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Quantum circuit is a sort of electric circuits (such as Wheatstone bridge and ladder 

circuit), which one may study in the class of circuit analysis (electricity and magnetism). 

For complicated circuits (such as network), it is essential to make use of the theorems of 

circuit analysis (such as Thevinin theorem and Norton theorem). So, the circuit becomes 

much more simplified by using the corresponding equivalent circuits. It may be true for 

quantum computing. We can also apply various kinds of techniques (based on the quantum 

mechanics) to the quantum circuits (such as the quantum teleportation and SWAP). The 

equivalent circuits can be used for the simplification of quantum circuits.  

In a Website, we find a very interesting article on the discussion on the equivalence of 

quantum computer circuit between quantum teleportation and the SWAP circuit. It is 

surprising for one that the SWAP circuit is literally equivalent to the quantum teleportation. 

The title: From Swapping to teleporting with Simple Circuit Moves; 

https://algassert.com/post/1628. In the introduction of this article, we found the following 

exciting statements. “We are going to prove that quantum teleportation works. Not by 

carefully considering how it affects input states, but by starting with a circuit that obviously 

moves a qubit from one place to another and then applying simple obviously-correct 

transformations until we end up with the quantum teleportation circuit.” 

We also had an excellent opportunity to listen to a series of lectures on the quantum 

computer, in a web site (in Japanese). In the second lecture (Quantum teleportation, done 

by Eisuke Abe, Keio University on November 15, 2009), the quantum circuit for the 

quantum teleportation circuit is discussed in the association with the SWAP circuit. We 

were very impressed with a possible equivalence of the quantum circuits between the 

quantum teleportation and the SWAP. Note that unfortunately, these lectures were done in 

Japanese. 

Here we will show that the quantum circuit of the SWAP circuit is essentially 

equivalent to that of the quantum teleportation. This lecture note is mainly written in order 

to reproduce the content of lectures given by Eisuke Abe. In other words, there is nothing 

new in this note. Nevertheless, we think that the content of this lecture note may be very 

useful to undergraduate students and graduate students who want to know about the 

principle of the quantum entanglement [quantum teleportation among three people Alice 

(A), Bob (B), and Charlie (C)]. The information of Charlie (or state) is delivered to Bob, 

immediately after the Bell state shared with Alice and Charlie is observed by Alice.  

Here we discuss the quantum circuits of the quantum teleportation and the swap based 

on the lecture. We show the similarity of the quantum circuits between the quantum 

teleportation and SAP. In this note, we first discuss the fundamental circuits in quantum 

computer, in particular, various kinds of equivalent circuits. 
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1. Quantum bits 

In quantum computing, a qubit or quantum bit is the basic unit of quantum 

information—the quantum version of the classical binary bit physically realized with a 

two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of 

the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples 

include: the spin of the electron in which the two levels can be taken as spin up 0z   

and spin down 1z  ; or the polarization of a single photon in which the two states can 

be taken to be the and the horizontal polarization x  and the vertical polarization y . In 

a classical system, a bit would have to be in one state or the other. However, quantum 

mechanics allows the qubit to be in a coherent superposition of both states simultaneously, 

a property which is fundamental to quantum mechanics and quantum computing. Here we 

use the Dirac notation, the eigenkets 0  and 1 ;  

 

1
0

0
z

 
    

 
, 

0
1

1
z

 
    

 
. 

 

https://en.wikipedia.org/wiki/Qubit 

 

The quantum circuits consist of various kinds of quantum gate (unitary operators, Pauli 

operators, and so on). These gates are reversible in the processes. Here we discuss the 

quantum circuits of the quantum teleportation and swap, as typical examples. 

 

2. Quantum NOT: Pauli spin 1/2 operators 

X corresponds to the Pauli matrix; 
0 1

ˆ
1 0

xX 
 

   
 

. We note that 

 

X a a , 

 

0 0 1X   , 1 1 0X   . 

 

Y corresponds to the Pauli matrix 
0

ˆ
0

y

i

i


 
  
 

. 

 

( 1)aY a i a  . 

 

Z corresponds to the Pauli matrix 
1 0

ˆ
0 1

z
 

   
, 
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( 1)aZ a a  , 

 

Note that 

 
2 2 2

1X Y Z   . 

 

Commutation relations: [ , ] 2X Y iZ ,  [ , ] 2Y Z iX ,  [ , ] 2Z X iY  

 

3. Hadamard gate 

Hadamard gate is expressed by H in the quantum circuit. 

 

 
 

Fig1. Hadamard gate H. 

 

1 11 1ˆ ˆ ˆ( )
1 12 2

x z xU H  
 

     
; 

 

0 1
0

2
H


 , 

0 1
1

2
H


 . 

 

In general, we have 

 
1

0

1 1
( 1) [ 0 ( 1) 1 ]

2 2

ab a

b

H a b


     , 

 
1

0

1
0

2 b

H b


  ,  
1

0

1
1 ( 1)

2

b

b

H b


  . 

 

Note that 

 
2

1H   

 

HXH Z , HYH Y  ,  HZH X , 

 

1X a a a   ,  ( 1)
a

Y a i a  ,  ( 1)
a

Z a a  . 
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X, Y, and Z are the Pauli matrices of 2x2. The detail of the properties is presented in the 

APPENDIX. 

 

3.1. Proof of HXH Z  

 
1

0

1

0

1

0

2

1
( 1)

2

1
( 1)

2

1
( 1)

2

1
[ 0 ( 1) 1 ]

2

1
[ 1 ( 1) 0 ]

2

1
( 1) [ 0 ( 1) 1 ]

2

( 1)

( 1)

ab

b

ab

b

ab

b

a

a

a a

a

a

HXH a HX b

H X b

H b

H

H

H

H a

a







 

 

 

  

  

   

 

 







 

 

or 

 

( 1)aHXH a a Z a   . 

