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A quantum computer is a computation device that makes direct use of quantum-mechanical
phenomena, such as superposition and entanglement, to perform operations on data. In classical
computing, we use the binary digits — bit - to store information. Each bit has the value 0, or 1.
Individual bits are strung together to represent larger binary numbers, such as 00100111000...
Each binary number represents an actual number.

In quantum information processing, information is stored in quantum bits or qubits. A qubit

is a quantum system with two states |0> and |1> . Any two-state quantum system can be used as a

qubit. The key difference between bits and qubits is that qubits can exist in a superposition state.
This is an stark contrast to a classical bit.
Here we consider a series of quantum circuits that create the four orthonormal entangles

Bell’s states from the un-entangled computational-base states |O> and |1> We also discuss the

transformation of the Bell’s state to the computational-base states |0> and |1> .

1. Qubits, XOR operation, and Kronecker product
Qubits

A classical bit of information is represented by a system that can be in either of two states, 0,
1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the
state of a two-level system, whose basic components may be written as

o )

This is the so-called quantum bit of information, or, in short, a qubit.

XOR operation: @

m®n=m+n (mudulo 2)

where

0©0=0
0@1=1
1©0=1
1©1=0



Kronecker product ®

The Kronecker product can be used for the calculation of Mathematica as follows.

((Mathematica))

(o)l war=(3]-1n

|l//1> ® |l//2> = KroneckerProduct[ v/, v, ]
In general

(4©4,0..04)a)0a)®..0,) = ila)® ila,)®..4,

a,)

which denotes the action of a tensor product of linear maps on a basis vector of the tensor
product space.

((Note)) The list of classical gates is given in the APPENDIX.

2. Four Bell's states
The four Bell’s states are defined by
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0,7) = (0)@l0)-hel=—|

The four Bell’s states can be derived as follows, using the Mathematica



Clear["Global «"];

*

exp_* :=
exp /- {Complex[re , im ] = Complex[re, -im]};

n=(g);

(KroneckerProduct[y1l, ¥2] -

KroneckerProduct[y2, ¢¥1]) // MatrixForm

(KroneckerProduct[¥l, ¢¥2] +

KroneckerProduct[y2, ¢1]) // MatrixForm
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(KroneckerProduct[y1l, y1] +
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KroneckerProduct[y2, ¢¥2]) // MatrixForm
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KroneckerProduct[y2, ¢2]) // MatrixForm
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3. NOT operation (unitary operator)

The NOT gate changes
0)—>1).  [1)—>]0)
or
Uvorl0)=1), Unor|1)=10)

where U vor 1s the NOT operator. The NOT gate is a linear operator, so it also changes a

superposition, such that
al0)+b|1) - a|1) + b|0) = b|0) + a|1)
The NOT operator is defined by

UNOT = UNOT (| O><O| + | 1><1 |)
=U N0T| 0><0| +U NOT | 1><1| (quantum NOT gate transformation)

=[1){o[ +o)1|

where




or
Uyor| k) =|k ®1)

Note that
UN0T|O>:|O@1>:|I>’ UN0T|1>:|1@1>:|0>

Under the basis {|0>,

All unitary operators for a spin 1/2 system can be expressed as a linear combination of four

1> }, Uy coincides with the Pauli matrix &, . This is not a coincidence.

A

operators consisting of 1, o

X0

G,,and 0.

Fig. Classical NOT gate. x=0(z=1).x=1(z=0)

4. N NOT gate

The Vv NOT gate is defined by

A 1 (1 i
Yoo ki 1)

Then we have

: (1Y
Vo) =5\i 1)0)

and



Note that

o0 1(1 @Y1 i) 1(0 2} (o0 1) .
=— =— =i =io..
Wwor=wor — o\ )i 1) 2(2i 0 10 g

5. (Walsh)-Hadamard transform UH

This gate is one of the most significant quantum logic gate, because it can be used to enable
the qubit interference vital to quantum computation.

~ 1
U,lk)=—=(0)+(=D"|1),
ulk) == (0)+ =DF|1))
with k= 0, 1. The Hadamard gate transforms basis states into superposition states.

