local realism is a significant feature of classical mechanics, of general relativity, and of 
electrodynamics; but quantum mechanics largely rejects this principle due to the theory of distant 
quantum entanglements, an interpretation rejected by Einstein in the EPR paradox but 
subsequently proven by Bell's inequalities. Any theory, such as quantum mechanics, that violates 
Bell's inequalities must abandon either locality or realism; but some physicists dispute that 
experiments have demonstrated Bell's violations, on the grounds that the sub-class of 
inhomogeneous Bell inequalities has not been tested or due to experimental limitations in the tests. 
Different interpretations of quantum mechanics violate different parts of local realism and/or 
counterfactual definiteness.  
 
Qubit 

In quantum computing, a qubit or quantum bit is a unit of quantum information—the quantum 
analogue of the classical bit. A qubit is a two-state quantum-mechanical system, such as the 
polarization of a single photon: here the two states are vertical polarization and horizontal 
polarization. In a classical system, a bit would have to be in one state or the other, but quantum 
mechanics allows the qubit to be in a superposition of both states at the same time, a property 
which is fundamental to quantum computing. 
 
Quantum entanglement 

Quantum entanglement is a physical phenomenon that occurs when pairs (or groups) of 
particles are generated or interact in ways such that the quantum state of each member must 
subsequently be described relative to each other. Quantum entanglement is a product of quantum 
superposition. However, the state of each member is indefinite in terms of physical properties such 
as position, momentum, spin, polarization, etc. in a manner distinct from the intrinsic uncertainty 
of quantum superposition. When a measurement is made on one member of an entangled pair and 
the outcome is thus known (e.g., clockwise spin), the other member of the pair is at any subsequent 
time always found (when measured) to have taken the appropriately correlated value (e.g., 
counterclockwise spin). There is thus a correlation between the results of measurements performed 
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on entangled pairs, and this correlation is observed even though the entangled pair may be 
separated by arbitrarily large distances. Repeated experiments have verified that this works even 
when the measurements are performed more quickly than light could travel between the sites of 
measurement: there is no light speed or slower influence that can pass between the entangled 
particles. Recent experiments have measured entangled particles within less than one part in 
10,000 of the light travel time between them; according to the formalism of quantum theory, the 
effect of measurement happens instantly.  

This behavior is consistent with quantum theory, and has been demonstrated experimentally 
with photons, electrons, molecules the size of buckyballs, and even small diamonds. It is an area 
of extremely active research by the physics community. However, there is some heated debate 
about whether a possible classical underlying mechanism could explain entanglement. The 
difference in opinion derives from espousal of various interpretations of quantum mechanics. 

Research into quantum entanglement was initiated by a 1935 paper by Albert Einstein, Boris 
Podolsky, and Nathan Rosen describing the EPR paradox and several papers by Erwin Schrödinger 
shortly thereafter. Although these first studies focused on the counterintuitive properties of 
entanglement, with the aim of criticizing quantum mechanics, eventually entanglement was 
verified experimentally, and recognized as a valid, fundamental feature of quantum mechanics. 
The focus of the research has now changed to its utilization as a resource for communication and 
computation. 
 
SG measurements 
 

1
[ ]

2
       , 

 
1

[ ]
2

      , 

 
1

[ ]
2

       , 

 
1

[ ]
2

        . 

 
where these ket vectors are orthogonal to each other. 
 

)ˆ(
2

ˆ
1111 nσnS 

ℏ
, )ˆ(

2
ˆ

2222 nσnS 
ℏ

. 
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(a) 
 

   )sin()cos()ˆ)(ˆ( 21212211 nσnσ , 

 
leading to 
 

)cos()ˆ)(ˆ( 212211   
nσnσ . 

 
(b) 
 

   )sin()cos()ˆ)(ˆ( 21212211 nσnσ , 

 
leading to 
 

)cos()ˆ)(ˆ( 212211   
nσnσ . 

 
(c) 
 

   )cos()sin()ˆ)(ˆ( 21212211 nσnσ , 

 
leading to 
 

)cos()ˆ)(ˆ( 212211   
nσnσ . 

 

(i) When 021  , 

 
  )ˆ)(ˆ( 2211 nσnσ , 

 
  )ˆ)(ˆ( 2211 nσnσ . 

 

(ii) When 
221


  , 

 
  )ˆ)(ˆ( 2211 nσnσ , 
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  )ˆ)(ˆ( 2211 nσnσ . 

 

(iii) When 021   

 
 

  )ˆ)(ˆ( 2211 nσnσ , 

 
  )ˆ)(ˆ( 2211 nσnσ . 

 

(iv) When 
221


  , 

 
  )ˆ)(ˆ( 2211 nσnσ , 

 
  )ˆ)(ˆ( 2211 nσnσ . 

 
__________________________________________________________________________ 
APPENDIX-B 

Therefore, all three components of spin correspond to “elements of reality,” as defined by EPR, 
because a definite value will be predictable with certainty, for any one of them, if we measure the 
corresponding spin component of the other particle. This claim, however, is incompatible with 
quantum mechanics, which asserts that at most one spin component of each particle may be definite. 

