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A quantum computer is a computation device that makes direct use of quantum-mechanical 
phenomena, such as superposition and entanglement, to perform operations on data. In classical 
computing, we use the binary digits – bit - to store information. Each bit has the value 0, or 1. 
Individual bits are strung together to represent larger binary numbers, such as 00100111000… 
Each binary number represents an actual number.  

In quantum information processing, information is stored in quantum bits or qubits. A qubit 
is a quantum system with two states 0  and 1 . Any two-state quantum system can be used as a 

qubit. The key difference between bits and qubits is that qubits can exist in a superposition state. 
This is an stark contrast to a classical bit.  

Here we consider a series of quantum circuits that create the four orthonormal entangles 
Bell’s states from the un-entangled computational-base states 0  and 1 . We also discuss the 

transformation of the Bell’s state to the computational-base states 0  and 1 .  

 
1. Qubits, XOR operation, and Kronecker product 
Qubits 

A classical bit of information is represented by a system that can be in either of two states, 0, 
1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the 
state of a two-level system, whose basic components may be written as 
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This is the so-called quantum bit of information, or, in short, a qubit. 
 
XOR operation:   
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Kronecker product   

The  Kronecker product can be used for the calculation of Mathematica as follows. 
 
((Mathematica)) 
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21   = KroneckerProduct[ 1 , 2 ] 

 
In general 
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which denotes the action of a tensor product of linear maps on a basis vector of the tensor 
product space. 
 
((Note)) The list of classical gates is given in the APPENDIX. 
 
2. Four Bell's states 

The four Bell’s states are defined by 
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The four Bell’s states can be derived as follows, using the Mathematica 
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Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

1   1
0
;

2   0
1
;

B1 

1

2
KroneckerProduct1, 2 

KroneckerProduct2, 1  MatrixForm
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KroneckerProduct1, 2 

KroneckerProduct2, 1  MatrixForm
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KroneckerProduct2, 2  MatrixForm
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3. NOT operation (unitary operator) 
The NOT gate changes 
 

10  , 01   

 
or 
 

10ˆ NOTU ,  01ˆ NOTU  

 

where NOTÛ  is the NOT operator. The NOT gate is a linear operator, so it also changes a 

superposition, such that 
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The NOT operator is defined by 
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  (quantum NOT gate transformation) 
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or 
 

1ˆ  kkU NOT  

 
Note that 
 

1100ˆ NOTU ,  0111ˆ NOTU  

 

Under the basis { 1,0 }, NOTÛ  coincides with the Pauli matrix x̂ . This is not a coincidence. 

All unitary operators for a spin 1/2 system can be expressed as a linear combination of four 

operators consisting of 1̂ , x̂ , ŷ , and ẑ . 

 

 
 
Fig. Classical NOT gate. x = 0 (z = 1). x = 1 (z = 0) 
 

4. NOT  gate 

The NOT  gate is defined by 
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5. (Walsh)-Hadamard transform HÛ  

This gate is one of the most significant quantum logic gate, because it can be used to enable 
the qubit interference vital to quantum computation.  
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with k  0, 1. The Hadamard gate transforms basis states into superposition states. 
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The Hadamard transformation is expressed by 
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Note  
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and 
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Fig. Circuit representation of Hadamard gate. 
 
6. Quantum Z gate (Pauli gate) 

We consider the quantum Z gate is a  rotation around the z axis, with a transformation 
matrix as 
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1100ˆˆ ZU z , 

 
with 
 

00ˆ zU ,  11ˆ zU . 