 

3.2 Proof of HYH Y   
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1

0

1

0

1
( 1)

0

1 1
( 1)

0 0

( 1)

,

1
( 1)

2

1
( 1)

2

1
( 1)

2

1 1
( 1) ( 1)

2 2

1
( 1)

2

1 1
[1 ( 1) ] 0 [1 ( 1) ] 1

2 2

1 1
[ 0 1 ] ( 1) [ 0 1 ]

2 2

ab

b

ab

b

a b

b

a b bc

b c

a b bc

b c

a a

a

HYH a HY b

H Y b

iH b

i c

i c

i











 

 

 

 

 

  

 

     

    







 



 

 

3.3 Proof of HZH X  

 
1

0

1

0

1
( 1)

0

1 1
( 1)

0 0

( 1)

,

1
( 1)

2

1
( 1)

2

1
( 1)

2

1 1
( 1) ( 1)

2 2

1
( 1)

2

1 1
[1 ( 1) ] 0 [1 ( 1) ] 1

2 2

1 1
[ 0 1 ] ( 1) [ 0 1 ]

2 2

ab

b

ab

b

a b

b

a b bc

b c

a c b

b c

a a

a

HZH a HZ b

H Z b

H b

c

c

a











 

 

 

 

 

  

 

     

    









 



 

 

or 

 

HZH a a X a  . 

 

4. Controlled-U gate 
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The controlled-U gate is defined by 

 
a

a b a U b   , 

 

with 

 

Control bit:  a , 

Target bit:  b , 

 

 
 

Fig.2 Controlled U gate. Control ( a ). Target ( b ). 

 

We have another type of control-U gate where the target and the control are different from 

that in the above control-U gate. 

 

 
 

Fig.3 Controlled X-gate. a : control. b : target. aX b . 
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5. CNOT gate 

The controlled NOT gate (CNOT) is a quantum logic gate that is an essential 

component in the construction of a gate-based quantum computer. It can be used to 

entangle and disentangle EPR states. Any quantum circuit can be simulated to an arbitrary 

degree of accuracy using a combination of CNOT gates and single qubit rotations.  

https://en.wikipedia.org/wiki/Controlled_NOT_gate 

 

Here we use 12C  as the CNOT gate. 

 

 
 

Fig.4 Controlled Not gate (CNOT). a : control. b : target. 

 
aa b a X b a b a       

 

12

1 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

C

 
 
 
 
 
 

, 

 

where a : control. b : target. 

 

21C  

 

a
Control

Target

a

b b a
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Fig.5 CNOT gate: b : control. a : target. 

 

a b a b b    . 

 

where b : control. a : target. 

 

The matrix of 12C  is 

 

21

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

C

 
 
 
 
 
 

. 

 

((Note)) 

 

 
 

Fig.6 Encode of the Bell state 00  using CNOT gate with control ( 0H ) and 

target ( 0 . 

1
0 [ 0 1 ]

2
H   . 

00

1 1
0 0 1 1

2 2
      (Bell state). 

a

Control

Target

bb

a b

H 0

0

00
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Using the CNOT the input state of two unentangled qubits can be changed into an 

entangled state. 

 

Input: 

  

1 1
( 0 1 ) 0

2 2
  . 

 

Output: 

 

12 00

1 1 1 1
[ 0 1 ) 0 ] 0 0 1 1

2 2 2 2
C        . 

 

6. SWAP: Dirac exchange operator 

 

a b a b a

a b a b a b b a

b b a b b a

   

       

     

 

 

Note 

 

0a a  . 

 

Dirac exchange operator is defined by 

 

1 2

1 ˆˆ ˆ ˆ(1 )
2

P   σ σ , 

 

in terms of the Pauli operators. 

 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 
 
 
 
 
 

. 

 

The SWAP circuit is expressed by a circuit 
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Fig.7(a) SWAP circuit. 

 

which is equivalent to 

 

 
 

Fig.7(b) Circuit equivalent to SWAP circuit. 

 

using the CNOT circuits. The proof for this is given as follows. 

 

12 21 12 12 21

12

12

C C C a b C C a b a

C a b a b a

C b b a

b b a b

b a

   

    

  

   

 

  

 

where 0b b  . 

 

7. Controlled Z gate 

The controlled Z-gate is expressed by a circuit, 

 

1

2

a

b

b

a
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Fig.8(a) Controlled Z gate with control ( a ) and target ( b . ( 1)a abZ b b  . 

 

( 1)
a ab

C T
a b a Z b a b      , 

 

which is equivalent to the upside-down circuit, where C is control and T is target. 

 

 
 

Fig.8(b) Controlled Z gate with control ( b ) and target ( a , which is equivalent to 

Fig.8(a) 

 

since 

 

( ) ( 1)
b ab

T C
a b Z a b a b      . 

 

Here we note that 

 

( 1)
a ab

Z b b  ,  ( 1)
b

Z b b  . 

 

8. Base transformation for the Bell states 

8.1 Encode of Bell state: xyx y    

 

Encode of Bell circuit is obtained using the combination (H-CNOT) circuits. 
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Fig.9 Encode of Bell state xy . Base transformation ( xyx y    by H-

CNOT gate. 

 

The transformation 

 

xyx y    

 

can be proved as follows. 

 

Step A: Application of H-gate 

 

1

0

( )

1
( 1)

2

1
[ 0 ( 1) 1

2

xb

b

x

H

x y H x y

b y

y y



  

  

    

  

 

where 

 
1

0

1 1
( 1) [ 0 ( 1) 1 ]

2 2

xb x

b

H x b


      

 

Step B:  Application of CNOT gate 
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12

1 1
[ 0 ( 1) 1 [ 0 0 ( 1) 1 1

2 2

1
[ 0 ( 1) 1

2

x x

x

xy

C

y y y y

y y



          

    



 

 

or 

 

1
[ 0 ( 1) 1

2

x

xy y y      . 

