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Quantum teleportation is a process by which quantum information (e.g. the exact state of an 
atom or photon) can be transmitted (exactly in principle) from one location to another, with the 
help of classical communication and previously shared quantum entanglement between the 
sending and receiving location. Because it depends on classical communication, which can 
proceed no faster than the speed of light, it cannot be used for superluminal transport or 
communication. And because it disrupts the quantum system at the sending location, it cannot be 
used to violate the no-cloning theorem by producing two copies of the system. Quantum 
teleportation is unrelated to the kind of teleportation commonly used in fiction, as it does not 
transport the system itself, does not function instantaneously, and does not concern rearranging 
particles to copy the form of an object. Thus, despite the provocative name, it is best thought of 
as a kind of communication, rather than a kind of transportation. The seminal paper first 
expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres 
and W. K. Wootters in 1993. Since then, quantum teleportation has been realized in various 
physical systems. Presently, the record distance for quantum teleportation is 143 km (89 mi) with 
photons, and 21m with material systems. On September 11th, 2013, the "Furusawa group at the 
University of Tokyo has succeeded in demonstrating complete quantum teleportation of photonic 
quantum bits by a hybrid technique for the first time worldwide." 
 
_____________________________________________________________________________ 
1. Quantum teleportation  
 

 
 
Fig. Schematic diagram of quantum teleportation. When Alice and Bob each receive one 

particle of an entangled pair from an EPR source (for Einstein-Podolsky-Rosen), the 
quantum state from particle 1 can be transferred (teleported) to particle 3. 



2 
 

 
[J. Audretsch (Editor) Entangled World (Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, 
2002).] p.155 Fig.6.3. 
 
______________________________________________________________________________ 
We consider the four Bell-states given by 
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The state of the particle 1, the particle Alice wishes to teleport, is simply 
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Before Alice makes a measurement, the state of the three particles is given by 
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Alice makes a special type of measurement called a Bell-state measurement. 
 
(a) The state of Bell basis: 
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where 0,10,1  mj , 0,00,0  mj . 

 
(b) The additional basis (it is still called Bell basis) 
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Then we have 
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1,11,1  mj , 1,11,1  mj . 

 

Using the above Bell basis, the state 123  
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can be expressed as follows. 
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2. The use of )(
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If Alice's Bell-state measurement on particles 1 and 2 collapses the two particle state to the 

state )(
12
 ,  
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then the particle 3, Bob's particle, is forced to be in the state  
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33333 zbzazbza  , 

 
which is exactly the state, up to an overall phase, of the particle before the measurement. 
 
This is a dramatic illustration of the spooky action at a distance of entangled states that so 
troubled Einstein. 
 

 
 

Fig. Alice measures with the Bell’s state )(
12
 . After Bob measures, we get the state 

)( 333 zbza  , which is the same as 1 , except for the phase factor (-1). 

The entangled line should not be confused with the classical information line. After Alice 

measures with the Bell’s state, Bob instantly get a copy state 3 . 

 

3. The use of the Bell's state )(
12
  and the rotation operator )(ˆ yR  

If Alice's Bell-state measurement on particles 1 and 2 collapses the two particle state to the 

state )(
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then the particle 3, Bob's particle, is forced to be in the state  
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which is exactly the state, up to an overall phase, of the particle before the measurement. We 
consider the rotation operator around the x axis. 
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which is the same as 1 , except for the phase factor (-1). 
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Fig. Alice measures with the Bell’s state )(
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 . After Bob measures, we get the state 
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If Alice's Bell state measurement results in her tangling particles 1 and 2 in the state )(
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which is not the same as 1 . Here we use the rotation operator  
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which is the same as 1 , except for the phase factor (-i). 

 

 
 

 

Fig. Alice measures with the Bell’s state )(
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then the particle 3, Bob's particle, is forced to be in the state 
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Fig. Alice measures with the Bell’s state )(
12
 . After Bob measures, we get the state 
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5. Approach from the reduced density operator 
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Note that there are four Bell’s states for particles 1 and 2, which are defined by 
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Tracing out particle 1, the reduced density operators are obtained as 
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This reduced operator is the same as that of the density operator for the Bell’s state. Note that for 
the Bell's two-particle entangled state,  
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Tracing over particle 2 furthermore, we have 
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which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information 
about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until 
he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into 

the state   that Alice’s particle was in initially. 

 
((Mathematica)) 
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6. Approach from the quantum qubits 
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Suppose Alice and Bob share a pair of qubits in the entangled state 
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Alice needs to communicate to Bob one qubit of information 
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Fig. Quantum teleportation scheme and corresponding circuit. 

(P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum 
Information, Springer-Verlag, 2007). p.228. 

 
The initial state of the system of three qubits is given by 
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The first two qubits are at the Alice’s location and the last bit is at the Bob’s location. Alice 
applies the CNOT transformation to her two qubits, with the control qubit being the quibit to be 
teleported to Bob.  
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She then applies the Hadamard transformation to the first qubit. 
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2

1
1ˆ H . 

 
Then we get 
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)01(11)10(10

)01(01)10(00[
2

1

]110011100001[
2

1

]111010101000[
2

1

)]1001)(10()]1100)(10[([
2

1

)]1001)(10()1100)(10([
2

1)1(
3

BBABBA

BBABBA

BABABABA

BABABABA

BABABABA

BABABABA

























 

 
Finally, Alice measures the two quibits in her possession. The measurement outcome. For the 

measurement of A00  Alice, the state of Bob's qubit is equivalent to the original state 

 
BB 101   . 

 

So Bob does not change, which is indicated by the identity operator Î , 
 

BBI 10ˆ
1   . 

 

For the measurement of A01  Alice, the state of Bob's qubit is given by 

 














 BB 012 . 

 

If Bob applies the X̂  transformation to his qubit, the state becomes  
 

12 01

10ˆ 






 
























X . 

 

For the measurement of A10  Alice, the state of Bob's qubit is given by 

 















 BB 103 . 
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If Bob applies the Ẑ  transformation to his qubit, the state becomes  
 

13 10

01ˆ 






 



























Z . 

 

For the measurement of A11  Alice, the state of Bob's qubit is given by 

 














 )01(4
BB . 

 

If Bob applies the XZ ˆˆ  transformation to his qubit, the state becomes  
 

14 01

10ˆˆ 






 


























XZ . 

 

Here note that we use the operators Î , X̂ , Ẑ , and XZ ˆˆ , where 
 











10

01
Î ,  










01

10
X̂ , 

 












10

01
Ẑ ,  





























01

10

01

10

10

01ˆˆXZ . 
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APPENDIX 
((Mathematica)) 
Bell’s states 
 

 

Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

1   1
0
;

2   0
1
;

B1 

1

2
KroneckerProduct1, 1 

KroneckerProduct2, 2  MatrixForm

1
2

0
0
1
2

B2 

1

2
KroneckerProduct1, 2 

KroneckerProduct2, 1  MatrixForm
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______________________________________________________________________________ 

0
1
2

1
2

0

B3 

1

2
KroneckerProduct1, 1 

KroneckerProduct2, 2  MatrixForm

1
2

0
0

 1
2

B4 

1

2
KroneckerProduct1, 2 

KroneckerProduct2, 1  MatrixForm

0
1
2

 1
2

0


