
 

1 
 

Local Realism and GHZ states 
Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 
(Date: November 02, 2014) 

 
For many years, everyone thought that Bell had basically exhausted the subject by 

considering all really interesting situations, and two-spin systems provides the most spectacular 
quantum violations of local realism. It therefore came as a surprise to many when in 1989 
Greenberger, Hone, and Zeilinger (GHZ) showed that systems containing more than two 
correlated particles may actually exhibit even more dramatic violations of local realism. They 
involve a sign contradiction (100 % violation) for perfect correlations, while the CHSH 
inequalities are violated about 40 % (Tsirelson bound = 2 for the CHSH inequality) and deal with 
situations where the results of measurements are not completely correlated. (F. Laloë, Do we 
really understand Quantum Mechanics?, Cambridge, 2012). 
 
______________________________________________________________________________ 
Anton Zeilinger (born on 20 May 1945) is an Austrian quantum physicist who in 2008 received 
the Inaugural Isaac Newton Medal of the Institute of Physics (UK) for "his pioneering 
conceptual and experimental contributions to the foundations of quantum physics, which have 
become the cornerstone for the rapidly-evolving field of quantum information". Zeilinger is 
professor of physics at the University of Vienna and Senior Scientist at the Institute for Quantum 
Optics and Quantum Information IQOQI at the Austrian Academy of Sciences. Most of his 
research concerns the fundamental aspects and applications of quantum entanglement. 
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1. Element of reality 

We consider the decay of a simple system into a pair of spin 1/2 particles such as 
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  ee0 , 

 
where e+ is a positron and e- is an electron. After the decay products have separated and are very 
far apart, we measure a component of the spin of one of them. This is the entangled state. 

Suppose that zŜ  of the electron is measured by Alice using the SGz device with B//z and is 

found to be equal to 2/ . Then Alice can be sure that zŜ  of positron will turn out equal to 

2/ , if Bob measures it, since the positron and electron form the entangled state. 

Next we consider the different situation. Alice measures the eigenvalue of zŜ  for the electron 

by using her SGz device with B//z. She finds that the eigenvalue of zŜ  for electron is equal to 

2/ . Suppose that Bob measure the eigenvalue of xŜ  for the positron by using his SGx with 

B//x, instead of measuring with the SGz device. What is the eigenvalue of xŜ  for the positron 

measured by Bob? 

According to quantum mechanics, the probability of finding the state x is the same as that 

of finding the state x . The probability is equal to 1/2 for each case, since 
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We note that the spin operators zŜ  and xŜ for the positron are not commutable; 0]ˆ,ˆ[ xz SS . 

Thus the eigenvalue of xŜ  cannot be determined definitely, even if the eigenvalue of zŜ  for the 

positron can be determined uniquely as 2/  because of the entangled state.  
In the element of reality as defined by EPR theory (local theory), it is assume that all the spin 

operators are commutable. So all three components of the spin for the positron can be predictable 
with certainty, if we measure the corresponding spin component of the positron. This claim, 
however, is incompatible with quantum mechanics, which asserts that at most one spin 
component of each particle may be definite. 
 
2. Local realism and quantum mechanics at odds with the use of mathematics 

We consider two spin 1/2 particles, far apart from each other, in a singlet state. The Bell's 
state (singlet, spin zero) is given by 
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We know that measurements of x1̂  and x2̂ , if performed, shall yield opposite values, that we 

denote by m1x and m2x, respectively.  
 

xx mm 21  , 

 

where xm1  and xm2  are either 1 or -1. Likewise, measurements of y1̂  and y2̂ , if performed, 

shall yield opposite values, that we denote by m1y and m2y, respectively.  
 

yy mm 21  . 

 

where ym1  and ym2  are either 1 or -1. Furthermore, since x1̂  and y2̂  commute, and both 

correspond to elements of reality, their product yx 21 ˆˆ   also corresponds to an element of reality. 

The numerical value assigned to the product yx 21 ˆˆ   is the product of the individual numerical 

values, yx mm 21 . Likewise, the numerical value assigned to the product xy 21 ˆˆ   is the product of 

the individual numerical values, xy mm 21 .These two products must be equal, since 

 

yxyxyx mmmmmm 222221 ))((  , 

 
We note that the quantum mechanics asserts that the singlet state (Bell’s state) satisfies 
 

0)ˆˆˆˆ(
12

)(
2121  

xyyx  . 

 
The proof of this equation will be given later. From this equation, we can predict with certainty 

that if we measure )ˆˆˆˆ( 2121 xyyx   , we have 

 

02121  xyyx mmmm , 

 
where each operator corresponds to an EPR element of reality.  