 
We show that 
 

10ˆˆˆ HzH UUU ,  01ˆˆˆ HzH UUU  

 
((Proof)) 
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where j  = j + 1. In other words, 

 

NOTHzH UUUU ˆˆˆˆ   

 
7. Properties of the Hamadard gate: 

On an intial two-qubit state the Hadamard transform has the form 
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In the vase of three qubits we have 
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8. Controlled NOT operation (unitary operator) 

The controlled NOT operation acts on the state of two qubits, known as the control qubit, C 
and the target qubit T.  
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or simplily 
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where the notation denotes a mod (2) sum. Note that 
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Fig. CNOTÛ . The controlled NOT gate is a transformation involving two qubits. The value of 

the controlled qubit (the upper on in Fig) influences the lower one, whose value is flipped 
if the upper qubit carries "1". and not flipped if the upper qubit carries "0". This is 

equivalent to addition mudulo 2. Control input ( j ). Target input ( k ) 

 
((Mathematica)) 
 

 

j> j>

k> j∆k>

Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

1   1
0
; 2   0

1
; I2  IdentityMatrix2;

x   0 1
1 0

; 11  1.Transpose1;

22  2.Transpose2;

UCNOT  KroneckerProduct11, I2 

KroneckerProduct 22, x;
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Deutsch called the CNOT gate the measurement gate, because, if the target qubit is prepared in 
the 0 state, it can always learn about the state of the control qubit. 
 

 
 
Fig. Representation of the two qubit CNOT gate. The top line represents the control qubit. 

The bottom line is the target qubit. Note that xyyx  . 
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UCNOT  MatrixForm

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

H1  UCNOT.UCNOT  Simplify;

H1  MatrixForm

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x> x>

y> y∆x>
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We note that 
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((Note)) 

CNOTÛ  cannot be decomposed into a tensor product of two single-qubit transformation. The 

importance of CNOTÛ  stems from its ability to change the un-entangled two qubits into the 

entangled state. For example,  
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1
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1ˆ CNOTU  

 
Similarly, since it is its own inverse, it can take an entangled state to an un-entangled one. 
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1
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Here )1100(
2

1)(
12    is the Bell's state. 

 
9. Example 
Show that 
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((Mathematica)) We give a proof by this using Mathematica 
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10 Controlled-U gate 

The controlled-U gate is defined by 

Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

U 
1

2
 1 1

1 1
;

UH  TransposeU;

1  1, 0; 2  0, 1; 11   1
0
; 21   0

1
;

I2  IdentityMatrix2;

11  KroneckerProduct11, 11  Transpose 
Flatten ;

12  KroneckerProduct11, 21  Transpose 
Flatten;

21  KroneckerProduct21, 11  Transpose 
Flatten;

22  KroneckerProduct21, 21  Transpose 
Flatten;

A1  OuterTimes, 1, 1  OuterTimes, 2, 2;

U.A1.U.1

0, 1

U.A1.U.2

1, 0

UNOT  OuterTimes, 1, 2  OuterTimes, 2, 1;

UCNOT  KroneckerProductOuterTimes, 1, 1, I2 

KroneckerProductOuterTimes, 2, 2, UNOT;

UHH  KroneckerProductU, U;

K1  UHH.UCNOT.UHH;

K1.11, K1.12, K1.21, K1.22
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0
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where û  is a 2x2 matrix and is given by 
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Then we have 
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When û  is one of the Pauli matrices, x̂ , ŷ , and ẑ , the respective terms controlled-X, 

controlled-Y, or controlled-Z are sometimes used. 
 

 
 
Fig. Circuit representation of controlled-U gate. 
 
11. Alternative CNOT 
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((Mathematica)) 

 

Clear"Global`";

exp_  : exp . Complexre_, im_  Complexre, im;

UA 

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

; 1 

1
0
0
0

; 2 

0
1
0
0

; 3 

0
0
1
0

;

4 

0
0
0
1

;

UA.1  MatrixForm

0
1
0
0

UA.2  MatrixForm

1
0
0
0
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12. Mach-Zender interference 
 

 
 
Fig. Quantum computation device as a equivalent of a Mach-Zender interferrometer. The 

initial state is 0 . The final state is ]1
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Phase shifter ( Û ):phase rotation 
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((Phase-flip gate)) 
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((/2 phase gate)) 

UA.3  MatrixForm
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UA.4  MatrixForm

0
0
0
1

0> f
H H



 

19 
 

 











i
U

0

01ˆ
2/  

 

((/8 phase gate)) 
 













8/

8/
8/

4/
0

0ˆ





 i

i
i

e

e
eU  

 

