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1. Polarization 

The electric and magnetic vectors associated with an electromagnetic wave are perpendicular 
to each other and to the direction of wave propagation. Polarization is a property that specifies 
the directions of the electric and magnetic fields associated with an EM wave. The direction of 
polarization is defined to be the direction in which the electric field is vibrating. 
 

 
 

 

The plane containing the E-vector is called the plane of oscillation of the wave. Hence the wave 
is said to be plane polarized in the y direction. We can represent the wave’s polarization by 
showing the direction of electric field oscillations in a head-on view of the plane of oscillation. 
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2. Unpolarized light 

All directions of vibration from a wave source are possible. The resultant EM wave is a 
superposition of waves vibrating in many different directions. This is an unpolarized wave. The 
arrows show a few possible directions of the waves in the beam. The representing unpolarized 
light is the superposition of two polarized waves (Ex and Ey) whose planes of oscillation are 
perpendicular to each other. 
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3 Intensity of transmitted polarized light 
(1) Malus’ law 

An electric field component parallel to the polarization direction is passed (transmitted) by a 
polarizing sheet. A component perpendicular to it is absorbed. 
 

 
 
The electric field along the direction of the polarizing sheet is given by 
 

cosEEy  . 

 
Then the intensity I of the polarized light with the polarization vector parallel to the y axis is 
given by 
 

2
0 cosII   (Malus’ law), 

 
where 
 




2
0

0

2

cosI
c

E
SI rms

avg  . 

 
((Note)) Etienne Louis Malus (1775 – 1812). 
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Étienne-Louis Malus (23 July 1775 – 24 February 1812) was a French officer, engineer, 
physicist, and mathematician. Malus was born in Paris, France. He participated in Napoleon's 
expedition into Egypt (1798 to 1801) and was a member of the mathematics section of the 
Institut d'Égypte. Malus became a member of the Académie des Sciences in 1810. In 1810 the 
Royal Society of London awarded him the Rumford Medal. His mathematical work was almost 
entirely concerned with the study of light. He studied geometric systems called ray systems, 
closely connected to Julius Plücker's line geometry. He conducted experiments to verify 
Christiaan Huygens' theories of light and rewrote the theory in analytical form. His discovery of 
the polarization of light by reflection was published in 1809 and his theory of double refraction 
of light in crystals, in 1810. Malus attempted to identify the relationship between the polarizing 
angle of reflection that he had discovered, and the refractive index of the reflecting material. 
While he deduced the correct relation for water, he was unable to do so for glasses due to the low 
quality of materials available to him (most glasses at that time showing a variation in refractive 
index between the surface and the interior of the glass). It was not until 1815 that Sir David 
Brewster was able to experiment with higher quality glasses and correctly formulate what is 
known as Brewster's law. Malus is probably best remembered for Malus' law, giving the 
resultant intensity, when a polarizer is placed in the path of an incident beam. His name is one of 
the 72 names inscribed on the Eiffel tower. 
http://en.wikipedia.org/wiki/%C3%89tienne-Louis_Malus 
((Note)) 
I made a simulation of the experiment of polarization of light using the Mathematica 
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Fig. Demonstration for the role of two polarizers. The light passes when the directions of the 
two polarizers are the same. The light does not pass when the directions of two polarizers 
are perpendicular to each other. 

 
(2) One-half rule for unpolarized light 

When the light reaching a polarization sheet is unpolarized, we get a polarized light with the 
intensity  
 

2
0I

I   , (one-half rule) 

 
since 
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


. 

 

q q



 

6 
 

 
 
_______________________________________________________________________ 
4. Definition of the Polarization  
 

We define  as 
 

tkz   . 
 
We use the conventional notation for the plane wave propagating along the positive z directyion, 
such that 
 

)exp()](exp[),(  itkzitz  . 

 
((Note)) 
In physics, usually we use this notation. This corresponds to the plane wave travelling along the 
positive z direction. This definition is significant to the understanding of the right hand and left 
hand circularly polarization waves. 
 

(1) x   (0° polarization) 

 
The electric field for the 0° polarization is given by 
 

xx
i EeE ee )cos(]Re[ 00        
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(2) y   (90° polarization) 

 
The electric field for the 90° polarization is given by 
 

yy
i EeE ee )cos(]Re[ 00   .     

 

(3) )(
2

1
yx    (45° polarization) 

 
The electric field for the 45° polarization is given by 
 








 








 

2
cos]

2
Re[ 00

yxyxi EeE
eeee

 .   

 

(4) )(
2

1
yx    (-45° polarization) 

 
The electric field for the (-45°) polarization is given by 
 








 








 

2
cos]

2
Re[ 00

yxyxi EeE
eeee

 .   

 

(5) )(
2

1
yixR    (right-circularly polarized wave) 

 
 

])sin()[cos(
2

])sin()[cos(
2

])(sin)[(cos
2

]
2

Re[

0

0

0
0

yx

yx

yx
yxi

kztkzt
E

tkztkz
E

Ei
eE

ee

ee

ee
ee














 

 
with 
 

2
yx iee

e


 . 
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The electric field rotates in clock-wise direction with z (wavenumber k) (as the wave propagates 
forward). The electric field rotates in counter clock-wise direction with time (angular frequency 
). 
 

