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1. Overview 

The simple harmonics (or harmonic oscillator) is one of the most important topics in quantum 

mechanics. It can be solved in both classical and quantum mechanics. The annihilation operator 

â  and creation operators â  and  are expressed in terms of the combination of the position 

operator x̂  and the momentum operator p̂ , where the units of â  and â are dimensionless. 

When undergraduate physics students start to learn such topics and encounters elegant form of 

â  and â  due to Dirac, they may have some struggles in understanding the physical meaning. 

The operator method for solving the quantum mechanics of simple harmonics appears to be 

magic. 

In this article, we discuss how new operators ̂  and ̂  (dimensionless) are related to x̂  and 

p̂ , 
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, 

 

with the commutation relation ˆ ˆˆ[ , ] 1i   . The annihilation operator and creation operator can be 

expressed by 

 

1 ˆ ˆˆ ( )
2

a i    , 
1 ˆ ˆˆ ( )
2

a i    . 

 

We also show that the eigenkets   and   are related to x  and p  as 
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 ,  p  ℏ , 

 

respectively. The eigenket   of the Hamiltonian in the   and   representations are 

defined by ( )     and ( )    . The function ( )   is the Fourier transform of the 

function ( )   
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using the closure relation with the transformation function. 

Here we discuss the wave function of simple harmonics (quantum mechanics and classical 

limit) with the use of Mathematica. The differential operators of the creation operator and the 

annihilation operator is used for the derivation of the Hermite polynomials. We use the 

differential operators of â  and â , 
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In Mathematica, we use the following expressions 

 

1
ˆ ( # [#, ])

2
a D     &, 

1
ˆ ( # [#, ])

2
a D      &. 

 

where the symbols (D, # and &) are used for the differential operators in the Mathematica 

program. The use of such notations may be useful to understanding the essential points in simple 

harmonics. Here we use "simple harmonics", instead of "harmonic oscillator. There are so many 

useful textbooks on the quantum mechanics on simple harmonics without the use of Mathematica.  

 

2. Introduction of dimensionless operators ̂  and̂  
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The Hamiltonian of the simple harmonics is given by 

 

2 2 21 1ˆ ˆ ˆ
2 2

H p m x
m

  , 

 

where   is the angular frequency, p̂  and x̂  are the momentum and position operators. Here we 

introduce the new operators ( ̂  and ̂ ) with the dimensionless units) instead of p̂  and x̂ . To 

this end, we use the energy equipartition law in the classical limit, such that 
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with 

 

p k  ℏ ℏ  

 

Here we note that the phase factor of the plane wave form wave function is given by 
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The parameter   is defined by 

 

m
 

ℏ
 (the units of : 1/cm) 

 

The Hamiltonian can be rewritten as 
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The commutation relation: 

 

1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] 1p x p x
i

  


  
ℏ ℏ
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3. Creation operator and annihilation operators 

Next, we introduce the annihilation and creation operators, The annihilation operator is 

defined by 

 

1 ˆ ˆˆ ( )
2

a i    , 
1 ˆ ˆˆ ( )
2

a i    . 

 

The annihilation operator is 
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and the creation operator is 
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Note that the commutation relation is 

 

1 ˆ ˆˆ ˆˆ ˆ[ , ] [ , ]
2
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or 

 

ˆˆ ˆ[ , ] 1a a  , 
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1ˆ ˆˆ[ , ] 1
i

   . 

 

4. Number operator 

We note that the occupation number operator is definrd by 
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or 

 

2 2ˆ ˆˆ ˆ2 1n    . 

 

So that, the Hamiltonian Ĥ  can be rewritten as 
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We note that 
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The average: 
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The uncertainty: 
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Heisenberg's principle of uncertainty: 
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We note that 
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The matrix elements of ̂  and ̂  is  
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5. The eigenket of the Hamiltonian 

n  is the eigenket of the number operator; 

 

n̂ n n n . 