The Hadamard gate ( HÛ ): 
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The series of the Hadamard gate and the phase shifter; 
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The series of the Hadmard gate-phase shifter - Hadamard gate: 
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Note that 
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((Mathematica)) 
 

 

 
 
13. Pauli gates 

Pauli gates are defined by the Pauli matrices 
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Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

0   1
0
; 1   0

1
; I2  IdentityMatrix2;

UH 
1

2
 1 1

1 1
; U   1 0

0  
; A1  UH.U.UH;

U1  UH.U.UH  FullSimplify;

U11  U1  2  FullSimplify;

U12  U11  2

 
2 Cos

2
,  

 
2 Sin

2
,

  
2 Sin 

2
, 

 
2 Cos 

2


U12.0  MatrixForm


 
2 Cos 

2


 
 
2 Sin 

2


U12.1  MatrixForm

 
 
2 Sin 
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2 Cos 

2
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((Mathematica)) 
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Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

x   0 1
1 0

; y   0 
 0

; z   1 0
0 1

;

I2  IdentityMatrix2;

Ax  KroneckerProductx, I2;

Ay  KroneckerProducty, I2;

Az  KroneckerProductz, I2;

A1  KroneckerProductx  z, I2;

Rx_ : MatrixExp  Ax;

Ry_ : MatrixExp  Ay;

Rz_ : MatrixExp  Az;

Rx
2
  MatrixForm

0 0  0
0 0 0 
 0 0 0
0  0 0
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14. Producing entanglement; Bell's states 

Using the simple device shown below, it is possible to produce any of the Bell states 
 

(i) The Bell's state )1100(
2

1)(
12    form 00   

 

Ry
4
  MatrixForm

1
2

0  1
2

0

0 1
2

0  1
2

1
2

0 1
2

0

0 1
2

0 1
2

K1  Rx
2
.Ry

4
  Simplify;

 

2
, 0, 



2
, 0, 0, 



2
, 0, 



2
,

 

2
, 0,



2
, 0, 0, 



2
, 0,



2


K2 
A1

2
  Simplify;

 

2
, 0, 



2
, 0, 0, 



2
, 0, 



2
,

 

2
, 0,



2
, 0, 0, 



2
, 0,



2


K1  K2  Simplify

0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0
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Fig. Generation of the Bell state using a Hamadard gate followed by a CNOT gate. 

)1100(
2

1
  

 

 
 
The initial state: 
 

0,0001 
TC

  

 
The intermediate state: 
 

0>

0>

H



 

25 
 

)1000(
2

1

0)10(
2

1

00ˆ

)00)(1̂ˆ(

)1̂ˆ( 12











TCC

TCH

TCH

H

U

U

U 

 

 



























1

0

0

1

2

1

)1100(
2

1

)1000(ˆ
2

1

ˆ
23

CNOT

CNOT

U

U 

 

 

(ii) The Bell's state )1001(
2

1)(
12   form 10   

 

 
 
Fig. Generation of the Bell state using a Hadamard gate H followed by a CNOT gate. 
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(iii) The Bell's state )1100(
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12    form 01   
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Fig. Generation of the Bell state using a Hadamard gate H followed by a CNOT gate. 
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(iv) The Bell's state )1001(
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12   form 11   
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Fig. Generation of the Bell state using a Hadamard gate followed by a CNOT gate. 
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15. Preparation of a GHZ state 

A Greenberger–Horne–Zeilinger state (GHZ) is a certain type of entangled quantum state 
which involves at least three subsystems (particles). It was first studied by D. Greenberger, M.A. 
Horne and Anton Zeilinger in 1989. They have noticed the extremely non-classical properties of 
the state. 
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16. State Swapping 

We can represent the controlled NOT operaqtion by the transformation 
 

yxxyxUCNOT  ,, , or  yxxyx  ,,  

 
Using this formula, we can see that the gate given below swaps the states 
 

xyyyxy

yxyyxxyx

yxxyx

,)(,

,,)(

,,







 

 
where 
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0 xx , 0 yy  

 

 
 
We use an equivalent schematic symbol notation for the common useful circuit. 
 