 

where 

 

0y y  , 

1y y   

 

or more directly, we have 

 
1

12 1 12

0

1

0

1
( 1)

2

1
( 1)

2

1
[ 0 0 ( 1) 1 1 ]

2

1
[ 0 ( 1) 1 ]

2

xb

b

xb

b

x

x

xy

C H x y C b y

b y b

y y

y y







   

   

      

    







  

 

Note that the Bell states (4 states) are defined by 

 

1
[ 0 ( 1) 1

2

x

xy y y      , 

 

where 
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00

1

01 1
[ 0 0 1 1 ]

02 2

1



 
 
     
 
 
 

, 

 

01

0

11 1
[ 0 1 1 0 ]

12 2

0



 
 
     
 
 
 

, 

 

10

1

01 1
[ 0 0 1 1 ]

02 2

1



 
 
     
 
 
 

, 

 

11

0

11 1
[ 0 1 1 0 ]

12 2

0



 
 
     
 
 
 

. 

 

8.2 Decode of Bell states: xy x y    

The decode of the Bell state is obtained from the combination CNOT-H; 

 

 
 

Fig.10 Decode of Bell state xy . Base transformation ( xyx y    by H-

CNOT gate. 

1
[ 0 ( 1) 1

2

x

xy y y       

 

Step A. CNOT gate ( 12C ) 



 

15 

 

 

12

1
[ 0 0 ( 1) 1 1 ]

2

1
[ 0 ( 1) 1 ]

2

1
[ 0 ( 1) 1 ] ]

2

( )

x

xy

x

x

C

y y

y y

y

H x y

       

    

   

 

 

 

Step B. H gate 

 

2
( ) ( )

H

H x y H x y x y    
 

 

since 
2

1H  . 

 

________________________________________________________________________ 

9. Equivalent quantum circuits 

Here, we discuss several equivalent-circuits. These equivalent circuits are essential to 

the simplification of quantum circuits for the quantum teleportation and the swap circuit. 

 

9.1 Equivalent quantum circuits-1: Controlled X - CNOT 

The following two circuits are equivalent. 

 

 
 

Fig.11(a) Quantum circuit-1 

 

12 2 12 1

1

C X a b C a b

a a b

   

   
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where 

 

1b b   

 

This circuit is equivalent to 

 

 
 

Fig.11(b) Quantum circuit equivalent to Fig.11(a). 

 

2 12 2

1

X C a b X a a b

a a b

   

   
 

 

9.2 Equivalent quantum circuits-2 

The following two circuits are equivalent. 

 

 
 

Fig.12(a) Quantum circuit-2 

 

12 2 12( 1)

( 1)

b

b

C Z a b C a b

a a b

   

   
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Fig.12(b) Quantum circuit equivalent to Fig.12(a). 

 

1 2 12 1 2

( 1)

( 1)

a a b

b

Z Z C a b Z Z a a b

a a b

a a b

 

   

   

   

 

 

9.3 Equivalent quantum circuits-3 

The following two circuits are equivalent. 

 

 
 

Fig.13(a) Quantum circuit-3. 

 

12 1 12 1

1 1

C X a b C a b

a a b

   

    
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Fig.13(b) Quantum circuit equivalent to Fig.13(a). 

 

1 2 12 1 2

1 1

X X C a b X X a a b

a a b

   

    
 

 

9.4 Equivalent quantum circuits-4 

The following two circuits are equivalent. 

 

 
 

Fig.14(a) Z-gate and CNOT. Quantum circuit-4. 1: control. 2: target. Input: a b . 

Output: ( 1)a a a b   .  

 

 

1 12 1( )

( 1)
a

Z C a b Z a a b

a a b

   

   
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Fig.14(b) CNOT and Z-gate. Quantum circuit equivalent to the quantum circuit -4 of 

Fig.14(a). 1: control. 2: target. Input: a b . Output: ( 1)a a a b   . 

Figs.14(a) and (b) are equivalent. 

 

12 1 12( ) ( 1)

( 1)

a

a

C Z a b C a a

a a b

   

   
 

 

9.5 Equivalent quantum circuits-5 

The following two circuits are equivalent. 

 

 
 

Fig.15(a) Controlled Z gate. Quantum circuit-5. Control gate ( a ) and target gate 

( b ). 1: control ( a  . 2: target ( b ) . Input: a b . Output:

( 1)ab a b  . 

 

( 1)

( 1)

a ab

ab

a Z b a b

a b

   

  
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Fig.15(b) Controlled Z gate. Control gate ( b ) and target gate ( a ).

( 1)
b ab

Z a b a b    .Figs.15(a) and 15(b) are equivalent. CZ gate 

is non-local, independent of the choice of control and target. 

 

9.6 Equivalent quantum circuit-6 

The following two circuits are equivalent. 

 

 
 

Fig.16(a) Quantum circuit-6, with 4 H-gates and 1 CZ-gate. Control gate ( a ) and 

target gate ( b ). Input: a b . Output: a b b  . 

 

This quantum circuit is equivalent to the following circuit. 

 

 
 

 

a

b
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Fig.16(b) CNOT gate. Quantum circuit equivalent to Fig.16(a). Control gate ( b ) and 

target gate ( a ). The input: Input: a b . Output: a b b  . 