0,0} =70} +[1)

0,1) =75 00)-11)

. 1 (1 1 ~ L. 1 (1 1
UH:ﬁ(l _J, U, zﬁ(l _1], (Hadamard gate)

The Hadamard transformation is expressed by
U, =U,(0){0]+1){1])
_ %q@ +[1)0) +%<I0> =y
_ %ﬂ 0)(0] +[1){0[+]0)(1|=[1){1)
Note

U,u,=0,=1.



and

0,°10)=0,10) =70 +]1)
0, =0, 1)=7(0) 1)
Then we have

k) =%(UH*|0> +(-D'U, 1)

=L(0H|o>+(—1)k0H|l>)

V2

Fig.  Circuit representation of Hadamard gate.

6. Quantum Z gate (Pauli gate)
We consider the quantum Z gate is a 7 rotation around the z axis, with a transformation
matrix as

A oA 1 0
0.=2-[oyol-mal-, *,)
with

ol)=l). o=,

We show that

U,0.0,

0)=[1). 0,0.0,

((Proof))



where j =j+ 1. In other words,
UyU.Uy =Uyor

7. Properties of the Hamadard gate:
On an intial two-qubit state the Hadamard transform has the form

U, ®U,)0)®|0)=U,[0)®U,|0)
1 1
= ﬁ(|0> +[1) ®ﬁ(|0>+|1>)

= %qoo) +|01)+[10) +|11))

In the vase of three qubits we have

U, ®U, ®U,)0)®[0)®|0)=U,[0)®U,|0)®U,|0)
= 750) + D@ 0) + 1) © 7o) + 1)
=(%f(moo)+|001>+|o1o>+|011>)
+[100) +[101) +|110) +[111))

8. Controlled NOT operation (unitary operator)

The controlled NOT operation acts on the state of two qubits, known as the control qubit, C
and the target qubit 7.

Uevor =|0)0|® I, +|1)(1|® U, =[0)(0|® I, +]1){1| ® &,



with

Uecvor |0)®]0) =|0) ®|0®0) = [0) ®]0)
H®1®©0)=1)®|1)
0)®[0@1)=[0)®|1)
Uanorlt) @11)=[1)@[1@1) = 1) @]0)

or simplily

1 0
0 1
0)®]0)=[00)=| . 0@ =[o1)=|
0 0
1 0
0 0
H®[0)=[10)=| '|. Hen=nn=|,
0 1
1 0 0 0
oo |01 00
CNOT — 0 0 0 1
0 01 0
Ucnor| 1) ®|k) =| /) ®|j @ k) =]/, ®Fk)

where the notation denotes a mod (2) sum. Note that

A , A
UCNOT =1
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k> <> |jk>

Fig.  Ucyor - The controlled NOT gate is a transformation involving two qubits. The value of

the controlled qubit (the upper on in Fig) influences the lower one, whose value is flipped
if the upper qubit carries "1". and not flipped if the upper qubit carries "0". This is

equivalent to addition mudulo 2. Control input (| j>). Target input (|k> )

((Mathematica))

Clear["Global «"];

exp_ " :I=
exp /. {Complex[re , im ] = Complex[re, -im]};

Yl = (é) U2 = (2) 12 = IdentityMatrix[2];
oX = (2 é); Y11 = Y1 .Transpose [y1*];

Y22 = Y2 .Transpose [§2*] ;

UCNOT = KroneckerProduct[yl1ll, 12] +
KroneckerProduct[ y22, oXx];
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UCNOT // MatrixForm
1000

O oo
oo
L OO
ORr O

H1 = UCNOT.UCNOT // Simplify;

H1 // MatrixForm

tri
0
0
0
1

ooor F
OO0OFr o ~
Or oo

Deutsch called the CNOT gate the measurement gate, because, if the target qubit is prepared in
the O state, it can always learn about the state of the control qubit.

|x> @ |x>

ly> <> lyex>

Fig. Representation of the two qubit CNOT gate. The top line represents the control qubit.
The bottom line is the target qubit. Note that |x @ y> = | y® x> .

Ucvor | 00> - > - >
UCN0T|01> - > >
UCNOT|10> - > >
Ucxor[11) =[11®1)=1.0)
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We note that

Ueror (€o|0) + ¢,[ 1)) ®|0) = ¢,|00) + ¢, [11)
ACNOT(CO|00> + Cl|1 1>) = (CO|0> + Cl|1>) ® |0>

al0>+bt ®

1> o>

|0> (

%

w,) = (a|0) + b|1)). ®]0), = a|00)+5[10)

W) = Ueyor|w1) = Ueyor[a]00) + 5[10)] = a|01) + 4] 10)

((Note))

A

U vor cannot be decomposed into a tensor product of two single-qubit transformation. The

importance of U cvor Stems from its ability to change the un-entangled two qubits into the

entangled state. For example,
Uenor —=1100)+[10)]=— 00} + |11)]
V2 V2
Similarly, since it is its own inverse, it can take an entangled state to an un-entangled one.
UCNOTZ L[|00> + |10>] = L ACNOT[|00> + |1 1>]
V2 V2

or

1 - 1
3UCNOT[|00> +[11)] = ﬁﬂoo) +[10)]

13



Here ‘d)lz(+)> = +|11)) is the Bell's state.