 

So that, we have 

 

1 1ˆˆ ˆ( 1) ( 1)
2 2

H n n n n n    ℏ ℏ  
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We note that 

 

ˆ 1 1a n n n
    ,   (creation operator) 

 

ˆ 1a n n n  ,  (annihilation operator) 

 

where n = 0, 1, 2, 3, …. (integers). n  can be expressed by 

 

1
ˆ( ) 0

!
n a

n

 , 

 

where  ˆ 0 0a   

 

6. Dirac notation 

Here we introduce the kets   and  , which are defined by 
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From the definition of the Dirac delta function, we have 
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These results lead to the following relations for kets, 
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7. Transformation function 

We have transformation function given by 
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we get a new transformation function 
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8. The   and   and representation of    

The   representation of   is related to the   representation of  by the closure 

relation as 
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with the use of the Dirac delta function 
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9. Differential operators for the creation and annihilation operators 

We start with the relation 

 

ˆx p x
i x

 




ℏ
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Using the relations 

 

1
x


 ,  k   ,  

1
p 



ℏ

  

 

we get 

 

1
ˆ

i
    







 

 

and 

 

ˆ i    






 



 

13 

 

 

Using the above relations, we find the expression of the differential operators for the annihilation 

and creating operators. 
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Using the relations, 

 

ˆ 1 1a n n n
      

 

and 

 

ˆ 1a n n n   

 

we get the general expression 
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From this relation, we have 
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10. Wave function of the ground state 0   

The ground state 0  is defined by 

 

ˆ 0 0a  . 

 

Using the relation, 
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1
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we get the first order differential equation 
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The solution of this first order differential equation is 
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where C can be determined from the normalization condition of the wave function 
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Then we get the expression of the wave function n  as  
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As will be proofed using Mathematica, we get the formula 
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Here, the Hermite polynomial is defined by 
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Using the above expression finally we get the form 
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We also note that 

 



 

17 

 

*

2

1/2 ' 1/2

, '

' '

'

1 1
exp( ) ( , ) ( ', )

(2 ! ) (2 '! )n n

n n

n n d n n

d n n

d H n H n
n n

  

  

   
 



















 









  

or 

 

2

, 'exp( ) ( , ) ( , ) (2 ! )
n

n nd H n H n n     




    

 

((Example)) from Arfken 

Show that 
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((Mathematica Program-1)) 
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((Mathematica Program-2)) 
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Fig. Plot of the probability density 
2

( )nP n   as a function of   for n = 1 - 11. 

 

((Mathematica Program-3)) 
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((Mathematica Program-4)) 
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11. Parity operator 

We introduce the parity operator. The parity operator has the following properties. 
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Using these properties, ee show that  

 

ˆ 0 0     (even parity) 

 

 ˆ ( 1)nn n    (even parity for even n, odd parity for odd n) 

 

We start with the ground state wave function 
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So that ˆ 0 0  . 

 

12. Commutation relation between Ĥ  and ̂   

The Hamiltonian Ĥ  commutes with the parity operator 
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where   2 ˆˆ 1  ,  ˆ ˆˆ ˆ   , ˆ ˆˆ ˆ   . 

 

So that, we have simultaneous eigenkets for Ĥ  and ̂   
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or 

 

ˆ ( 1)nn n   . 

 

Here, we use the formula 

 

ˆ ˆ ˆ ˆ( ) ( )f a f a    ,  ˆ ˆ ˆ ˆ( ) ( )g a g a    , 

 

where f and g are any polynomial functions. Thus, we have 

 

ˆ ( 1)nn n n       . 

 

When n = 0, 2, 4, …,   ˆ n n    (even parity) 

 

n is the even function of  .  

 

When n = 1, 3, 4, …,   ˆ n n     (odd parity parity) 

 

n is the odd function of  .  

 

13. The form of wave function n   

We now return to the form of wave function. 
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Since 

 

( 1)nn n     

 

It is concluded that 
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14. Fourier Transform of 0  

First, we calculate the Fourier transform of the ground state wave function 0 . The 

Fourier transform of 0  is defined by 
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15. Fourier transform of 0  

We start with 

 

ˆ 0 0a  . 
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Thus, we have 
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The solution of the first-order differential equation is 
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16. Fourier transform of n  
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Fig. Plot of 
2

n  for n = 0 - 70, as a function of   for n = 1 - 10. 