 

Step-1: 

 
1

'

' 0

1
( 1) '

2

aa

a

H a a


  ,  
1

'

' 0

1
( 1) '

2

bb

b

H b b


   

 
1

' '

', ' 0

1
( 1) ' '

2

aa bb

a b

H a H b a b



     

 

Step-2: 

 
1

' '

12 12

', ' 0

1
' '

', ' 0

1
( ) ( 1) ' '

2

1
( 1) ' ' '

2

1
[ 0 0 0 ( 1) 0 1 0

2

( 1) 1 0 1 ( 1) 1 1 1 ]

1
[ 0 0 ( 1) 0 1

2

( 1) 1 1 ( 1) 1 0 ]

aa bb

a b

aa bb

a b

b

a a b

b

a a b

C H a H b C a b

a b a













   

   

      

       

    

     





 

 

or 

 

12

1
( ) { 0 [ 0 ( 1) 1 ]

2

( 1) 1 [ 0 ( 1) 1 ]}

1
{ 0 [ 0 ( 1) 1 ]

2

( 1) 1 [ 0 ( 1) 1 ]}

1
[ 0 ( 1) 1 ] [ 0 ( 1) 1 ]

2

b

a b b

b

a b b

a b b

C H a H b

H a b H b

 





    

   

   

    

     

  

 

 

Step-3: 
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2 2H a b H b a b b      

 

since 
2

1H  . 

 

10. Quantum teleportation 

10.1 Principle of quantum teleportation 

 

 
 

Fig.17 Quantum teleportation. The detail of this Figure is given in the section of 

Quantum teleportation> 

http://bingweb.binghamton.edu/~suzuki/QuantumMechanicsFiles/10-

3_Quantum_teleportation.pdf 

 

0 1
C


  


 

    
 

:    the state of Charlie 

 

0 1 0 1
C

Z Z Z         

 

0 1 1 0 0 1
C

X X X             
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0 1 1 0
C

XZ X X         

 

xy :  Bell state (EP pair; Alice and Bob) 

 

00

1

01 1
[ 0 0 1 1

02 2

1

AB


 
 
     
 
 
 

  

 

(the Bell state shared by Alice and Bob) 

 

It is shown that 

 

00 00 01

10 11

1

, 0

1 1

2 2

1 1

2 2

1

2

C AB CA B CA B

CA B CA B

y x

xy BCA
x y

X

Z XZ

X Z

     

   

 


    

   

 

  

 

where 

00

0

1 0

01 1

02 2

1 0

0

C AB



 
 

 



 
 
 
  
  

               
  
 
  
 

 

 

which is equal to 
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0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

 
 

 
 
 
 

 
 









     

2

0

0

2

2

0

0

2








  

 

where 

00

1 0

0 01 1

0 02 2

1 0

CA B





 






 
 
 
  
  

                
  
 
  
 

 

 

01

0

0

0

11 1

12 2

0

0

0

CA B
X


 

 
 



 
 
 
  
  

                
  
 
  
 

 

 

10

1 0

0 01 1

0 02 2

1 0

CA B
Z





 






 
  
  
  

                
   

 
  
 

 



 

25 

 

 

11

0

0

0

11 1

12 2

0

0

0

CA B
XZ


 

 
 



 
 
 
  
                   
  
 
  
 

 

 

00 00 01

10 11

1

, 0

1 1

2 2

1 1

2 2

1

2

C AB CA B CA B

CA B CA B

y x

xy BCA
x y

X

Z XZ

X Z

     

   

 


    

   

 

 

 

Suppose that Alice measures the state ' 'x y CA
  shared with Charlie. Immediately, the 

system collapses, and Bob can measure the state 

 
y x

B
X Z  , 

 

1

00

, 0

1

, 0

1
( )( )

2

1

2

x y y x

C AB CA B
x y

CA B
x y

xy Z X X Z

xy

  







  

 




 

 

Immediately after Alice measures the Bell state 
CA

xy , the system collapses into 

CA B
xy  . So, Bob gets the state 

B
 . 

 

10.2 Quantum circuit of quantum teleportation (I) 

 



 

26 

 

 
 

Fig.18 Quantum teleportation circuit (Alice, Bob, and Charlie). The box B denotes 

the generation of the Bell state. The box M denotes the measurement 

 

 
 

Fig.19 Equivalent quantum circuit of quantum teleportation, with encode of Bell 

state 00  and decode of the Bell state. 

 

 
 

Fig.20 The quantum circuit of quantum teleportation. Within the green box, the H-

gate can be shifted to the right, while the X-gate can be shifted to the left. 

The output is not influenced by these shifts. 
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After shifting the Hadamard gate to the right in Charlie-channel, equivalently, we have 

 

 
 

Fig.21 The circuit as input with the states a  (Charlie), 0  (Alice), and 0  (Bob). 

 

We now discuss the response of this circuit when the states a  (Charlie), 0  (Alice), 

and 0  (Bob) are given as input from the right.  

 

 
 

Fig.22 Quantum teleportation circuit. The output after step-G is 

00 01

1
( )

2
CA CA B

a   . Immediately after Alice measures one of the 

Bell states ( 00 CA
 , 01 CA

 ), the state of the system collapses, leading the 

state of Bob into the state 
B

a . In other words, the state 
C

a  of Charlie is 

transferred to Bob as the state 
B

a . 

 

We will show that this quantum circuit is similar to the circuit of SWAP, by each step. 