1
(o0

9. Example
Show that

U, ®U ) eyor (U, ®U )| jik) =] j @ k. k) .
((Proof))

U, ®U, ) eyor (U, ®U ) jik) = (U, ®U U o U] )@ U, k)

=20 ®U o (0) + -1 @ (0} + (1| 1)

= %(UH ®UH)(|OO>+(—1)I‘|01>+(_1)]|11>)+(_1)]+k|10>)

= %(UH ®UNI(0)®(|0)+(-)*|1) +(-1)" 1) ® (| 0) + (1) |1)))]

- %(UH ®U,)I(0)+(=1)/*| 1)) ®(0)+ (~1)*1)]
_|j+K)®k) =] @ k) ®|)

((Mathematica)) We give a proof by this using Mathematica

14



Clear["Global %"];

*

exp_" :=
exp /. {Complex[re , im ] = Complex[re, -im]};
Ut (1 1y,

-— (1 4a)

V2

UH = Transpose [U*] ;

W1= (1, 00592 = {0, 133 9al= (5)5w21= (7);
12 = ldentityMatrix[2];

x11 = KroneckerProduct[yll, ¥11] // Transpose //
Flatten ;

x12 = KroneckerProduct[yll, ¥21] // Transpose //
Flatten;

x21 = KroneckerProduct[y21, y11] // Transpose //
Flatten;

x22 = KroneckerProduct[y21, ¢21] // Transpose //
Flatten;

A1==Outer[Times, vl, wl*]-Outer[Times, v2, wz*];
U.A1.U.y1

{0, 1}

U.A1.U.y2
{1, 0}
UNOT = Outer[Times, yl, w2*] +Outer[Times, y2, zpl*];

UCNOT = KroneckerProduct[Outer[Times, v, wl*],lz] +
KroneckerProduct[Outer[Times, V2, ¢2*], UNOT];

UHH = KroneckerProduct[U, U];
K1 = UHH.UCNOT .UHH;
{Kl.x11, K1.x12, K1.x21, K1.x22}

{{1, 0,0, 0}, {0,0,0, 1}, {0,0,1,0}, {0,1,0, 0}}

10 Controlled-U gate
The controlled-U gate is defined by

15



U=|0)0|®1, +|1)(1|®a

where # is a 2x2 matrix and is given by

1 0 O 0
~ [0 1 O 0
U =

0 0 xy xy

0 0 x, x

When 1 is one of the Pauli matrices, &

X

G, and & _, the respective terms controlled-X,

controlled-Y, or controlled-Z are sometimes used.

Fig.  Circuit representation of controlled-U gate.

11. Alternative CNOT

S o o =
S = O O
— o O O

16



or

((Mathematica))
Clear["Global %"];

exp_

UA =

4 =

= exp /- {Complex[re ,

1
;l/[l: ;w2=[

0
0
0

UA .yl // MatrixForm

0

1
0
0

UA.y2 // MatrixForm

1

0
0
0

17

im_] = Complex[re,

0 0
1. _10].
OJ,WB_ 1],
0 0

-iml};



UA. Y3 // MatrixForm
0

(ol o)

UA.y4 // MatrixForm
0

= OO

12. Mach-Zender interference

-

Fig. Quantum computation device as a equivalent of a Mach-Zender interferrometer. The

initial state 1s |0> The final state is e [cos ¢|O>—zsm ¢|l>

Phase shifter (0 4 ):phase rotation

0,0)=10)
0,1 =)

5 (10
o e

((Phase-flip gate))

or

(/2 phase gate))

18



- 1 O
Uﬂ'/2: 0 i

((#/8 phase gate))

—ir/8
U —il8 e 0
77/4_8 in/8
0 e

The Hadamard gate (U )
~ 1
0,0 =0+, Tl 0)-)
The series of the Hadamard gate and the phase shifter;