(6) )(
2

1
yixL    (left-circularly polarized wave) 

 
 

])sin()[cos(
2

])sin()[cos(
2

])(sin)[(cos
2

]
2

Re[

0

0

0
0

yx

yx

yx
yxi

kztkzt
E

tkztkz
E

Ei
eE

ee

ee

ee
ee














  

 
with 
 

2
yx iee

e


 . 
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Fig. Direction of the electric field for the RHC (right-hand circularly) photon and LHC (left-

hand circularly) photon (x-y plane which is perpendicular to the propagation direction z 

axis). The phase angle is given by tkz   . 

 
The electric field rotates in counter clock-wise direction with z (wavenumber k) (as the wave 
propagates forward). The electric field rotates in clock-wise direction with time (angular 

frequency ). 
 

 

 
 

Fig. The direction of the electric field for various kinds of polarization. The phase angle  is 

fixed ( does not change with time t).  
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Fig. The direction of the electric field for the right-hand and left-hand circularly polarizations. 

The phase angle is given by tkz   . At the fixed z, when t is changed,  is actually 

negative. ])sin()[cos(
2

1
yx ee    for the right-hand circular polarization (which rotates 

with time in clock-wise) and ])sin()[cos(
2

1
yx ee    for the left-hand circularly 

polarization (which rotates with time in counter-clock wise). Note that the electric field 
rotates in a counter-clock wise as the wave propagates forward, for the right-hand 
circularly polarized light and that it rotates in a clock-wise as the wave propagates 
forward, for the left-hand circularly light. 

ex

L>

ey

O

R>
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Fig. Left circularly polarization with z. ParametricPlot3D of {
2

1
cos(kz), 

2

1
sin(kz), z}, 

where z is varied as a parameter between z = 0 and z = 5.k = . Note that t is fixed. In this 
case t = 0. The electric field rotates in a counterclock-wise direction as z is increased.  
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Fig. Right circularly polarization with z. ParametricPlot3D of {
2

1
cos(kz), -

2

1
sin(kz), z}, 

where z is varied as a parameter between z = 0 and z = 5.k = . Note that t is fixed. In this 
case, t = 0. The electric field rotates in a clock-wise direction as z is increased.  
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Fig. Linear polarization with z. ParametricPlot3D of {cos(kz), 0, z}, where z is varied as a 

parameter between z = 0 and z = 5.k = . Note that t is fixed. In this case, t = 0. 
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Fig. Linear polarization (45° polarization). ParametricPlot3D of {cos(kz), cos(kz), z}, where z 

is varied as a parameter between z = 0 and z = 5.k = . In this case, t = 0. 
 
5. Definition of photon polarization in the quantum mechanics 

 
We define the state vector of the photon polarization. 

 

yCxC yx  , 

 
where the basis is given by 
 











0

1
x :   x-polarization 

 











1

0
y :  y-polarization 

 

x

y

z
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Note that 
 

xyx CyxCxxCx  , 

 

yyx CyyCxyCy  . 

 
where 
 

1xx , 0yx ,  0xy , 1yy . 

 
From the relation 
 





)( yyxx

yyxx




 

 
we have the closure relation (completeness), 
 











10

01
1̂yyxx . 

 
((Note)) 
 

  


















00

01
01

0

1
xx , 

 

  


















10

00
10

1

0
yy , 

 

  


















00

10
10

0

1
yx , 

 

  


















01

00
01

1

0
xy  

 

6. Polarization vectors 'x  and 'y  
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Fig. The orientation of x'- axis and y'-axis. 
 

We now consider more general case of the polarization with the angle . Since (x', y') basis is 

the plane polarized basis rotated through an angle  from the (x, y) basis. 
 

(i) 'x  polarization: 

 

  )sincos(cos]sincosRe[ 00 
yxyx

i EeE eeee   

 

yxx  sincos'  . 

 

(ii) 'y  polarization: 

 

)cossin(cos])
2

sin()
2

cos(Re{ 00 
yxyx

i EeE eeee 





   

 

yxy  cossin'  . 

 

Using 









0

1
x  and 










1

0
y , 

 

x

y

x'y'

f
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we have 
 















sin

cos
sincos' yxx , 

 















cos

sin
cossin' yxy , 

 
or 
 

























 








sin

cos

0

1

cossin

sincos
'x , 

 

























 








cos

sin

1

0

cossin

sincos
'y , 

 
Inversely, 
 

'sin'cos yxx   , 

 

'cos'sin yxy   , 

 
or 
 




































sin

cos

0

1

cossin

sincos
x , 

 



































cos

sin

1

0

cossin

sincos
y . 

 
((Note)) The above notations can be obtained from the analogy of the unit vectors in the x-
y plane. 
 

yxx aa eee 1211'  , 

 

yxy aa eee 2221'  , 
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with 
 

cos'11  xxa ee , 

 


sin)

2
cos('12  yxa ee , 

 


sin)

2
cos('21  xya ee , 

 
cos'22  yya ee . 