 
 
Fig. SWAP gate 
 
The unitary operator for the swapping: 
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17. Transformation of a Bell state to the computational basis. 

 
 

Fig. Transformation of an entangled Bell state to the computational basis ( 1 , 0 )with a 

CNOT and a Hadamard gate. 
 

(a) From ]1001[
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1
  to 11   

x1>
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0>
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Bell state>
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Suppose that the initial state is the Bell state, 
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(b) From ]1001[
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  to 10   

 
Suppose that the initial state is the Bell state, 
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Suppose that the initial state is the Bell state, 
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(d) From ]1100[
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  to 00   

Suppose that the initial state is the Bell state, 
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APPENDIX-I  Quantum gates 
http://en.wikipedia.org/wiki/Quantum_gate 
 
Hadamard gate 

The Hadamard gate acts on a single qubit. It maps the basis state 0  to )10(
2

1
 and 

1  to )10(
2

1
  and represents a rotation of  about the axis )ˆˆ(

2

1
zx  . It is 

represented by the Hadamard matrix: 
 












11

11

2

1
Ĥ  

 
Pauli-X gate 

The Pauli-X gate acts on a single qubit. It is the quantum equivalent of a NOT gate. It 

equates to a rotation of the Bloch Sphere around the X-axis by π radians. It maps 0 to 1  

and 1 to 0 . It is represented by the Pauli matrix: 

 











01

10
X̂  

 
Pauli-Y gate 
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The Pauli-Y gate acts on a single qubit. It equates to a rotation around the Y-axis of the 

Bloch Sphere by π radians. It maps 0 to 1i  and 1 to 0i .It is represented by the 

Pauli Y matrix: 
 








 


0

0ˆ
i

i
Y  

 
Pauli-Z gate 

The Pauli-Z gate acts on a single qubit. It equates to a rotation around the Z-axis of the 
Bloch Sphere by π radians. Thus, it is a special case of a phase shift gate (next) with θ=π. 

It leaves the basis state 0  unchanged and maps 1  to 1 . It is represented by the Pauli 

Z matrix: 
 












10

01
Ẑ  

 
Phase shift gate 

This is a family of single-qubit gates that leave the basis state 0 unchanged and map 1

to 1ie . The probability of measuring a 0  or 1  is unchanged after applying this gate, 

however it modifies the phase of the quantum state. This is equivalent to tracing a 

horizontal circle (a line of latitude) on the Bloch Sphere by  radians. 
 









  ie

R
0

01
 

 

where θ is the phase shift. Some common examples are the /8 gate where 4/  , θ = , 

the phase gate where θ = /2, and the Pauli-Z gate where θ = π. 

 
Controlled-NOT 

In computing science, the controlled NOT gate (also C-NOT or CNOT) is a quantum 
gate that is an essential component in the construction of a quantum computer. It can be 
used to entangle and disentangle EPR states. Specifically, any quantum circuit can be 
simulated to an arbitrary degree of accuracy using a combination of CNOT gates and 
single qubit rotations. 
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Swap gate 

The swap gate swaps two qubits. It is represented by the matrix given by 
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0010

0100

0001

SWAP  

 
Controlled-X 
Controlled-Y 
Controlled-Z 

The matrix representing the controlled U is 
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0100

00

00

0010

0001

)(

xx

xx
UC  

 

When 









1110

0100

xx

xx
U is one of the Pauli matrices, x, y, or z, the respective terms 

"controlled-X", "controlled-Y", or "controlled-Z" are sometimes used.  
 
Toffoli gate 

In computer science, the Toffoli gate (also CCNOT gate), invented by Tommaso Toffoli, 
is a universal reversible logic gate, which means that any reversible circuit can be 
constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate, 
which describes its action. It has 3-bit inputs and outputs; if the first two bits are set, it 
inverts the third bit, otherwise all bits stay the same. 
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Fredkin (controlled-swap) 

x x

y y

z z xy



 

39 
 

The Fredkin gate (also CSWAP gate) is a 3-bit gate that performs a controlled swap. It is 
universal for classical computation. It has the useful property that the numbers of 0s and 
1s are conserved throughout, which in the billiard ball model means the same number of 
balls are output as input. 

 
qubit 

In quantum computing, a qubit or quantum bit is a unit of quantum information—the 
quantum analogue of the classical bit. A qubit is a two-state quantum-mechanical system, 
such as the polarization of a single photon: here the two states are vertical polarization 
and horizontal polarization.  In a classical system, a bit would have to be in one state or 
the other, but quantum mechanics allows the qubit to be in a superposition of both states 
at the same time, a property which is fundamental to quantum computing. 