We note that this equation is totally inconsistent with the equation derived above based on 

EPR element of reality; xyyx mmmm 2121    

 
3. Mathematica 
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Here, using the Mathematica, we show that the singlet state (Bell’s state) satisfies the 
following relations 
 

0)ˆˆˆˆ(
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and 
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((Mathematica)) 
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Clear "Global` " ;

exp :

exp . Complex re , im Complex re, im ;

1
1
0

;

2
0
1

;

x PauliMatrix 1 ; y PauliMatrix 2 ;

z PauliMatrix 3 ;

1

2

KroneckerProduct 1, 2

KroneckerProduct 2, 1 ;

A12

KroneckerProduct x, y

KroneckerProduct y, x ;

A12.

0 , 0 , 0 , 0
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___________________________________________________________________ 

4. GHZ state 
GHZ  for the spin 1/2 systems 

 

A23

KroneckerProduct y, z

KroneckerProduct z, y ;

A23.

0 , 0 , 0 , 0

A31

KroneckerProduct x, z

KroneckerProduct z, x ;

A31.

0 , 0 , 0 , 0

KroneckerProduct x, x .

0 , 0 , 0 , 0

KroneckerProduct y, y .

0 , 0 , 0 , 0

KroneckerProduct z, z .

0 , 0 , 0 , 0
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Fig. A source (S) of particle triples produces three identical particles which then move 

towards three equidistant magnetic orientation detectors. Alice, Bob and Chris set up 
detectors to measure the magnetization along the direction of the particle’s motion (the z-
direction) or along two other mutually perpendicular directions (x and y-directions). 

 
 

In 1989, a striking extension of Bell's theorem to the case of three particles was taken by 
Greenberger, Horne, and Zeilinger. In contrast to Bell's theorem, which concerns statistical 
averages, this so-called GHZ theorem shows that a conflict between quantum mechanics and 
local realism can be obtained with a single measurements. GHZ consider three observers, Alice 
(1), Bob (2), and Chris(3). The GHZ experiments are a class of physics experiments that may be 
used to generate starkly contrasting predictions from local hidden variable theory and quantum 
mechanics, and permits immediate comparison with actual experimental results. 
 

Using the Mathematica, here we show that the singlet state (GHZ state) are the eigenkets of 
the following operators  
 

S

Alice

Bob Chris



 

8 
 

321 ˆˆˆˆ
yyxxyyA   , 

 

321 ˆˆˆˆ
yxyyxyA   , 

 

321 ˆˆˆˆ
xyyyyxA   , 

 

321 ˆˆˆˆ
xxxxxxA   . 

 

First we consider the GHZ state 
GHZ  given by 
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It is seen that 
GHS  is an eigenstate of several operators with the eigenvalue +1, 

 
  GHSGHSxyyA ˆ , (1a) 

 
  GHZGHSyxyA ˆ , (1b) 

 
  GHSGHSyyxA ˆ . (1c) 

 
 (1d) 

Then we obtain 
 

  GHZGHZyyxyxyxyy AAA ˆˆˆ , 

 

We can also show that 
GHS  is an eigenstate of the operator xxxÂ  with the eigenvalue -1, 
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  GHSGHSxxxA ˆ . 

 
Once three particles are sufficiently far apart, each spin of them possesses its own physical 
characteristics. We use Ax to denote the result of measuring the x component of the spin of 
particle 1 by Alice, By the result of measuring the y component of the spin of particle 2 by Bob, 
and Cy the result of measuring the y component of the spin of particle 3 by Chris, and so on, with 
Ax = ±1 …, Cy = ±1. When the x component is measured in connection with two measurements 
of the y component, we see that the product is +1: 
 

1yyx CBA ,   

 
Similarly, we have 
 

1yxy CBA ,  1xyy CBA . 

 
However, when the particles are in flight, two of the three experimentalists can decide to modify 
the direction of their analyzer axes, orienting them in the x axis direction. Then the product of the 
three spin components will be -1: 
 

1xxx CBA . (2) 

 
However, we note that 
 

1))()((  xyyyxyyyxxxx CBACBACBACBA , (3) 

 

because 1222  yyy CBA . Thus Eqs.(2) and (3) are incompatible.  

Local realism would mean that 1ˆ x  has a physical reality in the EPR sense, since it can be 

measured without disturbing 2ˆ y  and 3ˆ y , 

 

yyx CBA  . 

 

However, it is also possible to obtain Ax by measuring 2ˆ x  and 3ˆ x : 

 

xxx CBA   
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Local realism implies that it is the same Ax, but this is not the case in quantum mechanics. The 
value of Ax is contextual. It depends on physical properties incompatible with each other which 
are measured simultaneously. 
 