 
Then we have 
 

x

y

ex

ey

ey'

ex'

f

f

O
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yxx eee  sincos)sin,(cos'  , 

 

yxy eee  cossin)cos,sin('  . 

 

7. Rotation operator )(ˆ S  

((G. Baym, Lecture on quantum mechanics)) 
 
We now consider any ket vector 
 

222  yyxx  . 

 
Then we have 
 

22

222

sincos

'''





yx

yyxxxxx




 

 

22

222

cossin

'''





yx

yyyxxyy




 

 
or 
 




























2

2

2

2

cossin

sincos

'

'










y

x

y

x
. 

 
The left hand side can be rewritten as 
 



















1

1

2

2

'

'







y

x

y

x
, 

 
from the analogy of the algebraic relation between the new co-ordinates and old-coordinates 
under the rotation around the z axis, 
 
or 
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













































2

2

2

2

1

1

cossin

sincos

''

''













y

x

y

x

yyxy

yxxx

y

x

 

or 
 

221 sincos  yxx  , 

 

]cos)sin 221  yxy  . 

 

using the new ket vector 1 . Note that the ket vector 1  is the ket vector 2  rotated 

clockwise by , 
 

][

])[sin(cos

]cos)sin[]sin[cos

22

22

222211







 yixe

yixi

yxiyxyix

i 







 

 
Then we have 
 

21 cossin

sincos





 









 , 

 
or 
 

112 cossin

sincos
)(ˆ 




 






 
 S , 

 

)(ˆ S  is the rotation operator,  

 








 






cossin

sincos
)(Ŝ . 

 
and it is a unitary operator 
 

1̂)(ˆ)(ˆ)(ˆ)(ˆ    SSSS , 
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Here we note that 
 













ySyxSy

ySxxSx
S ˆˆ

ˆˆ
)(ˆ  .  (under the basis of { x , and y }.  

 

 
 
((Note)) 
 

yxxxS  sincos')(ˆ  , 

 

yxyyS  cossin')(ˆ  . 

 

8. Note on the derivation of )(ˆ S  from the analogy of the 2D rotation in the x-y plane 

x

y

x

y

y'

x'

O

1

2



 

22 
 

 
 
(i) 
We consider the position vector A in the x-y plane, 
 

yx AA eeA 21  .  

 
  Correspondingly, in quantum mechanics we can write 
 

yAxA 211  , 

 
from the analogy, where 
 

11 xA  , and 12 yA  . 

 
(ii) We also consider the position vector A’ in the x-y plane. The rotation of the vector A by the 
rotation angle  around the origin leads to the new vector A’,  
 

''''' 2121 yxyx AAAA eeeeA  , 

 
(see the above figure).   Correspondingly, in quantum mechanics we can write 
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'''' 21212 yAxAyAxA  , 

 
with 
 

21' xA  , and 22 ' yA  , 

 

21 'xA  , and 22 '' yA  . 

 
We note that 
 

yxx eee  sincos'  ,  yxy eee  cossin'  , 

 
  
 

yxx  sincos'  , yxy  cossin'  . 

 
Then we have 
 

yx

yxyxyx

AAAA

AAAA

ee

eeeeee

)cossin()sincos(

)cossin()sin(cos''

2121

2121








 

 
or 
 
















 










2

1

2

1

cossin

sincos

'

'

A

A

A

A




, 

 
or 
 
















 










2

1

2

1

cossin

sincos

'

'

A

A

A

A




, 

 
or 
 



























'

'

cossin

sincos

2

1

2

1

A

A

A

A




, 
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Correspondingly, in quantum mechanics, we have 
 




























2

2

1

1

cossin

sincos










y

x

y

x
, 

 
or 
 
















 










1

1

2

2

cossin

sincos










y

x

y

x
, 

 
leading to the expression 
 

12 )(ˆ  S , 

 
with 
 








 






cossin

sincos
)(Ŝ . 

 

9. Eigenvalue problem for the rotation operator )(ˆ S  

((Townsend)) 

We now consider the eigenvalue problem for the rotation operator given by )(ˆ S  

 

 )(Ŝ . 

 
Eigenvalue problem: 
 

RRS R )(ˆ ,  LLS L )(ˆ , 

 
with 
 








 






cossin

sincos
)(Ŝ . 

 

We show that R  and L  are the eigenket of )(ˆ S . 
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


























21

11

2221

1211

0

1ˆ
U

U

UU

UU
xUR , 

 




























22

12

2221

1211

1

0ˆ
U

U

UU

UU
yUL .

 
 

where Û is a unitary operator to be determined.  
 

yLxRyyxxUU  )(ˆˆ , 

 
and 
 

RxxUx ˆ , LxyUx ˆ , 

 

RyxUy ˆ , LyyUy ˆ . 

 
The equation for the eigenvalues; 
 

0
cossin

sincos
det 














, 

 
or 
 

0sin)(cos 22   , 

 
or 
 

 iei  sincos . 

 

(a) Eigenvalue:  i
R e  

 

][
2

11

2

1ˆ
21

11 yix
iU

U
xUR 

















 , 

 
where 
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ReRS i )(ˆ , or ReRS i  )(ˆ . 