0,0,0

H >:%(

0,J0) + 0,11 = 7=0) +“[1)
The series of the Hadmard gate-phase shifter - Hadamard gate:

0,0,0,

1 R
= 7575 (0) 4D+ e (0)-|1)
:l(1+ei¢)|0>+5(l—ei¢)|l>

cos¢|0> isin§|l>]

A A 1 ~ _
U,U,U,1) = ﬁUH (0)—e”|1))

=75 750+ - o))
:—(1—e"¢)|0>+—(1+e"¢)|1>

= ez[ zsm¢|0>+icos§|l>]

19



Note that

((Mathematica))

Clear["Global %"];

exp_"* =
exp /- {Complex[re_, im_] = Complex[re, -im]};

YO0 = (1); ¥l = (0); 12 = ldentityMatrix[2];

0 1
1

UH=_(1 1);u¢=(1 (.));A1=UH.U¢.UH;
vz \1 -1 0 et?

Ul =UH.U¢.UH // FullSimplify;
U1l = Ule %2 /7 FullSimplify;
U12 = U11 et ¢/2

([ cos[§]. <% sin[3]).
{—1‘1 <ejl7d2 Sin[g} , e%@ Cos{%
Ul2.y0 // MatrixForm

13. Pauli gates
Pauli gates are defined by the Pauli matrices



A 1 0 A 0
Z=6, = , 1=
0 010 0 0 —-i O
.~ 10 0 0 1 .~ 10 0 0 -i A
o, ®l= , o ®l= , o, ®1=
1 0 0O g i 0 0
01 00 0 i 0 O
cos(a) 0 —isin(a) 0
. . . 0 cos(a) 0 —isin(a)
R =exp(—iac ®1)=| .
—isin() 0 cos(@) 0
0 —isin(a) 0 cos(a)
cos(&) 0 —sin(a) 0
. A 0 cos(&) 0 —sin(a)
R =exp(-ia6, ®1)=| |
sin(«x) 0 cos() 0
0 sin() 0 cos(&)

IABZ =exp(—iac, ® =

((Mathematica))

21



Clear["Global "%"];
exp_* :=
exp /. {Complex[re_, im ] = Complex[re, -im]};

oxe (0 )iove (O F)ioze (2 )

12 = IdentityMatrix[2];

Ax = KroneckerProduct[ox, 12];

Ay = KroneckerProduct[oy, 12];

Az = KroneckerProduct[oz, 12];

Al = KroneckerProduct[ox + oz, 12];

Rx[a ] :=MatrixExp[-i a AX];
Ry[a ] :=MatrixExp[-1i a Ay];
Rz[a ] = MatrixExp[-1i a Az];

Tt
Rx [E ] // MatrixForm

0O 0 -1 O
0O 0 0 -1
-i 0 0 O
0O -1 0 O

22



n _
Ry[z] // MatrixForm

1 1
=z 0 7= 0
1 1
0 7 0 -7
1 _1 0

V2 V2
0 1 0 1
V2 V2

-0k oz oz )
g 0 o om0
k2= 2L (-1) // Simplify;
- ;
b5z o ooz 0
{—%, 0, % ol, o, -%, 0, %}}

K1-K2 // Simplify
{{o0, 0, 0, 0}, {0, 0, O, O},
{0, 0, 0, 0}, {0, 0,0, 0})

14. Producing entanglement; Bell's states
Using the simple device shown below, it is possible to produce any of the Bell states

(i) The Bell's state ‘®12(+)> = )+[11)) form |0) ®|0)

%(mo

23



|0> . @

0> (N

Fig.  Generation of the Bell state using a Hamadard gate followed by a CNOT gate.
1
—({00) +|11
00+ 1)

|0 . ® Control

\ike lyp> lwW3>

0> () Target

The initial state:

[v1) =10). ®[0), =[0.0)

The intermediate state:

24



lv.)= (U, ®Dly,)
= (U, ®1)(0),
=Uy[0) €[0),
1

-0, +I))el),

®0),)

|W3> = 0CN0T|‘//2>
1 ~
=ﬁUCNOT(|OO>+|10>)

=L2(|oo>+|11>)

1
1o
~ 200
1

(if)  The Bell's state |y, ) = iz(|01> +[10)) form |0)®|1)

|0> . @

> U

Generation of the Bell state using a Hadamard gate H followed by a CNOT gate.