 

17. Classical mechanics 
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Equation of motion: 
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The probability density P  is obtained from  
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  is the period. The factor 2dt  comes from the passing of the particle in the region 

d  during the round trip of the movement.  
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We mote that 
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Classical probability 
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The classical turning point is 
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Fig. The classical turning point (or classical limit) is the point where the potential 

energy 21

2
  is equal to 

1
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n  for each quantum number n. n = 0, 1, 2, 3, .... 

 

((Mathematica Program-7)) 
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Fig. The quantum probability density 
2

n and classical probability 
clP  (the blue 

line) for n = 0 - 70 with the same energy, as a function of  . The vertical green 

line denotes the classical limits. 

 

18. Coherent state 
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19. Fourier transform of the coherent state 
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20. Differential operator for creation and annihilation operator 

(Mathematica) 
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: (# [#, ]) &

2
CR D     

 

1
[ [ ]] ( [ ] [ ])

2
CR     




 


  

 

1
[ [ ]] ( [ ] [ ])

2
AN      




 


 

 

ˆˆ ˆ[ , ] 1a a   

 

2

2

1 1
[ [ ( )] [ [ ( )] [( )( ( ) '( ) ( )( ( ) '( )]

2 2

1
[ ( ) '( ) ( ) '( ) ''( )]

2

1
[ ( ) '( ) ( ) '( ) ''( )]

2

( )

d d
AN CR CR AN

d d
             

 

          

          

 

      

    

    



  

 

((Mathematica Program-8)) 
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21. Sturm-Liouville differential equation 

Eigenvalue problem 

 

 
1 1ˆˆ ˆ ˆ 1 ( )
2 2

H a a n          ℏ ℏ  

 

or 

 

ˆ ˆa a n      

 

or 
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1 ˆ ˆˆ ˆ( )(
2

i i n           

 

or 

 

( )( ) ( ) 2 ( )n     
 
 

  
 

 

 

2"( ) (2 1 ) ( ) 0n         

 

We assume that 

 

2

( ) exp( ) ( , )
2

H n


     

 

where ( , )H n   satisfies the Hermite differential equation 

 

"( , ) 2 '( , ) 2 ( , ) 0H n H n nH n        

 

This can be rewritten in the form of  Sturm-Liouville type differential equation as 

 

2 2 2

2

2

[exp( ) '( , )] exp( ) "( , ) 2 exp( ) '( , )

exp( )[ "( , ) 2 '( , )]

2 exp( ) ( , )

d
H n H n H n

d

H n H n

n H n

      


   

 

    

  

  

  

 

((Mathematica Program-9)) 
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22. Differential operator for Hermite polynomial  

We prove that 

 

(2 ) 1 ( , )n

n

d
H n

d
 


  , 

 

which can be also used for the discussion of recursion relation. 

 

((Mathematica Program-10)) 
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23. Derivation of ( , )H n   from Generating function 

From the generating function 

 

2( , ) exp( 2 )S t t t    , 

 

we show that the Hermite polynomials ( , )H n   can be obtained as 
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0( , ) | ( , )
n

tn

d
S t H n

dt
   . 

 

The proof of this equation can be done with the use of Mathematica. 

 

((Mathematica Program-11)) 
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24. Recursion relation for Hermite polynomial 

The Hermite polynomials satisfy the recurrence relations, 

 

( 1, ) 2 ( , ) 2 ( , )H n H n nH n       

 

This relation can be proved with the use of Mathematica as follows, using the formula 

 

(2 ) 1 ( , )nd
H n

d
 


   

25. Properties of the Hermite polynomials. 

(1) Property-1 

The Hermite polynomials satisfy the recurrence relations, 

 

( 1, ) 2 ( , ) ( , )
d

H n H n H n
d

   


    

 

((Proof)) 

 

1( 1, ) (2 ) 1

(2 )[(2 ) 1]

(2 ) ( , )

2  ( , ) ( , )

n

n

d
H n

d

d d

d d

d
H n

d

d
H n H n

d

 


 
 

 


  


  

  

 

 

 

 

(2) The property-II 

 

( , ) 2 ( 1, )
d

H n nH n
d
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((Proof)) 

 

1

( , ) [(2 ) 1]

(2 )(2 ) 1

(2 ) ( 1, )

[2 ( 1, ) ( 1, )]

2 ( 1, ) "( 1, ) 2 '( 1, )

2 ( 1, )

n

n

d d d
H n

d d d

d d d

d d d

d d
H n

d d

d d
H n H n

d d

H n H n H n

nH n

 
  

 
  

 
 

  
 

   





 

  

  

   

     

 

 

 

since 

 

"( 1, ) 2 '( 1, ) 2( 1) ( 1, )H n H n n H n          . 

