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In quantum mechanics, the probability current (sometimes called probability flux) 

is a mathematical quantity describing the flow of probability (i.e. probability per unit 
time per unit area). Intuitively, if one pictures the probability density as an 
inhomogeneous fluid, then the probability current is the rate of flow of this fluid. This is 
analogous to mass currents in hydrodynamics and electric currents in electromagnetism. 
It is a real vector, like electric current density. The notion of a probability current is 
useful in some of the formalism in quantum mechanics. 
Wikipedia: http://en.wikipedia.org/wiki/Probability_current 
 
1. Probability current density 

The probability density is defined by 
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taken over some finite volume V, is the probability of finding the particle in this volume. 
Let us calculate the derivative of the probability with respect to time t. 
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Complex conjugate of this equation 
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Note that 
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((Proof)) 

We use the formula of vector analysis. 
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The complex conjugate of the above equation 
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From the above equations, we get 
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We note that 
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or 
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Then the probability current density can be defined as 
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((Note-1)) What is the units of J? 
 

The unit of J should be [cm-2 s-1]. Since 1
2  rd , the unit of  *  is [cm-4]. Then 

the unit of J is evaluated as 
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The unit of  rr dJ )(  is [cm/s] which is the unit of the velocity. 

 
((Note-2))  Comment on the formula 
((L.I. Schiff, Quantum Mechanics, McGraw-Hill, 1968)) 
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“Although this interpretation of J is suggestive, it must be realized that J is not 
susceptible to direct measurement in the sense in which the probability P is. It would be 
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misleading, for example, to say that J(r, t) is the average measured particle flux at the 
point r and the time t, because a measurement of average local flux implies simultaneous 
high-precision measurements of position and velocity (which is equivalent to momentum) 
and is therefore inconsistent with the uncertainty relation. Nevertheless, it is sometimes 
helpful to think of J as a flux vector, especially when it depends only slightly or not at all 
on r, so that an accurate velocity determination can be made without impairing the 
usefulness of the concept of flux.” 
 
((Note-3)) The reason why J is called the probability current density. 
(J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd edition, Addison-
Wesley, 2011) 
 
What is the relation between the average of momentum and the probability current 
density? 
 
We may intuitively expect that the average value of the momentum operator at time t is 
related to the Probability current density ),( tJ r  as 
 

 ),(
1

td
m t

rrJp  

 
where 

t
p  is the average of the momentum operator and is defined by 
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This expectation value is in fact real since 
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Thus we have 
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((Note-4)) E. Merzbacher, Quantum Mechanics (John Wiley & Sons, 1998) 
 

By using the continuity equation, the time derivative of the average x coordinate can 
be written as 
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or 
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where the divergence term is removed under the assumption that   vanishes sufficiently 
fast at infinity. Using the expression of ),( trJ  and integration by parts, we obtain 
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2. Equation of continuity 

The probability density is defined as 



 

6 
 

 
 * . 

 
We take the derivative of  with respect to t, 
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Using the Schrödinger equation, we get 
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We now calculate J , 
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where we use the vector formula 
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Then we have the equation of continuity 
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Using the Gauss’s theorem, this can be rewritten as 
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where da is the element of surface area vector whose direction is normal to the surface. 
 
3. Examples 
(a) The plane wave 
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The probability current density is obtained as 
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Fig. Flux density J: particles number flowing per unit area per unit time. 
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(b) The superposition of the plane waves 
 
Suppose that 
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4. Conservation of the probability current density at the boundary for the one 

dimensional barrier problem 
We consider the boundary condition one dimensional barrier problem as shown 

below.  
 
The probability current density is defined by 
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Because of particle (flux) conservation, both   and 
dx

d
 must be continuous at the 

barrier border at x = -a/2 and x = a/2. In other words, when   and 
dx

d
 are continuous at 

the boundary, the flux conservation is valid. 
 
(a) Region-I 
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The probability current density is given by 
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(b) Region-II 
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The probability current density 
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(c) Region III 
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The probability current density 
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From the continuity of   and 
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, we get the relations between a1, b1, a2, b2, a3, and b3. 
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We find that 
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5. Lagrangian of particles with mass m* and charge q* in the presence of 

magnetic field 
The Lagrangian L for the motion of a particle in the presence of magnetic field and 

electric field is given by 
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where m* and q* are the mass and charge of the particle. A is a vector potential and  is a 
scalar potential. 
 
The canonical momentum is defined as 
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The mechanical momentum (the measurable quantity) is given by 
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The Hamiltonian formalism uses A and , and not E and B, directly. The result is that the 
description of the particle depends on the gauge chosen. 
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6. Current density for the superconductors 
We consider the current density for the superconductor.  is the order parameter of 

the superconductor and m* and q* are the mass and charge of the Cooper pairs. The 
current density is invariant under the gauge transformation. 
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The density is also gauge independent. 
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7. Probability current density (general case) 

Now we assume that 
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The last term is pure imaginary. Then the current density is obtained as 
 

ss q
c

q

m

q
vAJ

2*
*

2

*

*

)(  



, 

 
or 

sm
c

q
vA *

*

 . 

 



 

13 
 

Since 
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Note that Js (or vs) is gauge-invariant. Under the gauge transformation, the wave function 
is transformed as 
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So the current density is invariant under the gauge transformation. 
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The last term is pure imaginary. Then the probability current density is obtained 
as 
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8. Meissner effect: London equation 

We start with 
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We assume that sn2  is independent of r. Then we get 
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Suppose that p = 0. Then we have a London’s equation given by 
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Using the Maxwell’s equation 
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Inside the system, B become s zero, corresponding to the Meissner effect. 
 
9. Flux quantization 

We start with the current density 
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Suppose that 
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The path of integration can be taken inside the penetration depth where sJ =0. 
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where  is the magnetic flux. Then we find that 
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where n is an integer. The phase  of the wave function must be unique, or differ by a 
multiple of 2 at each point, 
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The flux is quantized. When |q*| = 2|e|, we have a magnetic quantum fluxoid; 
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