((Mathematica)) 

 
___________________________________________________________________________ 

5. 
GHZ  state for spin 1/2 systems 

We consider the GHZ state 
GHZ  defined by 

Clear "Global` " ; 1
1
0

; 2
0
1

;

x PauliMatrix 1 ; y PauliMatrix 2 ;

z PauliMatrix 3 ;

1

2
KroneckerProduct 1, 1, 1

KroneckerProduct 2, 2, 2 ;

Axyy KroneckerProduct x, y, y ; Axyy.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Ayxy KroneckerProduct y, x, y ; Ayxy.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Ayyx KroneckerProduct y, y, x ; Ayyx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Axxx KroneckerProduct x, x, x ; Axxx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

A123 Axyy.Ayxy.Ayyx; A123. Axxx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
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It is seen that 
GHS  is an eigenstate of several operators with the eigenvalue -1, 

 
  GHSGHSxyyA ˆ , (1a) 

 

GHZGHSyxyA  ˆ , (1b) 

 

GHSGHSyyxA  ˆ . (1c) 

 
Then we obtain 
 

  GHZGHZxyyGHZyxyxyyGHZyyxyxyxyy AAAAAA  ˆˆˆˆˆˆ , 

 (2) 
 

We can also show that 
GHS  is an eigenstate of xxxÂ  with the eigenvalue +1, 

 
  GHSGHSxxxA ˆ . 

 
Once the three particles are sufficiently far apart, each spin of them possesses its own physical 
characteristics. We use Ax to denote the result of measuring the x component of the spin of 
particle 1 by Alice, …, Cy the result of measuring the y component of the spin of particle 3 by 
Charlotte, and so on, with Ax = ±1 …, Cy = ±1. When the x component is measured in connection 
with two measurements of the y component, we see that the products is +1: 
 

1yyx CBA , 1yxy CBA ,  1xyy CBA . 
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However, when the particles are in flight, two of the three experimentalists can decide to modify 
the direction of their analyzer axes, orienting them in the x axis direction. Then the product of the 
three spin components will be -1: 
 

1xxx CBA . (2) 

 
However, we note that 
 

1))()((  xyyyxyyyxxxx CBACBACBACBA , (3) 

 

because 1222  yyy CBA . Thus Eqs.(2) and (3) are incompatible. Local realism would mean 

that 1ˆ x  has a physical reality in the EPR sense, since it can be measured without disturbing 2ˆ y  and 

3ˆ y , 

 

yyx CBA  . 

 

However, it is also possible to obtain Ax by measuring 2ˆ x  and 3ˆ x : 

 

xxx CBA  . 

 
Local realism implies that it is the same Ax, but this is not the case in quantum mechanics. The 
value of Ax is contextual. It depends on physical properties incompatible with each other which 
are measured simultaneously  
 
((Mathematica)) 
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___________________________________________________________________________ 
6. GHZ state for photon systems 
 

)(
2

1
'45 yxH  , )(

2

1
zzx  , 

Clear "Global` " ; 1
1
0

; 2
0
1

; x PauliMatrix 1 ;

y PauliMatrix 2 ; z PauliMatrix 3 ;
1

2
KroneckerProduct 1, 1, 1 KroneckerProduct 2, 2, 2 ;

Axyy KroneckerProduct x, y, y ; Axyy.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Ayxy KroneckerProduct y, x, y ; Ayxy.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Ayyx KroneckerProduct y, y, x ; Ayyx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Axxx KroneckerProduct x, x, x ; Axxx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

A123 Axyy.Ayxy.Ayyx; A123. Axxx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Axyy.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Ayxy.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Ayyx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

Axxx.

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
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2

1
'45 yxV  , )(

2

1
zzx  , 
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2

1
yixR  , )(

2

1
zizy  , 

 

)(
2

1
yixL  , )(

2

1
zizy  . 

 
____________________________________________________________________________ 

(a) Basis { 'H , 'V } 

 

)(
2

1
321321

)( xyyyxxXXY
GHZ  , 

 

where x  and y  denote horizontal and vertical polarizations, respectively. This state indicates 

that the three photons are in a quantum superposition of the state 
321

yxx  and 
321

xyy . 

Note that 
 

]''[
2

1
VHx  , ]''[

2

1
VHy  . 

 
Then we have the form 
 

)''''''''''''(
2

1
321321321321

)( HVVVHVVVHHHHXXY
GHZ  . 

