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1. Introduction 

The scanning tunneling microscope (STM), developed by Gerd Binning and Heinrich Rohrer, 
delivers pictures of a solid surface with atomic resolution. A direct real-space image of s surface 
is obtained by moving a tiny metal tip across the sample surface and recording the electron 
tunnel current between tip and sample as a function of position. In this sense, the STM belongs 
to the  
 

 
 
Fig. Constant-tunneling current STM image of a quantum corral consisting of 48 Fe atoms 

assembled in a ring on a Cu(111) surface at 4 K (imaging bias: 0.02 V). The ring with a 
diameter of 142.6 Å encloses a defect-free area of the surface. Inside of the corral a 
circular standing wave of electrons in sp-like surface states of the Cu(111) surface is 
visible.  

 
2. Electron tunneling 
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For the description of the phenomenon called electron tunneling, we assume a rectangular 
potential barrier with spatial extension a (width) on the x axis and energetic height V0 on the 
energy scale. The tunneling problem can be described in terms of a stationary flux of electrons 
left and right of the barrier and the potential in the time independent Schrodinger equation is 
assumed piecewise as constant. 

For simplicity, we assume a symmetric potential. The energy of the electron () is assumed to be 

lower than the top of the potential barrier V0; 0<<V0. 
Because of particle (flux) conservation, both   and dxd /  must be continuous at the 

barrier borders at x = -a/2 and a/2. 
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(b) Boundary condition at 
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Then we get 
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We now consider the special case of transmission of particles which appraoch the barrier from 
the left side. b3 must be assumed to be zero (b3 = 0). Then we obtain 
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The transmission amplitude from the left to the right describes the tunneling of the electron 
through the barrier in terms of an attenuation of the incoming wave amplitude upon transmission 
through the barrier. 
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The transmission probability is 
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For high and wide barriers with low transmission probability one has . 1a , we have 
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Suppose that there is a 1D barrier potential. When a = dx, and V0 = V(x), then we have the total 
transition probability as 
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3. Mathematica 
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Clear "Global` " ;

exp : exp . Complex re , im Complex re, im ;

f11 a1 Exp k x

b1 Exp k x ;

f12 D f11, x ;

f21 a2 Exp x

b2 Exp x ;

f22 D f21, x ;

f31 a3 Exp k x

b3 Exp k x ;

f32 D f31, x ;

eq11 f11 f21 . x a 2;

eq12 f12 f22 . x a 2;

eq1 Solve eq11, eq12 , a1, b1 Simplify;

M11 D a1 . eq1 1 , a2 ; M12 D a1 . eq1 1 , b2 ;

M21 D b1 . eq1 1 , a2 ;

M22 D b1 . eq1 1 , b2 ;



 

8 
 

Ma
M11 M12
M21 M22

Simplify; Ma MatrixForm
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eq21 f21 f31 . x a 2; eq22 f22 f32 . x a 2;

eq2 Solve eq21, eq22 , a3, b3 Simplify;

N11 D a3 . eq2 1 , a2 ;

N12 D a3 . eq2 1 , b2 ;

N21 D b3 . eq2 1 , a2 ;

N22 D b3 . eq2 1 , b2 ;

Mb
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Simplify; Mb MatrixForm
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4. Scanning tunneling microscope 

The scanning tunneling microscope (STM) is an electron microscope that uses a single atom 
tip to attain atomic resolution. It was developed at IBM at Zurich in 1981 by Gerd Binning and 
Heinrich Rohrer who shared the Nobel Prize for physics in 1986. 

The principle of the STM is based on the distance dependence of the quantum mechanical 
tunneling effect. Maintaining a constant tunneling current by adjusting the height with a piezo-
electric crystal, and monitoring the piezo voltage while scanning, allows one to image a surface, 
under ideal conditions, to atomic resolution. (If the tip is scanned over the sample surface while 
an electronic feedback loop keeps the tunneling current constant (constant current mode), the tip 
height follows a contour of constant local density of electronic states and provides information 
on the topography of the sample surface if the surface is composed of the same atoms). Most of 
the tunneling current flows through a single protruding atom on the tip and thus sub-angstrom 
resolution in z can be achieved on a clean surface with a sharp tip. 

Ma . a a1 Mb . a a1 Simplify

0, 0 , 0, 0

eq3 Ma .Inverse Mb FullSimplify;

K1 eq3 1, 1 ;
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1
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FullSimplify
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(http://www.britishcarbon.org/images/gallery/7.graphene_8nm.jpg) 
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Fig. In-plane structure of graphene. The lattice constant a1 is equal to 2.46 Å. 
 
Tunneling is a genuine quantum mechanical effect in which electrons from one conductor 
penetrate through a classically impenetrable potential barrier -  in the present case the vacuum - 
into a second conductor. The phenomenon arises from the leaking out of the respective wave 
functions into the vacuum and their overlap within classically forbidden regions. This overlap is 
significant only over atomic-scale distances and the tunnel current IT depends exponentially on 
the distance d between the two conductors, i.,e., the tip and the sample surface.  
 

)exp( Kd
d

U
IT   

 

where U is the applied voltage between the two electrodes, tip and sample,   their wverage 

work function ( eU ), and K a constant with a value of about 

 
K = 1.025 Å-1 (eV)-1/2  

 
for a vacuum gap. The current IT is easily measurable for distances d of several tens of Å and, in 
order to get interesting information about the surface, d must be controlled with a precision of 
0.05 - 0.1 Å. 

In order to achieve a lateral resolution that allows imaging of individual atoms, the 
movement of the tiny metal tip across the surface under investigation must be controlled to 
within 1 - 2 Å. The high sensitivity of the instrument to the slightest corrugations of the surface 

electron density is due to the exponential dependence of the current on d and  .  
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