1
f(|01>+|10>)

Fig.

The initial state:
25



vi)=l0)®]t)

|'//z> = (UH ®i)|'//1>
= (U, ®1)|0)®|1)
=U,[0)®[)

- (0)+el)
:%(|01>+|11>)

|W3> = 0CNOT|‘//2>

1 A
=$UCNOT(|OI>+|11>)

_
= ﬁ(|01>+|10>)

1

0
1
21
0

(iii)  The Bell's state |,,”) =%(| 00)—[11)) form |1)®|0)

[1> . @

26



Fig.  Generation of the Bell state using a Hadamard gate H followed by a CNOT gate.

1
—(|00)—|11
=(100)-J11)

The 1nitial state:
|w)=[1)®]0)

|l//2> = (UH ®i)|'//1>
=U,4[1)®]0)

1
= (00)- o)

|‘//3> = UCN0T|‘//2>

1 -
= _2UCN0T (| 00> - | 10>)

00)- 11

-

1
10
V210

-1

(iv)  The Bell's state ‘1/112(7)> >—|10>) form |1> ®|1>

1
_fqm

i

/4R
UV
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Fig.  Generation of the Bell state using a Hadamard gate followed by a CNOT gate.
%401) —[10))
The initial state:
v =[1) @)
lv2) =T, ®Dlw,)
=Uune|

1
= (01)-[11)

|‘//3> = UCN0T|‘//2>
1 A
= ﬁUCNOT(|01>_|1 1>)

15. Preparation of a GHZ state

A Greenberger—Horne-Zeilinger state (GHZ) is a certain type of entangled quantum state
which involves at least three subsystems (particles). It was first studied by D. Greenberger, M.A.
Horne and Anton Zeilinger in 1989. They have noticed the extremely non-classical properties of
the state.

28
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|0=> . o ®

lw1> lwo> lw3> lwg>
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[v1)=10),[0),/0).

[va) = W,[0),)8]0),

0}, =510), 11,10}, Jo,

N 1
v3) = Uevor)w ﬁq 0), +[1),)[0), ®[0),

=%(|o>a|0>b +[1),)[1), ©[0),

\ 1
[¥4) = Wesor)ae 5 (0), +11),)/0), ®]0),
1
=75 10).[0},[0), +[H)In), &[1),

=%[|000>+|111>]

1
NG

—_ o O O O O O

16.  State Swapping
We can represent the controlled NOT operaqtion by the transformation

x,y>= x,x@y>,0r x,y>:> x,x@y>

UCNOT

Using this formula, we can see that the gate given below swaps the states

x,y>:> x,x@y>
:>|(x(—Dy)(—Bx,x(—Dy>=
»(x®y)®y)=

7,x® y)

= Y, X)

where

30



x®x=0, y®y=0

—
>

Dy)Px>=ly>

y> D kdy> o xay>

ly ®(xDy)>=[x>

We use an equivalent schematic symbol notation for the common useful circuit.

N

Fig. SWAP gate

The unitary operator for the swapping:

with
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1 0 0 O
0 - 0 01 0
o1 0 0
0 0 0 1

|x1 . |x1>

|2 . |x0 >

|x3 |x3>

I A o
U/ L/ U/
x> |x; Bx,> |X1®XQ®X3>

17.  Transformation of a Bell state to the computational basis.

H —

|Bell state> s

f

%

Fig. Transformation of an entangled Bell state to the computational basis (|1>,

CNOT and a Hadamard gate.

0) )with a

(a)  From %[|01>—|10>] to [1)®|1)

32



Suppose that the initial state is the Bell state,

)= 75 llon)-}10).

A 1 1
[v2) =Uenorlw) =100 =[101=—=(0)~[1) @[1).
|‘//3> = (UH ®i)|'//2>
:%@H ®1)(0)-|1) ®|1)
=10+ 1)~ o)~ i e|)
=
(b)  From %[|01>+|10>] to |0)®|1)

Suppose that the initial state is the Bell state,

)=o)+ 10},

R 1 1
|‘/’2>:UCN0T|‘V1>:$[|OI>+|“>]:ﬁ(|0>+|1>)®|1>’

|l//3> :(UH ®i)|§//2>
1

NG
=%[(|o>+|1>)+(|0>—|1>)]®|1>
SCED

U, ®1)0)+[1)®|1)

(c)  From %[|00>—|11>] to |1) ®|0)

33



Suppose that the initial state is the Bell state,

) =75 00)-[11).