 
((Mathematica)) 
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______________________________________________________________________________ 

(b) Basis { 'H , 'V } 

 

)(
2

1
321321

)( yyyxxxXXX
GHZ   

 

Clear "Global` " ; x1
1
0

; y1
0
1

;

1

2
KroneckerProduct x1, x1, y1

KroneckerProduct y1, y1, x1 ;

H1
1

2

1
1

; V1
1

2

1
1

;

HHH1 KroneckerProduct H1, H1, H1 Simplify;

HHV1 KroneckerProduct H1, H1, V1 Simplify;

HVH1 KroneckerProduct H1, V1, H1 Simplify;

HVV1 KroneckerProduct H1, V1, V1 Simplify;

VHH1 KroneckerProduct V1, H1, H1 Simplify;

VHV1 KroneckerProduct V1, H1, V1 Simplify;

VVH1 KroneckerProduct V1, V1, H1 Simplify;

VVV1 KroneckerProduct V1, V1, V1 Simplify;

f1 a1 HHH1 a2 HHV1 a3 HVH1 a4 HVV1

a5 VHH1 a6 VHV1 a7 VVH1 a8 VVV1 Simplify;

eq1 Solve f1 , a1, a2, a3, a4, a5, a6, a7, a8 ;

rule1 b1 HHH, b2 HHV, b3 HVH, b4 HVV,

b5 VHH, b6 VHV, b7 VVH, b8 VVV ;

P1 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

a6 b6 a7 b7 a8 b8;

P1 . rule1 . eq1 1

HHH
2

HVV
2

VHV
2

VVH
2
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where x  and y  denote horizontal and vertical polarizations, respectively. This state indicates 

that the three photons are in a quantum superposition of the state 
321

xxx  and 
321

yyy . 

Using the basis of }','{ VH , )(XXX
GHZ  can be rewritten as 

 

)''''''''''''(
2

1
321321321321

)( HVVVHVVVHHHHXXX
GHZ   

 
((Mathematica)) 

 

Clear "Global` " ; x1
1
0

; y1
0
1

;

1

2
KroneckerProduct x1, x1, x1

KroneckerProduct y1, y1, y1 ;

H1
1

2

1
1

; V1
1

2

1
1

;

HHH1 KroneckerProduct H1, H1, H1 Simplify;

HHV1 KroneckerProduct H1, H1, V1 Simplify;

HVH1 KroneckerProduct H1, V1, H1 Simplify;

HVV1 KroneckerProduct H1, V1, V1 Simplify;

VHH1 KroneckerProduct V1, H1, H1 Simplify;

VHV1 KroneckerProduct V1, H1, V1 Simplify;

VVH1 KroneckerProduct V1, V1, H1 Simplify;

VVV1 KroneckerProduct V1, V1, V1 Simplify;

f1 a1 HHH1 a2 HHV1 a3 HVH1 a4 HVV1

a5 VHH1 a6 VHV1 a7 VVH1 a8 VVV1 Simplify;

eq1 Solve f1 , a1, a2, a3, a4, a5, a6, a7, a8 ;

rule1 b1 HHH, b2 HHV, b3 HVH, b4 HVV,

b5 VHH, b6 VHV, b7 VVH, b8 VVV ;

P1 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

a6 b6 a7 b7 a8 b8;

P1 . rule1 . eq1 1

HHH
2

HVV
2

VHV
2

VVH
2
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(c) Basis { R , L } 

 

)(
2

1
321321

)( xyyxxxXXX
GHZ   

 

where x  and y  denote horizontal and vertical polarizations, respectively. This state indicates 

that the three photons are in a quantum superposition of the state 
321

xxx  and 
321

xyy . 

Using the basis of },{ LR , )(XXX
GHZ  can be rewritten as 

 

)(
2

1
321321321321

)( LLLRLLLRRRRRXXX
GHZ   

 
((Mathematica)) 
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7. General case 
 

)(
2

1
321321

)( yyyxxxXXX
GHZ  , 

 

yxH  sincos'  , 

Clear "Global` " ; x1
1
0

; y1
0
1

;

1

2
KroneckerProduct x1, x1, x1

KroneckerProduct y1, y1, x1 ;

R1
1

2

1
; L1

1

2

1
;

RRR1 KroneckerProduct R1, R1, R1 Simplify;

RRL1 KroneckerProduct R1, R1, L1 Simplify;

RLR1 KroneckerProduct R1, L1, R1 Simplify;

RLL1 KroneckerProduct R1, L1, L1 Simplify;

LRR1 KroneckerProduct L1, R1, R1 Simplify;

LRL1 KroneckerProduct L1, R1, L1 Simplify;

LLR1 KroneckerProduct L1, L1, R1 Simplify;

LLL1 KroneckerProduct L1, L1, L1 Simplify;

f1 a1 RRR1 a2 RRL1 a3 RLR1 a4 RLL1

a5 LRR1 a6 LRL1 a7 LLR1 a8 LLL1 Simplify;

eq1 Solve f1 , a1, a2, a3, a4, a5, a6, a7, a8 ;

rule1 b1 RRR, b2 RRL, b3 RLR, b4 RLL,

b5 LRR, b6 LRL, b7 LLR, b8 LLL ;

P1 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5

a6 b6 a7 b7 a8 b8;

P1 . rule1 . eq1 1

LLL
2

LLR
2

RRL
2

RRR
2
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yxV  cossin'  , 

 

)''''''''')(cos(sinsin
2

1

)''''''''')(cos(sinsin
2

1

''')sin(cos
2

1

''')sin(cos
2

1

321321321

321321321

321

33

321

33)(

VHVHVVVVH

HHVHVHVHH

VVV

HHHXXX
GHZ

















 

 

We make a plot of the probabilities for the eight states {
321

''' HHH , 
321

''' VVV , ….}  as 

a function of . 
 