 

(b) Eigenvalue:  i
L e , 

 

][
2

11

2

1ˆ
22

21 yix
iU

U
yUL 


















 , 

 
where 
 

LeLS i )(ˆ , or LeLS i  )(ˆ . 

 
The unitary operator; 
 












ii

U
11

2

1ˆ ,  






 


i

i
U

1

1

2

1ˆ , 

 



















i

i

e

e
USU

0

0ˆ)(ˆˆ ,  (diagonal matrix) 

 

under the basis of { x  and y } 

 
((Note)) 
 

   

























































ii

ii

ii

yLxR

yyxxUU

11

2

1

0

10

2

1

0

01

2

1

10
1

2

1
01

1

2

1

)(ˆˆ

 

 
10. Mathematica 

We solve the eigenvalue problem using the Mathematica. 
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Clear"Global`";

expr_ : expr . Complexa_, b_  Complexa, b;

S   Cos Sin
Sin Cos ;

eq1  EigensystemS  TrigToExp

 ,  , , 1, , 1

R1   eq12, 1  Normalize

 1

2
,



2


L1   eq12, 2  Normalize

 1

2
, 



2


UT  R1, L1
 1

2
,



2
,  1

2
, 



2


U  TransposeUT
 1

2
,

1

2
,  

2
, 



2


UH  UT

 1

2
, 



2
,  1

2
,



2


UH.S.U  FullSimplify

 , 0, 0,  
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11. Derivation for the eigenkets of )(ˆ S  (alternative way I). 

We start with 
 















sin

cos
sincos')(ˆ yxxxS , (1) 

 















cos

sin
cossin')(ˆ yxyyS . (2) 

 
where 
 








 






cossin

sincos
)(Ŝ . 

 

Clearly, x  and y  are not the eigenkets of the operator )(ˆ S . In order to get the eigenkets of 

)(ˆ S , we consider the superposition of x  and y . From the sum of Eqs.(1) and Eq.(2) x i, we 

have 
 

2

(

]cossin[
2

]sin[cos
2

1
]

2
)[(ˆ

yix
e

yx
i

yx
yix

S

i 





 


 

 
From the sum of Eq.(1) and Eq.(2) x (-i), we have 
 

2

(

]cossin[
2

]sin[cos
2

1

2

(
)(ˆ

yix
e

yx
i

yx
yix

S

i 








 

 

Then it is found that R  and L  are the eigenket of )(ˆ S  with the eigenvalues +1 and (-1),  

 

ReRS i )(ˆ , LeLS i )(ˆ , 

 
where 
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][
2

1
yixR  ,  ][

2

1
yixL  . 

 

We also note that the Hermitian conjugate operator )(ˆ S  satisfies the eigenvalue problem 

 

ReRS i  )(ˆ ,  LeLS i  )(ˆ . 

 
12. Circular polarization ((alternative method II)) 

)(ˆ S  can be rewritten as 

 










 


















 


ˆsin1̂cos

0

0
sin

10

01
cos

cossin

sincos
)(ˆ










i

i

i
i

S

 

 

under the basis of { x , y },where ̂  is called the spin operator of photon. The form of ̂  is the 

same as that of Pauli matrix y̂ , 

 

1̂
10

01

cossin

sincos

cossin

sincos
)(ˆ)(ˆ 
















 


















 SS , 

 
and 
 








 


0

0ˆ
i

i
,  and  










10

01
1̂ . 

 
We note that 
 

1̂ˆ 2  . 
 
Then we have 
 

xxxSx 






 sincos
sin

cos

0

1

cossin

sincos
)(ˆ' 
























 
 , 
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or 
 

xixxixSx  ˆsincos)ˆsin1̂(cos)(ˆ'  . 

 
We also have 
 

yxySy 






 cossin
cos

sin

1

0

cossin

sincos
)(ˆ' 
























 
 , 

 
or 
 

yiyyiySy  ˆsincos)ˆsin1̂(cos)(ˆ'  . 

 
We consider the eigenvalue problem given by 
 

 ̂ , 

 
with 
 








 


0

0ˆ
i

i
. 

 

  is the eigenket of ̂  under the basis of { x , y }. Since 1̂ˆ 2  , we get 

 

  22 ˆˆ , 

 

leading to  = ±1. The eigenket is obtained as 
 

][
2

1
yixR  ,  ][

2

1
yixL  , 

 

since the form of ̂  is the same as that of the Pauli matrix y̂ . 

 

(a) For  = 1, 
 

RR ̂ , 
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with 
 











i
R

1

2

1
.  right-hand circular polarization 

 
We also have 
 

ReRiRRiRS i  sincos)ˆsin1̂(cos)(ˆ , 

 
or 
 

ReRS i )(ˆ . 

 

(b)  For  = -1,  
 

LL ̂ , 

 
with 
 












i

L
1

2

1
.   left circular polarization 

 
We also have 
 

LeLiLLiLS i  sincos)ˆsin1̂(cos)(ˆ ,
 

 
or 
 

LeLS i )(ˆ . 

 
13. Outer products; closure relation 
 











00

01
xx , 










10

00
yy , 
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









00

10
yx , 










01

00
xy , 

 








 


1

1

2

1

i

i
RR , 











1

1

2

1

i

i
LL , 

 












1

1

2

1

i

i
LR , 












1

1

2

1

i

i
RL , 

 

1̂
10

01









 yyxx . 