 

Step-A: 
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0 0
C A B

a    (as input) 

 

Step-B: 

 

1
( 0 ) 0 ( 0 1 ) 0

2

1
[ 0 0 1 0 ]

2

a H a

a a

     

     
 

 

Step C: 
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1 1
[ ( 0 0 ) ( 1 0 )] [ 0 0 1 1 ]

2 2
C a a a a             

 

Step-D: 

 

12

1 1
[( 0 ) 0 ( 1 ) 1 ] [ 0 1 1 ]

2 2
C a a a a a a             

 

Step-E: 

 

11 1
[ [ 0 1 1 ] [ [ 1 1 1 ]

2 2

0 ]

a a
a a X a X a a a a a

a H a

            

  
 

 

where 

 

1 0 1

2 0

2 0

a a

a

a a X X

X H

H

   





 

 

0 0 0a aX H HZ H   

 

Step-F: 

 

1
0 [ 0 ( 1) 1 ] 0

2

aH a H a H a         
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where 

 

1
[ 0 ( 1) 1 ]

2

aH a     

 

Step-G: 

 

0 1

00 01

1
[ 0 0 ( 1) 1 0

2

1
[ 0 0 ( 1) 1 0 ( 1)

2

1
[ 0 0 1 0

2

1
[ 0 0 0 1 1 0 1 1 )

2

0 0 1 1 0 1 1 01 1
)

2 2 2 2

1 1

2 2

a

a a

H Z a H Z a

H a H a

H a H a

a

a a

a a 

     

       

     

        

     
   

   

  

 

or 

 

output= 00 01

1
( )

2
a   . 

 

where  
2

( 1) 1
a  , and the Bell states are defined as 

 

00

1

01 1
[ 0 0 1 1 ]

02 2

1



 
 
     
 
 
 

 

 

01

0

11 1
[ 0 1 1 0 ]

12 2

0



 
 
     
 
 
 

, 
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Finally, Alice can measure either the state 00 CA
  or 01 CA

 with the probability of 50 %. 

After the measurement by Alice, the state collapses. As a result, Bob measures the state 

a , independent of her choice of the state. 

 

11. More simplified circuit of quantum teleportation (I) 

We start with the quantum circuit of quantum teleportation which is previous derived. 

 

 

 
 

Fig.23(a) The same figure as Fig.22 

 

 
 

Fig.23(b) The change of the location of the input from the position A to B. The input 

at the position A is 0 0
C A B

a H  . 

 

The input is expressed by the state, 0 0
C A B

a   . The state at the line B is given by 

0 0
C A B

a H  . The circuit after the line B can be rewritten as 
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Fig.23(c) The change of location between H and X withing the green box. The element 

H shifts to the left, while the element X shifts to the right, without any effect 

on the output. 

 

There are H and CX within enclosed by the green box. It is clear that the output at the line 

F is not influenced by the shift of H to the left and the shift of CX to the right within the 

green box. The output at the line G is expressed by the state 

 

 
 

Fig.23 (d) Quantum circuit of quantum teleportation. The output at the line G is given 

by 00 01

1
( )

2
CA BCA

a   . Immediately after Alice measures the Bell 

states (either 00 CA
  or 01 CA

 ), the state of Bob collapses to the state 
B

a .  

 

12. Swap circuit 

12.1 Original swap circuit 

We consider the following SWAP circuit. Is this another quantum teleportation? In the 

input, the states of Bob and Charlie are 0
B

and 
C

 , respectively. Alice is not involved 

in the process. There is also no classical communication, unlike the quantum teleportation. 
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Fig.24 (a) SWAP circuit. Alice is not involved in this process. The result is 

independent of the choice of the state of Alice.  

 

 
 

Fig.24(b) Equivalent circuit of SWAP, where the SWAP is replaced by CNOTs. 
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Fig.25 The same circuit as Fig.26(b), with input ( a  for Charlie, for Alice b , 

and 0  for Bob). 

 

Step-A: 12 0 0C a b a a b       

 

Step-B:  23 0C a a b a a b a b         

 

Step-C: 

 

12C a a b a b a a a b a b

a b a b

         

   
 

 

where  0a a   

 

Step-D: 

 

23C a b a b a b b a b

a b a

       

  
 

 

Step-E: 
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0

C a b a a a b a

b a

     

  
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Fig.26 In SWAP, the circuit elements 1E , 2E , and 3E  can be replaced by the 

corresponding equivalent circuits. 

 

12.2 Use of the equivalent circuits 

The following two circuits are equivalent. 

 

 
 

Fig.27  Controlled Z gate. ( 1)a abZ b b  . 

 

( 1)a abZ b b  ,  leading to ( 1)ab a b   

 

which is equivalent to a circuit (controlled Z gate) 
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Fig.28 ( 1)b abZ a a  . CZ (controlled Z) is nonlocal, independent of the choice 

of the control and the target. 

 

( 1)b abZ a a    leading to ( 1)ab a b   

 

 
 

Fig.29  The circuit of Fig.31 is equivalent to that in Fig.32. 

 

a a b a b c       

 

which is equivalent to  

 

a

b

c

a

a b

a b c
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Fig.30  The circuit of Fig.32 is equivalent to that in Fig.31. 

 

since 

 
a ba a b X c a a b a b c         , 

 

where 

 
1 1X c c c    

 
a bX c c a b     

 

12.3 Modified swap circuit (which is equivalent to the original SWAP 
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Fig.31(a) The staring quantum circuit (which is the same as Fig.28. 

 

which is equivalent to the following circuit.The elements E1 and E3 are replaced by the 

corresponding equivalent circuits as follows. 

 

 
 

Fig.31 (b) 

 

The element E2 is replaced by the corresponding equivalent circuit as follows. 

 

 
 

Fig.31 (c): Controlled Z is nonlocal in the elements E4. Even if the location of the 

control and target is changed, the role of CZ remains unchanged. 

 

The element E4 is replaced by the corresponding equivalent circuit as follows. 

 

 
 

Fig.31(d)  
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It is obvious that 

 

 
 

Fig.31(e): For the H and CX in the green box, with on change of the circuit, H can be 

shifted to the left, while CX can be shifted to the right within the box. 