 
Fig. plot of the probabilities for the eight states {

321
''' HHH , 

321
''' VVV , ….}  as a 

function of .  
 
8. Reality 

We have three particles, and we can choose to measure each on arbitrary basis. We designate 
a chosen set of observation on these particles by a sequence of symbol X and Y. If we may 
choose to measure particles 1, 2, and 3 in only the basis X. This measurement is denoted by XXX.  

H'H'H' V'V'V'

H'H'V'
H'V'H'
V'H'H'

V'H'V'
V'V'H'
H'V'V'

4 2

0.1

0.2

0.3

0.4

0.5
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)''''''''''''(
2

1

)(
2

1

321321321321

321321

)(

HVVVHVVVHHHH

yyyxxxXXX
GHZ




 

 
We may also choose to measure particles 1 and 2 in basis Y (right-left basis) and particle 3 in 

basis X (horizontal-vertical basis). This measurement is denoted by YYX. The state YYX
GHZ  

expressed in the corresponding basis set becomes  
 

]''

''[
2

1

)(
2

1

321321

321321

321321

)(

VLLVRR

HRLHLR

yxxxyyYYX
GHZ







 

 
((Mathematica)) 

 
 

Clear "Global` " ; x1
1
0

; y1
0
1

;

H11
1

2

1
1

; V11
1

2

1
1

; R1
1

2

1
;

L1
1

2

1

1

2
,

2

1
2

KroneckerProduct R1, L1, H11

KroneckerProduct L1, R1, H11

KroneckerProduct R1, R1, V11

KroneckerProduct L1, L1, V11 ;

Simplify

1

2
, 0 , 0 , 0 , 0 , 0 , 0 ,

1

2
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9. Pauli matrices for photon polarization 
For convenience we use the Pauli matrices 
 











01

10
ˆ x ,  







 


0

0
ˆ

i

i
y , 











10

01
ˆ z . 

 

 
 

 
 

 
 

(a) The Pauli operator 









01

10
ˆ x : 

'H  and 'V  are the eigenkets of x̂  with the eigenvalues +1, and -1, respectively. 

 

''ˆ HHx  ,  ''ˆ VVx   

 

(b) The Pauli operator 






 


0

0
ˆ

i

i
y :  

R  and L  are the eigenkets of ŷ  with the eigenvalues +1, and -1, respectively. 
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RRy ̂ ,  LLy ̂ . 

 

(c) The Pauli operator 










10

01
ˆ z . 

x  and y  are the eigenkets of ẑ  with the eigenvalues +1, and -1, respectively. 

 
10. YYX-, YXY-, XYY-, and XXX-type measurement 

Suppose that the particle 3 is in the state '3V , 

 

''ˆ 333 VVx   

 
The relation 
 

]''

''[
2

1

(
2

1

321321

321321

321321
)(

VLLVRR

HRLHLR

yxxxyyYYX
GHZ







 

 

states that the particles 1 and 2 must be in either of the states 21 RR   or 21 LL  . 

 

 
Fig. from the paper of Pan et.al. 
 

If the system 2 is also in the '2V  state, then the relation 
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]''

''[
2

1

321321

321321
)(

LVLRVR

LHRRHLYXY
GHZ




 

 

similarly implies that the particles 2 and 3 are in the state 31 RR   or 31 LL  . In this case 

these states represent reality, and the conclusions above described combine to state that particles 

2 and 3 are in the state 32 RR   or 32 LL  . 

 

 
 
Fig. from the paper of Pan et.al. 
 
 
From the relation 
 

]''

''[
2

1

321321

321321
)(

LLVRRV

RLHLRHXYY
GHZ




 

 

we can conclude that the particle 1 is in the state '1V , if the particle 2 and 3 are in the state 

'' 32 VV  .  
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Fig. from the paper of Pan et.al. 
 
 
After going through analogous arguments four times, we have the following states allowed, 
 

{ ''' 321 VVV  , ''' 321 VHH  , ''' 321 HVH  , ''' 321 HHV  }. 

 

 
 
Fig. Prediction from the local hidden theory. There are four states denoted by 

''' 321 VVV  , ''' 321 VHH  , ''' 321 HVH  , and ''' 321 HHV  . 