 

26. Conclusion 

Here we have discussed the wave function of simple harmonics with the use of Mathematica. 

We have shown the application of differential operator techniques. Such method has a number of 

properties and a variety of uses. The objective of this method is to derive all the quantum 

mechanics while keeping the properties of the state vectors as simple as possible. 

The annihilation operator and creation operator can be expressed in terms of the differential 

operators, where the symbols of D, #, & are used. We note that in a textbook written by David 

Bohm, similar discussions on the wave functions of simple harmonics were extensively done, 

using differential operators of annihilation and creation operators without Mathematica. It seems 

that the mathematics used in the book of David Bohm is complicated to beginners who just starts 

to study the quantum mechanics. 

((Goswami)) 

We have three important operators for the simple harmonics; creation operator, annihilation 

operator, and the number operator. " the late Dr. Sakurai (J.J.)used to joke, using his knowledge 
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of Hindu mythology, that â  is like Brahma, the creator, â  is like Shiva, the destroyer, and n̂  

the benign Vishnu, the preserver." 
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APPENDIX`  Formula 

The derivation of the following formula is discussed in the above sections. 

 

ˆˆ ˆ
m

x x


  
ℏ

  
ˆˆ ˆ

ˆ
p p k

m


 
  
ℏℏ

 

1 ˆ ˆˆ ( )
2

a i    , 
1 ˆ ˆˆ ( )
2

a i     

ˆ ˆˆ[ , ] 1i   . 

1
x


 ,  p  ℏ  

2 2 2 2 21 1 1 ˆˆ ˆˆ ˆ ( )
2 2 2

H p m x
m

      ℏ  
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1
ˆ ( ) ( )

2
a    




 


,  
1

ˆ ( ) ( )
2

a    


 
 


 

ˆ 1a n n n  , ˆ 1 1a n n n
     

ˆ 0 0a   

1
ˆ( ) 0

!
n a

n

  

1
( ) 0

!2

n

n
n

n
  




 


 

2

1/2

1
exp( ) ( , )

2(2 ! )
n

n H n
n


 


   

ˆ ( 1)nn n    

2
1/4

0 exp( )
2


     

2
1/4

0 exp( )
2


     

1
exp( )

2
i  


  

2 2

( ) ( ) ( 1) exp( ) exp( ) ( )
2 2

n
n n

n

 
    

 
 

   
 

 

2

1/2

1 ( )
ˆ( ) 0 exp( ) ( , )

2! (2 ! )

n
n

n

i
n a H n

n n


  


 

    

2 2

[exp( ) ( , )] ( ) exp( ) ( , )
2 2

n
H n i H n

 
 

 
 F  

2

1 1
( )

2 1
clP

n


 


 
 

2 2
( , ) ( 1) exp( ) exp( )

n
n

n
H n   




  


 

( ) ( 1) ( )n

n nH H     

(2 ) 1 ( , )nd
H n

d
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2( , ) exp( 2 )S t t t      (generating function) 

0( , ) | ( , )
n

tn

d
S t H n

dt
    

( 1, ) 2  ( , ) ( , )
d

H n H n H n
d

   


    

( , ) 2 ( 1, )
d

H n nH n
d

 


   

"( , ) 2 '( , ) 2 ( , ) 0H n H n nH n       

2"( , ) (2 1 ) ( , ) 0n n n         

â     

2
ˆ( )

exp( ) 0
2 !

n

n

a

n

 




    

2 2

1/2 1/2

1
exp( ) exp( ) ( , )

2 ( 2 !) 2!

n

n
n

H n
nn

  
  


    

2 2

1/2 1/2
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2 ( 2 !) 2!

n n
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n

i
H n

nn

  
  




    

 