R 1 1
2} = Do) =—51100)-10))=1=(0) - 1) &),
Then we have

|‘//3> = (UH ®i)|‘//2>

1 N ~
—ﬁ(UH®1)(|0>—|1>)®|O>
—10)+[1)~0)-[1)n@|o)
-[1)@o)

(d)  From %[|00>+|11>] to |0) ®|0)

Suppose that the initial state is the Bell state,

) =75 000) 1),

N 1 1
[v2)=Uerorlv) =100} +[10)] =—=(|0) +|1) ®]0).
Then we have

|V/3>:(UH ®i)|l//2>
1

72
=210 +[1)+ o) - [neo
=|0)®|0)

(U, ®1)(|0)+|1) ®]|0)
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APPENDIX-I Quantum gates
http://en.wikipedia.org/wiki/Quantum_gate

Hadamard gate

The Hadamard gate acts on a single qubit. It maps the basis state |O> to %q 0> + |1)> and

1 1 . . )
1) to —(|0)—1|1)) and represents a rotation of m about the axis —(x+2). It is

represented by the Hadamard matrix:

Pl

Pauli-X gate
The Pauli-X gate acts on a single qubit. It is the quantum equivalent of a NOT gate. It

equates to a rotation of the Bloch Sphere around the X-axis by x radians. It maps |O> to |1>

and |1> to |0> . It is represented by the Pauli matrix:

R 0 1

X =
o)

Pauli-Y gate
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The Pauli-Y gate acts on a single qubit. It equates to a rotation around the Y-axis of the
Bloch Sphere by = radians. It maps |0> to i|1> and |1> to —1'| 0> It is represented by the

Pauli Y matrix;

Pauli-Z gate

The Pauli-Z gate acts on a single qubit. It equates to a rotation around the Z-axis of the
Bloch Sphere by = radians. Thus, it is a special case of a phase shift gate (next) with 6=mn.

It leaves the basis state |0> unchanged and maps |1> to — |1> . It is represented by the Pauli

7Z matrix:

Phase shift gate
This is a family of single-qubit gates that leave the basis state |0> unchanged and map |1>

to ei‘9|1>. The probability of measuring a |0> or |1> is unchanged after applying this gate,
however it modifies the phase of the quantum state. This is equivalent to tracing a
horizontal circle (a line of latitude) on the Bloch Sphere by fradians.

where 0 is the phase shift. Some common examples are the 7/8 gate where 6 =7/4,0 =,

the phase gate where 0 = 7/2, and the Pauli-Z gate where 0 = .

Controlled-NOT
In computing science, the controlled NOT gate (also C-NOT or CNOT) is a quantum
gate that is an essential component in the construction of a quantum computer. It can be
used to entangle and disentangle EPR states. Specifically, any quantum circuit can be

simulated to an arbitrary degree of accuracy using a combination of CNOT gates and
single qubit rotations.
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1 0 0O
01 0O
CNOT =
0 0 0 1
0 01 0
Swap gate

The swap gate swaps two qubits. It is represented by the matrix given by

1 0 0 O

0O 01 0
SWAP =

01 0 O0

0 0 0 1
Controlled-X
Controlled-Y
Controlled-Z

The matrix representing the controlled U is

1 0 0 O
01 0 O
clU)= 0 0
Xoo  Xo1
0 0 x, x,

X, X
00 01 . . . .
When U :( jls one of the Pauli matrices, oy, oy, or o, the respective terms
X X
10 11

"controlled-X", "controlled-Y", or "controlled-Z" are sometimes used.

Toffoli gate
In computer science, the Toffoli gate (also CCNOT gate), invented by Tommaso Toffoli,
is a universal reversible logic gate, which means that any reversible circuit can be
constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate,
which describes its action. It has 3-bit inputs and outputs; if the first two bits are set, it
inverts the third bit, otherwise all bits stay the same.
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The Fredkin gate (also CSWAP gate) is a 3-bit gate that performs a controlled swap. It is
universal for classical computation. It has the useful property that the numbers of Os and
Is are conserved throughout, which in the billiard ball model means the same number of
balls are output as input.

qubit
In quantum computing, a qubit or quantum bit is a unit of quantum information—the
quantum analogue of the classical bit. A qubit is a two-state quantum-mechanical system,
such as the polarization of a single photon: here the two states are vertical polarization
and horizontal polarization. In a classical system, a bit would have to be in one state or
the other, but quantum mechanics allows the qubit to be in a superposition of both states
at the same time, a property which is fundamental to quantum computing.