 

is equivalent to 

 

 
 

Fig.31(f): The circuit after shifting H and CX within the green box. The input: a  for 

Charlie. The input: 0  for Bob. For simplicity, we choose the input 0H  

for Alice. This input is arbitrary. 
1

0 [ 0 1 ]
2

A A A
H   . 

 

 
 

Fig.32 The equivalent quantum circuit for the SWAP. 
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We check the result after each step. 

 

Step-A: 0 0a   (input) 

 

Step-B: 0 0 0 0aa Z a     (the control Z gate is actually 

necessary) 

 

Step-C: 

 

1
0 0 [ ( 0 1 ) 0 ]

2

1
[ 00 10 ]

2

a H a

a a

     

 
  

 

Step-D: 

 

23

1 1
( 00 10 ) ( 00 11 )

2 2
a C a      

 

Step-E: 

 

12

1 1
( 00 11 ) ( , 0 , 1 1 )

2 2

1
( , 0 , 1 )

2

C a a a a a a

a a a a

     

   
 

 

Step-F: 

 

'

'

1
( 0 1 )

2

1
( 1) [ ' 0 ' 1 ]

2

1 1
0 0 0 1

2 2

1 1
( 1) 1 0 ( 1) 1 1

2 2

aa

a

a a

H a a H a a

a a a a

a a

a a

    

      

     

       


 

 

Step-G: 
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1

1

1 1
0 0 0 1 1

2 2

1 1
( 1) 1 0 ( 1) 1 1 1

2 2

1 1
0 0 1 2

2 2

1 1
( 1) 1 ( 1) 1 1 2

2 2

1 1
0 0 1

2 2

1 1
( 1) 1 ( 1) 1 1

2 2

a a

a a a a

a a

a a

a X a X

a X a X

a a a a

a a a a

a a a a

a a a a





     

        

       

         

      

        

 

 

 
 

Fig.33 

 

Step-H: 

 

0 0

2 2

1 1
0 0 1

2 2

1 1
( 1) 1 ( 1) 1 1

2 2

1 1
0 0 1

2 2

1 1
( 1) 1 ( 1) 1 1

2 2

1 1
0 0 1

2 2

1 1
1 1 1

2 2

a a

a a

a Z a a Z a

a Z a a Z a

a a a a

a a a a

a a a a

a a a a

     

        

      

        

      

      
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Step-I: 

 

1 1
0 0 1

2 2

1 1
1 1 1

2 2

1 1
[ 0 1 ] [ 0 1 ] 1

2 2

1 1
0 0 1

2 2

1 1
0 [ 1 ]

2 2

H a a H a a

H a a H a a

H H a a H H a a

a a a a

a a a

     

      

        

      

    

 

 

Here we note that 

 

1 1 1
1 ] [ 0 1 ]

2 2 2

0

0

a

a

a a X

X H

H

   





 

 

since 

 

0aX a ,  1 0 1aX a   . 

 

Using the relations 

 

HXH Z , 
2

1H  , 

 

we get 

 

( ) ( )( )......( )
a

a

HXH HXH HXH HXH

HX H




 

 

or 

 

( )a a aZ HXH HX H  , 

 

or 
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a a

HZ X H . 

 

Thus, we have 

 

0 0 0a aX H HZ H  . 

 

So the output of the above quantum circuit is 

 

0 0H a  . 

 

This is the equivalent circuit of swap. The final result is as follows. 

 

 
 

Fig.34 SWAP. The output: 0
C

, 0
A

H , and 
B

a . The input: 
C

a , 0
A

H , and 

0
B

.  

 

Even if the box with green can be removed from the circuit, both the input and output 

remain unchanged. 

 

 
 

Fig.35 No change occurs to the circuit upon the removal of the circuit element 

enclosed by the green box. 

 

Note that 
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Fig.36  Checking the possibility of removing H-Z-H gate. 

 

Input:  0a H  

Step-A: 2 0 0a H a     

Step-B: 0 0aa Z a    

Step-C: 0a H  

 

So that the output is the same as the input. If we use the input 0a H , the H-Z-H gate 

can be removed. 

 

 
 

Fig.37 The output after the step E; 00 01

1
[ ]

2
CA CA

a   . Immediately after 

Alice measures one of the Bell states ( 00 CA
 , 01 CA

 ), the state of Bob 

collapse into the state a . The output after the step F; 0 0
C A B

H a  . 

 

Input: 
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1
0 0 ( 0 1 ) 0

2

1
[ 0 0 1 ) 0 ]

2

a H a

a a

     

     
  

 

Step-A: 

 

23

00

1 1
[ 0 0 1 ) 0 ] [ 0 0 1 ) 1 ]

2 2

0 0 1 1

2

C a a a a

a

a 

          

  
 

 

 

 

where 

 

00

0 0 1 ) 1

2
AB


  

    (Bell state) 

 

Step-B: 

 

12

1
[ 0 0 1 ) 1 ]

2

1
[ 0 1 ) 1 ]

2

C a a

a a a a

    

      
 

 

Step-C: 

 

'

'

1
[ 0 1 1 ]

2

1
( 1) ' [ 0 1 ) 1 ]

2

1
[ 0 ( 1) 1 [ 0 1 ) 1 ]

2

1 1
0 0 0 1 ) 1

2 2

1 1
( 1) 1 0 ( 1) 1 1 ) 1

2 2

aa

a

a

a a

H a a a

a a a

a a

a a

a a

    

      

       

      

        


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Step-D: 

 

1

1

1 1
0 0 0 1 ) 1

2 2

1 1
( 1) 1 0 ( 1) 1 1 ) 1

2 2

1 1
0 0 1 ) 1 1

2 2

1 1
( 1) 1 ( 1) 1 1 ) 1 1

2 2

1 1
[ 0 0 1 )
2 2

1 1
( 1) 1 ( 1) 1 1 )