(Pan et.al.) 
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In quantum mechanics, )(XXX
GHZ  is the eigenket of xxx 321 ˆˆˆ    with the eigenvalue of 

+1, since 
 

)()(
321 ˆˆˆ   XXX

GHZ
XXX

GHZxxx   

 
where 
 

)''''''''''''(
2

1
321321321321

)( HVVVHVVVHHHHXXX
GHZ  . 

 

 
 

Fig. Prediction from the quantum mechanics. There are four states denoted by ''' 321 HHH , 

''' 321 VVH ,  ''' 321 VHV , and ''' 321 HVV , which are different from the states 

predicted from the local hidden theory. (Pan et.al.) 
 
11. Detail of the GHZ experiment 

We consider the GHZ state given by 
 

]''

''[
2

1

321321

321321
)(

VLLVRR

HRLHLRYYX
GHZ
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For polarization measurements in the L/R basis, the photons in modes 1 and 2 have equal 

probability for the combinations 21 LR  , 21 RL  , 21 RR  , and 21 LL  . If 

21 RR   is obtained, the photon in mode 3 has to be in the state '3V .  

 

 

 
Fig. Set up for the creation of a GHZ state using two pairs of polarization entangled photon 

(Pan et al.). BS: half beam splitter. PBS: polarized beam splitter. POL: polarizer. /4 

quarter wave plate. F: narrow bandwidth filter. /2: half wave plate. The half wave plate 

switches y  to yxH  [
2

1
' . Quarter wave plates and polarizer just before the 

detectors are used for correlation measurements. 
 
 
This figure shows the experimental results for this correlation measurement. Quarter wave plates 

and polarizers just before detectors D1, D2, and D3 in Fig. are set to '321 VRR   or 
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'321 HRR  . The results clearly confirms the strong correlations of '321 VRR   in 

comparison to '321 HRR  . 
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Fig. A typical experimental result used in the GHZ argument.This is the yyx experiment 
measuring circular polarization on photons 1 and 2 and linear polarization on the third.  
(Pan et.al.) 

 

For photon i we call these elements of reality Xi with values +1 (-1) for 'H  ( 'V ’) 

polarizations and Yi with values +1 (-1) for R  ( L ); we thus obtain the relations 

 
(a) The relation: Y1Y2X3 = -1,  
 
form 

 Each eigenvlaues Resultant eigenvalue 

'321 HLR   1 -1 1  -1 

'321 HRL   -1 1 1  -1 

'321 VRR   1 1 -1  -1 

 
in order to be able to reproduce the quantum predictions of equation  
 

]''

''[
2

1

321321

321321
)(

VLLVRR

HRLHLRYYX
GHZ




 

 
(b) The relation Y1X2Y3 = -1, 
 
from 
 

 Each eigenvlaues Resultant eigenvalue 

321 ' RHL   -1 1 1 -1 (eigenvalue) 

321 ' LHR   1 1 -1  -1 

321 ' RVR   1 -1 1  -1 

]' 321 LVL   -1 -1 -1  -1 

 
in order to be able to reproduce the quantum predictions of equation 
 

]'

'''[
2

1

321

321321321
)(

LVL

RVRLHRRHLYXY
GHZ
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(c) The relation X1Y2Y3 = -1,  
 
from 
 

 Each eigenvlaues Resultant eigenvalue 

'321 HLR   1 -1 1 -1 

'321 HRL   -1 1 1 -1 

'321 VRR   1 1 -1 -1 

'321 VLL   -1 -1 -1 -1 

 
in order to be able to reproduce the quantum predictions of equation 
 

]''

''[
2

1

321321

321321
)(

VLLVRR

HRLHLRYYX
GHZ




 

 
Because of Einstein locality any specific measurement for X must be independent of whether an 

X or Y measurement is performed on the other photon. As 1332211  YYYYYY , we can write 

 

1)1)(1)(1())()(( 321321321321  XYYYXYYYXXXX  (1) 

 

We now consider a fourth experiment measuring linear '/' VH polarization on all three 

photons, that is, an XXX experiment. We investigate the possible outcomes that will be predicted 
by local realism based on the elements of reality introduced to explain the XXX experiments. We 
obtain 
 

1321 XXX  (2) 

 
from 

 Each eigenvlaue Resultant eigenvalue 

''' 321 HHH  1 1 1 1 

''' 321 VVH  1 -1 -1 1 

''' 321 VHV  -1 1 -1 1 

''' 321 HVV  -1 -1 1 1 
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in order to be able to reproduce the quantum predictions of equation  
 

)''''''''''''(
2

1
321321321321

)( HVVVHVVVHHHHXXX
GHZ   . 

 
with 
 

)()(ˆˆˆ   GHZGHZxxx  . 

 

Then the value 1321 XXX  from Eq.(1) is incompatible with the value 1321 XXX  from 

Eq.(2), predicted from the quantum mechanics. 
 