 
(completeness relation, closure relation) 
 












10

01
yyxx , 

 

1̂
10

01









 LLRR , 

 








 


0

0

i

i
LLRR . 

 
Using the closure relation, we get 
 





LLRR

RRRR



 )(
, 

 

for any  . 

 

14. )(ˆ S  and the unitary operator Û  

We start with the relations, 
 

ReRS i )(ˆ , LeLS i )(ˆ . 
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Using 
 

][
2

1ˆ yixxUR  , 

 

][
2

1ˆ yixyUL  , 

 
we get  
 

xSyxx )(ˆsincos'   ,  

 

ySyxy )(ˆcossin'   . 

 

The rotation operators )(ˆ S  and )(ˆ S  can be written as 

 

yyxxyyxxSS ''))((ˆ)(ˆ   , 

 

'')(ˆ yyxxS   , 

 

The unitary operators Û  and Û  can be written as 
 

yLxRyyxxUU  )(ˆˆ , 

 

LyRxU ˆ . 

 

15. Matrix elements of )(ˆ S  

 








 















cossin

sincos

''

''
)(ˆ

yyxy

yxxx
S , 

 

























cossin

sincos

''

''
)(ˆ

yyxy

yxxx
S . 

 

16. 'R  and 'L  
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ReRSyixSyixR i  )(ˆ])[(ˆ''' , 

 

LeLSyixSyixL i  )(ˆ])[(ˆ''' , 

 
with 
 

  xSx ˆ'  ,    xSy ˆ'  . 

 

17. Angular momentum operator zĴ  

We note that )(ˆ S  is related to the corresponding angular momentum zĴ  through 

 

)ˆexp()(ˆ  zJ
i

S


 . 

 
(see the Appendix I) 
 
(i) Right-hand circularly polarization 
 

ReRS i )(ˆ
, 

 

In the limit of   0, we use the Taylor expansion, 
 

ReRS i )(ˆ , 

 
or 
 

RiRJ
i

z )1()ˆ1(  


, 

 
or 
 

RRJ z ˆ . 

 

In other words, R  is the eigenket of zĴ  with the eigenvalue ( ) 
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(ii) Left-hand circularly polarization 
 

LeLS i )(ˆ , 

 
or 
 

LeLS i )(ˆ . 

 

In the limit of   0, we use the Taylor expansion, 
 

LiLJ
i

z )1()ˆ1(  


, 

 
or 
 

LLJ z ˆ . 

 

In other words, L  is the eigenket of Jz with the eigenvalue (-  ) 

Using the closure relation, we have 
 

)(

ˆˆ

)(ˆˆ

LLRR

LLJRRJ

LLRRJJ

zz

zz









  
If the photon is right circularly polarized, then Jz = ħ, and we can say that the photon definitely 
has angular momentum ħ. Similarly if the photon is left circularly polarized, then Jz = - ħ, and we 
can say that the photon definitely has angular momentum - ħ. Photons have intrinsic spin of 1 

instead of 1/2. The absence of the 0-eigenvalue for zĴ  for a photon turns out to be a special 

characteristic of a massless particle, which moves at speed c. 
 
((Note)) 
((Bellac L.M. Quantum Physics)) 

Why does the state 0,1  mj not exist for the photon state with j = 1? 

 

The states R  and L  are identified as the states 1,1  mj  and 1,1  mj , 

respectively. The angular momentum quantization axis Oz is taken to lie along the photon 
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propagation direction. The value of m is called the photon helicity: m = +1 corresponds to 
positive helicity and m = −1 to negative helicity. Since the angular momentum j = 1 corresponds 
to three possible values of the magnetic quantum number, m = +1, 0, and −1, we might wonder 
what has happened to the value m = 0 for the photon. A general analysis due to Wigner shows 
that for a particle of zero mass and spin j, the only allowed eigenvalues of Jz are m = j and m=−j, 
where the axis Oz is taken to lie along the particle propagation direction. When parity is not a 
symmetry of the Hamiltonian, the two possible values are independent. If the spin-1/2 neutrino 
had zero mass, it would always have m =−1/2, while the antineutrino, which is a different particle, 
would always have m = +1/2. The photon interactions conserve parity as they are 
electromagnetic interactions, and so the same particle can have both m = 1 or m=−1. 
 
18. Consideration 
We have 
 

RRJ z ˆ ,  LLJz ˆ . 

 

In the basis of { R , L }, the matrix of zĴ  can be described as 

 












10

01ˆ zJ . 

 
We also note that 
 


















i

i

z
e

e
J

i

0

0
)ˆexp(


. 

 

What is the expression of this matrix under the basis of { x , y }? 

 

xUR ˆ ,  RUx  ˆ , 

 

yUL ˆ ,  LUy  ˆ . 