2 2

a a

a a a a

a a

a a

a X a X

a X a X

a a a a

a a a a

a a a a

a a a a





     

        

        

          

      

        

  

 

Step-E: 

 

0 0

2 2

1 1
0 0 1 )

2 2

1 1
( 1) 1 ( 1) 1 1 )

2 2

1 1
0 0 1 )

2 2

1 1
( 1) 1 ( 1) 1 1 )

2 2

1 1
0 0 1 )

2 2

1 1
1 1 1 )

2 2

a a

a a

a Z a a Z a

a Z a a Z a

a a a a

a a a a

a a a a

a a a a

     

        

      

        

      

      

  

 

where 

 

00 01

1 1
0 ( 1 ) 1 ( 1 )

2 2

1 1
0 0 1 0

2 2

0 0

1
[ ]

2
CA CA

a a a a a a

H a H a

H H a

a 

        

     

  

  
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Note that 

 

00 01

1
0 0 [( 0 1 ) ( 0 1 )]

2

1
[ 0 0 0 1 1 0 1 1 ]

2

0 0 1 1 0 1 1 01
[ ]

2 2 2

1
[ ]

2
CA CA

H H

 

    

       

     
 

 

  

 

Step-F: 

 
2 0 0 0 0H H a H a      

 

or 

 

1
0 0 [ 0 [ 0 1 ]

2

1 1
0 0 0 1 ]

2 2

H a a

a a

     

     
  

 

Note that 

 

1
( 1 ) 0

2
a a H   . 

 

13. Summary 

Using the equivalent circuits of the quantum computer, it is shown that the SWAP 

circuit is equivalent to the quantum circuit of the quantum teleportation. The equivalent 

circuit for the quantum teleportation and the SWAP is obtained as 
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Fig.38  Equivalent circuit both for the quantum teleportation and the SWAP. 

 

Immediately after one of the Bell states ( 00 CA
  or 01 CA

 ) shared with Alice and Charlie, 

is measured by Alice, the system, collapses. Bob observes the state 
B

a , which is the same 

state which Charlie has as an input (
C

a . Note that a  is any linear combination of qubits 

0  and 1 . 

________________________________________________________________________ 
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APPENDIX-A Fundamental properties 

 

a=0  or a = 1 

 

0a a  , , 1a a   ( ( 1) ( ) 1 1a a a a      . 

 

0a a  , 1a a  . 

 

1 ( 1) 1 0a a a a       . 
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1

0

1
( 1)

2

ab

b

H a b


  ,  
1

( )
2

H X Z  . 

 

'

'

1
( 1) '

2

aa

a

H a a    

 

'

'

( ) '

'

1
( 1) '

2

1
( 1) '

2

b aa b

a

a b a

a

Z H a Z a

a

H a b



 

 

 



  

 
2bHZ H a H a b a b    . 

 

1X a a a   . 

 

( 1) ( 1) 1a aY a i a i a     . 

 

( 1)aZ a a  . 

 
aX b a b  . 

 

( 1)a abZ b b  . 

 
2

1H  . 

 

HXH Z , HYH Y  , HZH X . 

 
a a

HX H Z , ( )a a aHY H Y  , 
a a

HZ H X . 
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1 1 1
1 ] [ 0 1 ]

2 2 2

0

0

0

1
[ 0 1 ]

2

a

a

a

a a X

X H

HZ

H

   







 

. 

 

12C a b a b a    . 

 
2 2 2

1X Y Z   . 

 

[ , ] 2X Y iZ ,  [ , ] 2Y Z iX ,  [ , ] 2Z X iY . 

Kronecker product: 

 

0 0 ( )( 0 0 )H H H H    . 

 

1 11

1 12
H

 
   

, 
1

0
0

 
  
 

. 

 

1 1 1 11 1

1 1 1 12 2

1 1 1 1

1 1 1 11

1 1 1 12

1 1 1 1

H H
   

         

 
   
  
 

  

 

 

1

1 1 0
0 0

0 0 0

0

 
 

                
 
 

. 

 

1 1 1 1 1 1

1 1 1 1 0 11 1
0 0

1 1 1 1 0 12 2

1 1 1 1 0 1

H H

     
            
     
    

     

. 
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Pauli matrix: 

 

0 1

1 0
X

 
  
 

,   
0

0

i
Y

i

 
  
 

,  
1 0

0 1
Z

 
   

. 

 

0 1X  , 1 0X  , 

 

0 1Y i  , 1 0Y i , 

 

0 0Z  , 1 1Z   . 

 

Qubits: 

 

1
0

0

 
  
 

, 
0

1
1

 
  
 

. 

 

APPENDIX B 

B-1 Another example of quantum teleportation (II) 

Here we consider the following simple quantum circuit (as a simple example). We find 

this example from a book [C. Bernhardt, Quantum Computing for Everyone (MIT 

Press, 2019)]. 

 

 
 

Fig.B1 Quantum teleportation. Alice, Bob, and Charlie 

 

0 1
C

a b   ,   (the initial state of Charlie) 
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00

1
[ 0 0 1 1 ]

2
AB A B A B

      (Bell state between Alice and Bob) 

 

 
 

Fig.B2 Quantum circuit corresponding to Fig.B1. 