 
Quantum decoherence 

Quantum decoherence is the loss of coherence or ordering of the phase angles between the 
components of a system in a quantum superposition. One consequence of this dephasing is 
classical or probabilistically additive behavior. Quantum decoherence gives the appearance of 
wave function collapse (the reduction of the physical possibilities into a single possibility as seen 
by an observer) and justifies the framework and intuition of classical physics as an acceptable 
approximation: decoherence is the mechanism by which the classical limit emerges from a 
quantum starting point and it determines the location of the quantum-classical boundary. 
Decoherence occurs when a system interacts with its environment in a thermodynamically 
irreversible way. This prevents different elements in the quantum superposition of the total 
system's wavefunction from interfering with each other. 

http://en.wikipedia.org/wiki/Quantum_decoherence 
 
Quantum parallelism 

Quantum parallelism is the method in which a quantum computer is able to perform two 
computations simultaneously. The term was coined by physicist David Deutsch, so as to 
distinguish it from classical parallel computation in standard computers. In classical computers, 
parallel computing is performed by having several processors linked together, so that each 
processor performs one computation while the other processors are performing other 
computations. In a quantum computer, a single quantum processor is able to perform multiple 
computations on its own by utilizing the fact that the qubit (or quantum bit of information) exists 
in multiple states simultaneously (a key feature of quantum physics is the ability of the quantum 
wavefunction to exist in multiple states at the same time). This gives a quantum computer much 
greater raw computation ability than a traditional computer.  
http://physics.about.com/od/physicsqtot/g/quantumparallel.htm 
 
Quantum error correction 
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Quantum error correction is used in quantum computing to protect quantum information 
from errors due to decoherence and other quantum noise. Quantum error correction is essential if 
one is to achieve fault-tolerant quantum computation that can deal not only with noise on stored 
quantum information, but also with faulty quantum gates, faulty quantum preparation, and faulty 
measurements. 
 
Quantum Correlation 

One of the most counterintuitive features of quantum mechanics is its non-local nature, 
which makes a fundamental departure from classical physics. Quantum mechanics allows 
correlations between values of measurements performed at spatially separated locations that can 
never occur according to classical physics. These correlations are manifestations of the 
phenomenon Einstein coined as the spooky action at a distance. The inequalities invented by 
John Bell enable to put into a testable form  the non-local nature of quantum mechanics 
 
______________________________________________________________________________ 
APPENDIX-II 

The method of calculation for 21   by using the Mathematica 

 
There are two methods for the calculation. 
 

 
 
 
((Mathematica)) 
 

 OuterTimes, list1, list2 gives an outer product. 
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APPENDIX-III Logic gate 

In electronics, a logic gate is an idealized or physical device implementing a Boolean 
function; that is, it performs a logical operation on one or more logical inputs, and produces a 
single logical output.). 
 

 
 
AND gate 

ab or a.b 

Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

method - 1

1  1, 0; 2  0, 1;

A1  OuterTimes, 1, 2
0, 1, 0, 0

method - 2

1   1
0
; 2   0

1
; 2H  Transpose2;

A2  1.2H

0, 1, 0, 0
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_________________________________________________________________________ 
OR gate 

a+b 

  
 
_____________________________________________________________________________ 
NAND gate 

ba.  

  
_____________________________________________________________________________ 
NOR gate 
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Exclusive or 
 

ba   

  
 
_____________________________________________________________________________ 
NOT gate 
 

a  

  
 
_____________________________________________________________________________ 
XOR gate 

exclusive OR gate. 
 

ba   
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XNOR gate 

Inverse of exclusive OR gate. 
 

ba  
 

  
 