______________________________________________________________________________ 

12. Eigenstates of xxx  ˆˆˆ   

 

xxx  ˆˆˆ  = 

 
 
There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four 
states is (+1).  
 

(i) Four states are the eigenkets of xxx  ˆˆˆ    with the eigenvalue (-1). One of these 

states is the GHZ state 
 

)()(ˆˆˆ   XXX
GHZ

XXX
GHZxxx  , 
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)''''''''''''(
2

1

(
2

1

321321321321

321321
)(

VVVHHVHVHVHH

yyyxxxXXX
GHZ



 

 

 
The other three states are not the GHZ state, 
 

)''''''''''''(
2

1
321321321321 VVVHHVHVHVHH  , 

 

)''''''''''''(
2

1
321321321321 VVVHHVHVHVHH  , 

 

)''''''''''''(
2

1
321321321321 VVVHHVHVHVHH  . 

 

(ii) Four states are the eigenkets of xxx  ˆˆˆ   with the eigenvalue (+1). One of these 

states is the GHZ state 
 

)()(ˆˆˆ   XXX
GHZ

XXX
GHZxxx  , 

 

)''''''''''''(
2

1

(
2

1

321321321321

321321
)(

HVVVHVVVHHHH

yyyxxxXXX
GHZ



 

 

 
The other three states are not the GHZ state. 
 

)''''''''''''(
2

1
321321321321 HVVVHVVVHHHH  , 

 

)''''''''''''(
2

1
321321321321 HVVVHVVVHHHH  , 

 

)''''''''''''(
2

1
321321321321 HVVVHVVVHHHH  . 

 
______________________________________________________________________________ 



 

32 
 

12. Eigenstates of yyy  ˆˆˆ   

 

yyy  ˆˆˆ  = 

 

 
 
There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four 
states is (+1).  
 

(i) Four states are the eigenkets of yyy  ˆˆˆ   with the eigenvalue (-1). These states are 

not the GHZ state. 
 

)(
2

1
321321321321 LRRRLRRRLLLL   

 

)(
2

1
321321321321 LRRRLRRRLLLL   

 

)(
2

1
321321321321 LRRRLRRRLLLL   

 

)(
2

1
321321321321 LRRRLRRRLLLL   

 

(ii) Four states are the eigenkets of yyy  ˆˆˆ   with the eigenvalue (+1). These states are 

not the GHZ state. 
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)(
2

1
321321321321 RRRLLRLRLRLL   

 

)(
2

1
321321321321 RRRLLRLRLRLL   

 

)(
2

1
321321321321 RRRLLRLRLRLL   

 

)(
2

1
321321321321 RRRLLRLRLRLL   

 
In conclusion, no state corresponding to the GHZ state is obtained in this configuration. 
____________________________________________________________________________ 

13. Eigenstates of xyy  ˆˆˆ   

 

xyy  ˆˆˆ   =  

 

 
 
There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four 
states is (+1).  
 

(i) Four states are the eigenkets of xyy  ˆˆˆ    with the eigenvalue (-1). One of these 

states is the GHZ state )( XXX
GHZ , given by 
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)''''(
2

1

(
2

1

321321321321

321321
)(

VRRHLRHRLVLL

yxxxyyXXX
GHZ



 

 

 
The other three states are not the GHZ state; 
 

)''''(
2

1
321321321321 VRRHLRHRLVLL  , 

 

)''''(
2

1
321321321321 VRRHLRHRLVLL  , 

 

)''''(
2

1
321321321321 VRRHLRHRLVLL  . 

 

(ii) Four states are the eigenkets of xyy  ˆˆˆ   with the eigenvalue (+1). One of these state 

is the GHZ state )( XXX
GHZ , 

 

)''''(
2

1

(
2

1

321321321321

321321
)(

HRRVLRVRLHLL

yyyxxxXXX
GHZ



 

 

 
The other three states are not the GHZ state, 
 

)''''(
2

1
321321321321 HRRVLRVRLHLL  , 

 

)''''(
2

1
321321321321 HRRVLRVRLHLL  , 

 

)''''(
2

1
321321321321 HRRVLRVRLHLL  . 

 
_____________________________________________________________________________ 

14. Eigenvalue problem yyx  ˆˆˆ   
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yyx  ˆˆˆ   =  

 

 
 
There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four 
states is (+1).  

(i) Four states are the eigenkets of yyx  ˆˆˆ   with the eigenvalue (-1). One state is the 

GHZ state )(GHZ , 

 

)'''(
2

1

(
2

1

32
'

1321321321

321321
)(

RRVLLVLRHRLH

yyyxxxXXX
GHZ



 

 

 
The other three states are not the GHZ state; 
 

)'''(
2

1
32

'
1321321321 RRVLLVLRHRLH  , 

 

)'''(
2

1
32

'
1321321321 RRVLLVLRHRLH  , 

 

)'''(
2

1
32

'
1321321321 RRVLLVLRHRLH  . 