 

Step-A: 

 

00

1
[ 0 1 ] ( 00 11 )

2

1
[ 000 011 100 111 ]

2

1
[ 00 0 01 1 10 0 11 1 ]

2

C ABC AB
a b

a a b b

a a b b

     

   

       

  

 

Step-B: CNOT between channels 1 (Charlie) and 2 (Alice): 

 

12 12 12 12

1
[ 00 0 01 1 10 0 11 1 ]

2

1
[ 00 0 01 1 11 0 10 1 ]

2

1
[ 0 00 0 11 1 10 1 01 ]

2

1
[ 0 ( 00 11 ) 1 ( 10 01 )]

2

aC aC bC bC

a a b b

a a b b

a b

      

       

       

     

  

 

where we use the relation 12 1 2 1 2
( )C a b a a b      
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Step-C: Hadamard gate in the channel-1 (Charlie) 

 

1 1
0 ( 00 11 ) 1 ( 10 01 ]

2 2

1 1
( 0 1 ) ( 00 11 ) ( 0 1 ) ( 10 01 ]

2 2

1 1 1 1
00 0 01 1 10 0 11 1

2 2 2 2

1 1 1 1
01 0 00 1 11 0 10 1

2 2 2 2

1 1
00 [ 0 1 ] 01 [ 1 0 ]

2 2

1 1
10 [ 0 1 ] 11 [ 1 0 ]

2 2

aH bH

a b

a a a a

b b b b

a b a b

a b a b

    

       

       

       

     

     

  

 

where 

 

1
0 [ 0 1 ]

2
H   ,  

1
1 [ 0 1 ]

2
H    

 

Alice now measures her two particles in the standard basis. She will get one of 00 , 

01 , 10 , and 11 , each with probability 1/4. 

 

If she gets 00  , Bob’s qubit will jump to state: . 

If she gets 01  , Bob’s qubit will jump to state: 1 0a b . 

If she gets 10  , Bob’s qubit will jump to state: 0 1a b   

If she gets 11  , Bob’s qubit will jump to state 1 0a b . 

 

Alice and Bob want Bob’s qubit to be in the state . It is almost there, but not 

quite. To sort things out, Alice has to let Bob know which of the four possible situations 

he is in. She sends Bob two classical bits of information, 00, 01, 10, or 11, corresponding 

to the results of her measurements, to let him know. These bits of information can be sent 

in any way, by text (by classical communication). 

 

0 1a b

0 1a b



 

53 

 

If Bob receives 00 from Alice, he knows that his qubit is in the correct form 

and so does nothing. 

 
0 0[ 0 1 ] 0 1Z X a b a b   . 

 

If Bob receives 01 from Alice, he knows that his qubit is 1 0a b . He applies the 

gate X to it. 

 
0 1[ 1 0 ] 1 0

0 1

Z X a b aX bX

a b

  

 
. 

 

If Bob receives 10 from Alice, he knows that his qubit is 0 1a b . He applies the 

gate Z to it. 

 
1 0[ 0 1 ] 0 1

0 1

Z X a b aZ bZ

a b

  

 
. 

 

If Bob receives 11 from Alice, he knows that his qubit is 1 0a b . He applies the gate 

ZX to it. 

 
1 1[ 1 0 ] [ 1 0 ]

[ 0 1 ]

0 1

Z X a b Z aX bX

Z a b

a b

  

 

 

. 

 

In every case, Bob’s qubit ends in state 0 1a b , the original state of the qubit that Alice 

wanted to teleport. It is important to note that there is only one qubit in state 0 1a b at 

any point during the process. Initially, Alice has it. At the end Bob has it, but as the no 

cloning theorem tells us, we cannot copy, so only one of them can have it at a time. It is 

also interesting to observe that when Alice sends her qubits through her circuit Bob’s qubit 

instantaneously jumps to one of the four states. He has to wait for Alice to send him the 

two classical bits before he can determine which of the four qubits correspond to Alice’s 

original qubit.  

 

B-2 Slight modification of the quantum circuit (II) 

0 1a b
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Suppose that we add the controlled X-gate and the controlled Z-gate after the output of 

the original circuit. 

 

 
 

Fig.B3 The circuit with input-1 ( [ 0 1 ]CC
a b    for Charlie, input-2 and 

input-3 (the Bell state 00 AB
 ) shared with Alice and Bob. The output is 

00 01

1
( ) [ 0 1 ]

2
BCA CA

a b    . Immediately after Alice measures 

one of the Bell states ( 00 CA
 , 0` CA

 , the system collapses, and Bob 

observes the state [ 0 1 ]BB
a b   . 

 

We can change the order of measurement and control since the measurement commutes 

with controls. 

 

1 1 1 1
000 011 100 111

2 2 2 2

1 1 1 1
010 001 110 101

2 2 2 2

a a a a

b b b b

  

   
 

 

Step-D: Controlled Z and X 

 

1 2

1 2 3Z X      

 

where 

 
0 0000 00 0 000Z X   , 

 
0 1011 01 1 010Z X   , 
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1 0100 10 0 100Z X   , 

 
1 1111 11 1 110Z X   , 

 
0 1010 01 0 011Z X   , 

 
0 0001 00 1 001Z X   , 

 
1 1110 11 0 111Z X    , 

 
1 0101 10 1 101Z X    . 

 

Thus, we have 

 

1 1 1 1
000 010 101 110

2 2 2 2

1 1 1 1
011 001 111 101

2 2 2 2

1 1
[ 000 001 ] [ 010 011 ]

2 2

1 1 1
[ 100 101 ] [ 110 111 ]

2 2 2

1
[ 00 01 10 11 ] [ 0 1 ]

2

a a a a

b b b b

a b a b

a b a b

a b

  

   

   

   

     

 

 

Using the Bell states, we get the final result as 

 

00 01

0 11
[( 00 11 ) ( 01 10 )]

2 2

1
( ) [ 0 1 ]

2
BCA CA

a b

a b 


   

   

  

 

When Alice now measures her two electrons in the Bell states; 00 CA
  and Then we find 

that Bob’s qubit will always jump to the state [ 0 1 ]BB
a b   , independent of the 

kinds of measurement by Alice. 

________________________________________________________________________ 