 
Therefore we have the matrix elements as 
 

RUJ
i

URxJ
i

x zz
 ˆ)ˆexp(ˆ)ˆexp( 


, 
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LUJ
i

URyJ
i

x zz
 ˆ)ˆexp(ˆ)ˆexp( 


, 

 

RUJ
i

ULxJ
i

y zz
 ˆ)ˆexp(ˆ)ˆexp( 


, 

 

LRUJ
i

ULyJ
i

y zz
 ˆ)ˆexp(ˆ)ˆexp( 


. 

 
Using Mathematica, we can calculate 
 

)(ˆ
cossin

sincosˆ)ˆexp(ˆ 



 SUJ
i

U z 






 
 


, 

 

under the basis of of { x , y }, using the Unitary matrix 

 












ii

U
11

2

1ˆ ,  






 


i

i
U

1

1

2

1ˆ . 

 
19. Summary 

The above results are summarized as follows. 
 
(a) The state vectors, 
 

yxx  sincos'  , yxy  cossin'  . 

 

(b) Rotation operator: )(ˆ S  

 

')(ˆ xxS  ,  ')(ˆ yyS  . 

 

(c) R  and L :  

 

ReRS i )(ˆ , LeLS i )(ˆ . 

 

(d) Unitary operator Û : 
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xUR ˆ ,  yUL ˆ . 

 
where 
 












ii

U
11

2

1ˆ  

 
(d) Angular momentum 
 

)ˆexp()(ˆ  zJ
i

S


 , 

 

where zĴ  is the spin operator of photon, 

 

RRJ z ˆ ,  RLJ z ˆ , 

 








 






0

0

)(

)(ˆˆ

i

i

LLRR

LLRRJJ zz



  

 

under the basis of { yx , }. In this case 

 








 






cossin

sincos
)(Ŝ .  { yx , } basis 

 
______________________________________________________________________________ 
((Mathematica)) 
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______________________________________________________________________________ 

Note that the matrix of zĴ  is given by 

 












10

01ˆ zJ , 

 

under the basis of { LR , }. In this case 

 


















i

i

e

e
S

0

0
)(ˆ ,   { LR , } basis 

 
(e) Projection operator 
 

  

























2

2

sincossin

cossincos
sincos

sin

cos
'' xx , 

 

  




























2

2

coscossin

cossinsin
cossin

cos

sin
'' yy , 

 








 


1

1

2

1

i

i
RR , 

 












1

1

2

1

i

i
LL . 

Clear"Global`";

exp_  :

exp . Complexre_, im_  Complexre, im;

y   0 
 0

;

S1  MatrixExp 

—
 — y  Simplify;

S1  MatrixForm

 Cos Sin
Sin Cos 
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20. Double refraction (physics) 

The optical properties are isotropic in the x, y plane. So we can choose the axes so that the 
beam is propagating in the y-z plane without the loss of generality. This allows us to split the 
polarization of the light into two orthogonal components, one of which is polarized along the x 

axis, and the other polarized at an angle of 90° +  to the optic axis. The former is the ordinary 
ray, and the latter is the extraordinary axis.  

The refractive index will be different for light which is polarized along the z axis or in the x, 
y plane. Thus the o-ray experiences a different refractive index to the e-ray, and will be refracted 
differently: hence double refraction. The two refractive indices are usually labeled as no and ne. 

On the other hand, if the beam propagates along the optic axis, so that  = 0, the electric-field 
vector of the light will always fall in the x, y plane. In this case, no double refraction will be 
observed because x and y directions are equivalent and there is no e-ray. 
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Fig. Electric field vector of ray propagating in a uniaxial crystal with its optic axis along the z 

axis. The ray makes an angle of  with respect to the optic axis (the z-axis). The x and y 
axes are chosen so that the beam is propagating in the y, z plane. The polarization can be 
resolved into (a) a component along the x axis (the o-ray), and (b) a component at an 

angle of (90° + ) to the optic axis (the e-ray). o  for o-ray and e  for e-ray. The 

polarization vector for the e-ray lies in the y-z plane, while the polarization for the o-ray 
is along the x axis. 

 
21. Birefringence: polarized light in Calcite 
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We discuss a phenomenon of double refraction occurring in a material such as calcite 
(Iceland spar). In this effect an un-polarized light ray is separated into two rays which emerge 
displaced from each other. The two rays are called ordinary and extraordinary. These two rays 
have mutually perpendicular polarizations and travel at different speeds through the materials 
and are orthogonally polarized to each other. These two speeds corresponds to two indices of 
refraction, no for the ordinary ray and ne for the extraordinary rays. 

There is one direction, called the optic axis, along which the ordinary and extraordinary rays 
have the same speed. If light enters a birefringent material at an angle to the optic axis, however, 
the different indices of refraction will cause the two polarized rays to split and travel in a 
different directions.  

The index of refraction no for the ordinary ray is the same in all directions, while the index of 
refraction ne varies with the direction of propagation. In calcite, no = 1.658 and ne varies from 
1.658 along the optic axis to 1.486 perpendicular to the optic axis. 
 
(1) The wave propagates along the optic axis 

Suppose that that the optic axis (the z axis) is parallel to the direction of wave vector k. The 
polarization vector lie in the x-y plane which is perpendicular to the optic axis. All the directions 
in the x-y plane are equivalent. There is no difference between the o-ray and e-ray The optical 

properties are isotropic in the x, y plane. Note that for convenience we use two states o  and e  

in spite of the isotropy of states in the x-y plane perpendicular to the optic axis. 
 