 

(ii) The four states are the eigenkets of yyx  ˆˆˆ   with the eigenvalue (+1). One state is 

the GHZ state denoted by )( XXX
GHZ , 
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)'''(
2

1

(
2

1

32
'

1321321321

321321
)(

LRVRLVRRHLLH

yyyxxxXXX
GHZ



 

 

 
The other three states are not the GHZ state; 
 

)'''(
2

1
32

'
1321321321 LRVRLVRRHLLH  , 

 

)'''(
2

1
32

'
1321321321 LRVRLVRRHLLH  , 

 

)'''(
2

1
32

'
1321321321 LRVRLVRRHLLH  , 

 
______________________________________________________________________________ 

15. Eigenvalue problem yxx  ˆˆˆ   

 

yxx  ˆˆˆ  = 

 
 
There are eight eigenstates. The eigenvalues of the four states is -1 and the eigenvalue of the four 
states is (+1). There is no eigenkets corresponding to the GHZ state. 
 
16. The GHS state in the configuration YYX, YXY, and XYY 
 

(i) 
)(

 YYX
GHZ  state 
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]''

''[
2

1

321321

321321
)(

VLLVRR

HRLHLRYYX
GHZ




 

 

]''

''[
2

1

321321

321321
)(

LVLRVR

LHRRHLYXY
GHZ




 

 

]''

''[
2

1

321321

321321
)(

LLVRRV

RLHLRHXYY
GHZ




 

 
where 
 

)()(ˆˆˆ   YYX
GHZ

YYX
GHZxyy  , 

 
)()(ˆˆˆ   YXY

GHZ
YXY

GHZyxy  , 

 
)()(ˆˆˆ   XYY

GHZ
XYY

GHZyyx  . 

 

(ii) )( YYX
GHZ  state 

 

)'''(
2

1 '
321321321321

)( VLRVRLHRRHLLYYX
GHZ   , 

 

)'''(
2

1
3

'
21321321321

)( LVRRVLRHRLHLYXY
GHZ   , 

 

)'''(
2

1
32

'
1321321321

)( LRVRLVRRHLLHXYY
GHZ   , 

 
where 
 

)()(ˆˆˆ   YYX
GHZ

YYX
GHZxyy  , 
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)()(ˆˆˆ   YXY
GHZ

YXY
GHZyxy  , 

 
)()(ˆˆˆ   XYY

GHZ
XYY

GHZyyx  . 

 
((Note)) 

(i) The GHZ state )(GHZ  is an eigenket of three operators 

 

yyx  ˆˆˆ  , yxy  ˆˆˆ  , xyy  ˆˆˆ  ,  

 
with corresponding eigenvalue -1 
 

(ii) The GHZ state )(GHZ  is an eigenket of xxx  ˆˆˆ   with corresponding eigenvalue +1. 

 
______________________________________________________________________________ 
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APPENDIX  Comment on the eigenstates of xxx 321 ˆˆˆ    

We consider the eigenstates of xxx 321 ˆˆˆ   . In quantum mechanics, we get  

 

''''''ˆˆˆ 321321321 VVVVVVxxx   , 
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''''''ˆˆˆ 321321321 VHHVHHxxx   , 

 

''''''ˆˆˆ 321321321 HVHHVHxxx   , 

 

''''''ˆˆˆ 321321321 HHVHHVxxx   . 

 
Then the four states 
 

''' 321 VVV  ,  ''' 321 VHH  ,  ''' 321 HVH  , and ''' 321 HHV  , 

 
have the same eigenvalue (-1). Thus any superposition of these states has the eigenvalue (-1). 
However, there is only one GHZ state, among these states, as 
 

)''''''

''''''(
2

1

321321

321321
)(

VVVHHV

HVHVHHXXX
GHZ



 

 

 
where 
 

)()(ˆˆˆ   GHZ
XXX

GHZxxx  . 

 
Similarly, in quantum mechanics we get 
 

''''''ˆˆˆ 321321321 HHHHHHxxx   , 

 

''''''ˆˆˆ 321321321 HVVHVVxxx   , 

 

''''''ˆˆˆ 321321321 VHVVHVxxx   , 

 

''''''ˆˆˆ 321321321 VVHVVHxxx   . 

 
Then the four states 
 

''' 321 HHH  , ''' 321 HVV  , ''' 321 VHV  , and ''' 321 VVH   
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have the same eigenvalue (+1). Thus any superposition of these states has the eigenvalue (+1). 
However, there is only one GHZ state, among these states, as 
 
 

)''''''''''''(
2

1
321321321321

)( HVVVHVVVHHHHXXX
GHZ   , 

 
where 
 

)()(ˆˆˆ   XXX
GHZ

XXX
GHZxxx  . 

 