We consider the two spin particles, far apart from each other, in a singlet state 
 

][
2

1
212112

zzzz  . 

 

We know that measurements of xx 21 ˆˆ   , if performed, shall yield opposite values,  

 

1212211221 )ˆˆ(   xxxx mm .  (quantum mechanics) 

 

Sincee 121 xxmm  and 12
2

2
1  xx mm , we have 

 

xx mm 21  , 
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Similarly, the measurements of yy 21 ˆˆ   , if performed, shall yield opposite values,  

 

1212211221 )ˆˆ(   yyyy mm .  (quantum mechanics) 

 

Since 121 yymm  and 12
2

2
1  yy mm , we have 

 
m1y = –m2y.  

 

Furthermore, since x1̂  and y2̂ commute, and both correspond to elements of reality, their 

product yx 21 ˆˆ    also corresponds to an element of reality. The numerical value assigned to the 

product yx 21 ˆˆ    is the product of the individual numerical values, m1x m2y,such that 

 

12211221 )ˆˆ(   yxyx mm .  (EPR) 

 

Likewise, the numerical value of xy 21 ˆˆ   is the product m1y m2x, such that 

 

12211221 )ˆˆ(   xyxy mm . 

 

These two products must be equal, 

 

xyyxyx mmmmmm 211221 ))((  , 

 

because m1x = – m2x and m1y = – m2y .  

The quantum theory asserts that these products have opposite values, because the singlet state 
satisfies 
 

0)ˆˆˆˆ(
122121  

xyyx  .  (quantum mechanics) 

 
From the EPR, element of reality, on the other hand, we should obtain the relation 
 

02121  xyyx mmmm , 

 
which is inconsistent with the value 
 

02 212121  yxxyyx mmmmmm . 
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which can be derived from the above result. Then we are thus forced to the conclusion that the 
definition of elements of reality is incompatible with quantum theory. 
 
APPENDIX-C 

 

(1) Quantum Entanglement Documentary- Atomic Physics and Reality 
 

http://www.youtube.com/watch?v=BFvJOZ51tmc 
 

where J. Bell, D. Bohm, A. Aspect, J. Wheeler talked about physics. 
 
(2) Fabric of the Cosmos-Quantum Leap (Brian Greene) 
 

http://www.youtube.com/watch?v=NbIcg0XsbFQ 
 
APPENDIX-D Formula 
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2

cos
2

a

a


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ˆ ˆ0,0 ( )( ) 0,0 cos( )a b     σ a σ b  

 

cos
2

a b  
    

 
a b , sin

2
a b  

    
 

a b  

 

sin
2

a b  
     

 
a b , cos

2
a b  

    
 

a b  



 

89 
 

1
, 0,0 sin

22
a b  

     
 

a b ,  
1

, 0,0 cos
22

a b  
    

 
a b  

 
1

, 0,0 cos
22

a b  
     

 
a b ,  

1
, 0,0 sin

22
a b  

     
 

a b  

 

21
( , ) , 0,0 sin

2 2
a bP
 



 
     

 
a b a b  

 

21
( , ) , 0,0 cos

2 2
a bP
 



 
     

 
a b a b  

 

21
( , ) , 0,0 cos

2 2
a bP
 



 
     

 
a b a b  

 

21
( , ) , 0,0 sin

2 2
a bP
 



 
     

 
a b a b  

 
( , ) ( , ) ( , ) ( , ) ( , )

cos( )a b

E P P P P

 
      

  

a b a b a b a b a b
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1 1 1 1 1 2 1 2

1 1ˆ ˆ[ ] [ ]
2 2

0

11

12

0

0,0

a a

i

i

U U z z z z

e

e





               

 
 
 
 
 
 



a a a a

  

 
where 
 

cos sin
2 2ˆ

sin cos
2 2

a a

a a

a

i ia a

U

e e
 

 

 

  
  
  
 

  

 
((Mathematica)) 
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APPENDIX-F 

 

1 2ˆ ˆ( , ) 0,0 ( )( ) 0,0E   a b σ a σ b  

 

2 2

1
ˆ ˆ( ) 0,0 ( )[ ]

2
1

[ ]
2

        

       

σ b σ b +b b b b

+b b b b

  

 

1 1

1
ˆ ˆ( ) 0,0 ( )[ ]

2
1

[ ]
2

        

      

σ a σ a +a a a a

+a a a a

 

 
or 
 

1

1
ˆ0,0 ( ) [ ]

2
       σ a +a a a a  
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1 2

2

2 2

ˆ ˆ( , ) 0,0 ( )( ) 0,0

1
[ ][ ]

2

[ ][ ]
2

[ ]

[cos ( ) sin ( )]
2 2

cos( )

ab ab

ab

E

 



  

             

             

          

  

 

  

a b σ a σ b

+a a a a +b b b b

+a a a a +b b b b

a b a b a b a b

a b

ℏ

 

 
((Note)) 
 

2 2

( , ) ( , ) ( , ) ( , )

[cos sin ]
2 2

cos

ab ab

ab

P P P P

 



          

        
   

 

  

a b a b a b a b

a b

  

 
 