 
 
(2) The case when the direction of the wave vector deviates from the optic axis 
 

Optic axis

x
y

k

O>
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Fig. A light with two orthogonal field components traversing a calcite section.  
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Fig. Electric field vector of ray propagating in a uniaxial crystal with its optic axis along the z 

axis. The ray with the wavevector k makes an angle of  with respect to the optic axis 
(the z-axis). The x and y axes are chosen so that the beam is propagating in the y-z plane. 

k

Optic axis

o>

e>

z

yx

q

q
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The polarization can be resolved into (a) a component along the x axis (the o-ray), and (b) 

a component at an angle of 90° +  to the optic axis (the e-ray). o  for o-ray and e  for 

e-ray. The polarization vector for the e-ray lies in the y-z plane, while the polarization for 

the o-ray is along the x axis. The essence of the state e  appears as the angle  increases. 

 
As shown in the above figure, we can choose the axes so that the beam is propagating in the 

y-z plane without the loss of generality. This allows us to split the polarization of the light into 
two orthogonal components, one of which is polarized along the x axis, and the other polarized at 

an angle of 90° +  to the optic axis. The former is the ordinary ray, and the latter is the 
extraordinary ray.  

The refractive index will be different for light which is polarized along the z axis or in the x, 
y plane. Thus the o-ray experiences a different refractive index to the e-ray, and will be refracted 
differently: hence double refraction. The two refractive indices are usually labeled as no and ne. 

On the other hand, if the beam propagates along the optic axis, so that  = 0, the electric-field 
vector of the light will always fall in the x, y plane. In this case, no double refraction will be 
observed because x and y directions are equivalent and there is no e-ray. 
 
22. Wavenumber matrix  

In vacuum, a photon wave function is given by 
 

)](exp[),( tit   rkr . 

 
In matter, the wavenumber k also depends on the index of refraction n(k); 
 

c
nk


 , 
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We consider the propagation of the light through a filter along the z axis (the direction of 
wavevector k). We assume that the optic axis is the z axis. Photons polarized to the x axis are 
ordinary rays. Those polarized perpendicular to the optic axis (the z axis) are extraordinary rays 
(the y-axis). The o-ray is along the x-axis, and the e-ray is along the y axis. The optic axis of the 
filter is parallel to the y-axis. 
 

c
nk o


0 ,  

c
nk ee


 . 

 

Suppose that the photon comes into the calcite as in , 

 

inininin ooeeooee   )( , 

 
since 
 

1̂ ooee . 

 
If the plate thickness is z, then we have the final state as 
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inzin
zik

in
zik

z Uooeeee oe  ˆ , 

 
where 
 

O
zik

e
zikzikzik

z PePeooeeeeU oeoe ˆˆˆ  . 

 

We notice that zÛ  obeys the simple property 

 

zaaz UUU ˆˆˆ  . 

 
((Proof)) 
 

o
azik

e
azik

o
aik

e
aik

o
zik

e
zik

az

PePe

PePePePeUU

oe

oeoe

ˆˆ

)ˆˆ)(ˆˆ(ˆˆ

)()(  


 

 
since 
 

0ˆˆˆˆ  eooe PPPP , ee PP ˆˆ 2  , oo PP ˆˆ 2  . 

 
Using this property, we get 
 

zainzainazaz UUUU  ˆˆˆˆ   . 

 
Suppose that kea<<1 and koa<<1, 
 

ooaikeeaikooeeeeU oe
aikaik

a
oe )1()1(ˆ  . 

 
Noting that 
 

1̂ ooee ,  

 
we get 
 

KiaookeekiaU oea
ˆ1̂))(1̂ˆ  , 

 

where K̂  is the wave number matrix, 
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









o

e
oe k

k
ookeekK

0

0ˆ . 

 
Then we have 
 

zzaaz KiaU  )ˆ1̂(ˆ  . 

 
In the limit )0( a , we have 

 

zz Ki
dz

d  ˆ . 

 
The solution of this differential equation is 
 

0)ˆexp(  zz zKi  . 

 
((Mathematica)) 
 

 
 
23. Example 

Suppose that 
 

]sincos' yxxin   . 

 
where 
 

ye  , xo  , 

 

ye kk  , xo kk  , 

 











y

x
yxoe k

k
yykxxkookeekK

0

0ˆ . 

Clear"Global`"; K1   ke 0
0 ko

;

MatrixExp K1 z
 ke z, 0, 0,  ko z
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Then we have 
 















































sin

cos

sin

cos

0

0

sin

cos
)ˆexp(')ˆexp( zik

zik

zik

zik

z y

x

y

x

e

e

e

e
zKixzKi , 

 
or 
 

yexe zikzik
z

yx  sincos  . 

 
We can calculate the probability amplitudes as 
 

  )sincos(
2

1

sin

cos
1

2

1 



 zikzik
zik

zik

z
yx

y

x

iee
e

e
iR 








 , 

 

  )sincos(
2

1

sin

cos
1

2

1 



 zikzik
zik

zik

z
yx

y

x

iee
e

e
iL 








 . 