Quantum decoherence

Quantum decoherence is the loss of coherence or ordering of the phase angles between the
components of a system in a quantum superposition. One consequence of this dephasing is
classical or probabilistically additive behavior. Quantum decoherence gives the appearance of
wave function collapse (the reduction of the physical possibilities into a single possibility as seen
by an observer) and justifies the framework and intuition of classical physics as an acceptable
approximation: decoherence is the mechanism by which the classical limit emerges from a
quantum starting point and it determines the location of the quantum-classical boundary.
Decoherence occurs when a system interacts with its environment in a thermodynamically
irreversible way. This prevents different elements in the quantum superposition of the total
system's wavefunction from interfering with each other.

http://en.wikipedia.org/wiki/Quantum_decoherence

Quantum parallelism

Quantum parallelism is the method in which a quantum computer is able to perform two
computations simultaneously. The term was coined by physicist David Deutsch, so as to
distinguish it from classical parallel computation in standard computers. In classical computers,
parallel computing is performed by having several processors linked together, so that each
processor performs one computation while the other processors are performing other
computations. In a quantum computer, a single quantum processor is able to perform multiple
computations on its own by utilizing the fact that the qubit (or quantum bit of information) exists
in multiple states simultaneously (a key feature of quantum physics is the ability of the quantum
wavefunction to exist in multiple states at the same time). This gives a quantum computer much
greater raw computation ability than a traditional computer.
http://physics.about.com/od/physicsqtot/g/quantumparallel.htm

Quantum error correction
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Quantum error correction is used in quantum computing to protect quantum information
from errors due to decoherence and other quantum noise. Quantum error correction is essential if
one is to achieve fault-tolerant quantum computation that can deal not only with noise on stored
quantum information, but also with faulty quantum gates, faulty quantum preparation, and faulty
measurements.

Quantum Correlation

One of the most counterintuitive features of quantum mechanics is its non-local nature,
which makes a fundamental departure from classical physics. Quantum mechanics allows
correlations between values of measurements performed at spatially separated locations that can
never occur according to classical physics. These correlations are manifestations of the
phenomenon Einstein coined as the spooky action at a distance. The inequalities invented by
John Bell enable to put into a testable form the non-local nature of quantum mechanics

APPENDIX-I1
The method of calculation for |w1 ><l//2| by using the Mathematica

There are two methods for the calculation.

Outer [Times, list;, lish] gives an outer product.

((Mathematica))
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Clear["Global %"];

* -

exp_* :=
exp /. {Complex[re , im ] = Complex[re, -im]};

method - 1

yl= ({1, 0}; y2={0, 1};
Al = Outer[Times, y1, y2*]

{{0, 1}, {0, O}}
method - 2

ol = (é) P2 = (2) $2H = Transpose [¢2*] ;

A2 = ¢1._¢2H
{{0, 1}, {0, 0}}

APPENDIX-I11 Logic gate
In electronics, a logic gate is an idealized or physical device implementing a Boolean

function; that is, it performs a logical operation on one or more logical inputs, and produces a
single logical output.).

T D

AND }— A8 » AvB )E A
- T B
A— A A

D S D e
B— B B

Buffer Inverting Buffer

AND gate

aborab
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INPUT OUTPUT

A B AANDB
00 0
a | 0 1 0
b AND C 1/0 0
— 11 1
OR gate
at+b
INPUT OUTPUT
A B AORB
00/ o
a 0|1 1
b C 1.0 1
11 1
NAND gate
ab
INPUT OUTPUT
A B ANANDB
00 1
a 0 1 1
p |NAND & 119 1
—— 1)1 0
NOR gate
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Exclusive or

a+b
INPUT OUTPUT
A B ANORB
0 0 1
a 0 1 0
b o C 1.0 0
111 0
NOT gate
a
INPUT OUTPUT
A NOT A
a A C 0 1
1 0
XOR gate

exclusive OR gate.

a®b
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XNOR gate

Inverse of exclusive OR gate.

ad®b

out

w >
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INPUT OUTPUT

A

B AXORB
0 0
1 1
0 1
1 0

INPUT QUTPUT

A
0
0

B AXNORB
0 1
1 0
0 0
1 1