 
24. Quarter-wave plate 

A quarter-wave plate consists of a carefully adjusted thickness of a birefringent 
material such that the light associated with the larger index of refraction is retarded by 
90° in phase (a quarter wavelength) with respect to that associated with the smaller 
index. The material is cut so that the optic axis is parallel to the front and back plates of 
the plate. Any linearly polarized light which strikes the plate will be divided into two 
components with different indices of refraction. One of the useful applications of this 
device is to convert linearly polarized light to circularly polarized light and vice versa. 
This is done by adjusting the plane of the incident light so that it makes 45° angle with 
the optic axis. This gives equal amplitude o- and e-waves. When the o-wave is slower 
(no is large), as in calcite, the o-wave will fall behind by 90° in phase, producing 
circularly polarized light. For calcite, ne = 1.4864 and no = 1.6583.  
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Fig. If linearly polarized light is incident on a quarter-wave plate at 45° to the optic 

axis, then the light is divided into two equal electric field components. One of 
these is retarded by a quarter wavelength by the plate. This produces circularly 
polarized light. Incident circularly polarized light will be changed to linearly 
polarized light. 

 
Light polarized parallel to the optic axis in a birefringent crystal has a different index of 

refraction than does light polarized perpendicular to the optic axis. Suppose that the optic axis 
is along the y axis and the direction of the propagation of the ray is along the z axis. The x axis 
is perpendicular to the optic axis. Denoting the different indices of refraction by nx and ny, the 

light polarized parallel to the x axis (o-ray) will pick up a phase (
c

znx
) in traversing a 

distance z through the crystal. The light polarized parallel to the y axis (e-ray) will gain a phase 

(
c

zny
). Suppose a beam of linearly polarized light incident on a crystal with its polarization 

axis declined at 45° to the x axis will have equal magnitudes for the x and y components of the 
electric field.  
 

)(
2

1
eoin  . 
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The index refraction is ny for the e-ray and nx for the o-ray; ny>nx. The crystal can be cut to a 
particular thickness z , called a quarter-wave plate.  
 

}0[
2

1
)exp(
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
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When  
 

2

)(
0


 




c

znn xy , 

 
we have the right-hand circularly polarized light, 
 

x
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Optic axis

z k

45°

o>

e>
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)0(
2

1
ei ,

 
 

which corresponds to the right-hand circularly wave when x0  and ye  . 

 
25. Quater-wave plate (/4 - plate) 

We use the same discussion as is used in the above. At z = 0, 
 

eoz  sincos0  . 

 
For simplicity we use 
 

xo  ,  yo  . 

 
At z, 
 

]sin[cos

sincos
)( yexe

yexe
zkkizik

zikzik
z

xyx

yx








 

 
Here we can neglect the phase factor in front of the parenthesis. Then 
 

yex zkki
z

xy  sincos )(  . 

 

After passing through a quarter-wave plate (/4 - plate, 90 phase change),  
 

2

)(
)(0


 




c

znn
zkk xy

xy . 

 
We get 
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yix

yix

)sin(cos
2

1
)sin(cos

2

1

sincos

sin)
2

exp(cos













 

 

leading to the generation of the superposition of two waves with R  and L , where 
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  )sin(cos
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


 
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 



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




i
iL . 

 
26. Example (Townsend problem 2-21) 

Linearly polarized light of wavelength 589 nm is incident normally on a birefringent 
crystal that has its optic axis parallel to the face of the crystal, along the x axis. If the incident 
light is polarized at an angle of 45° to the x and y axes, what is the probability that the photons 

exiting a crystal of thickness 100 m will be right-circularly polarized? The index of refraction 
for light of this wavelength polarized along y axis (perpendicular to the optic axis) is 1.66 and 
the index of refraction for light polarized along the x axis (parallel to the optic axis) is 1.49. 
 
((Solution)) See the text in Chapter 2 for the detail of the experiment. 
 

 = 589.0 nm. 
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where the dispersion relation of the light is given by 
 

k
n

c
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c

n
k


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Since 
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we have 
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The probability is 
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For z = 100 m,  = 589 nm, ny = 1.66 and nx = 1.49, and 
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28. Polarizer and analyzer 
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(a) Polarizer. (b) Analyzer 
 
Fig. Decomposition and recombination of polarizations using birefringent plates. 
 

This recombination of amplitudes is possible because two beams from the same source are 
coherent. Of course, it would be impossible to add the amplitudes of two polarized beams from 
different sources; the situation is identical to that in the case of interference. The addition of two 
polarization states can be illustrated using the apparatus of Fig. The two beams are recombined 
by a second birefringent plate, symmetrically located relative to the first with respect to a vertical 
plane, before the beam passes through the analyzer. In order to simplify the arguments, we shall 
neglect the phase difference originating from the difference between the ordinary and 
extraordinary indices in the birefringent. Under these conditions the light wave at the exit of the 
second birefringent plate is polarized in the ˆn direction. The recombination of the two x and y 
beams gives the initial light beam polarized in the x direction. 
___________________________________________________________________________ 
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APPENDIX-I  2D rotation matrix 

Suppose that the vector r is rotated through  (counter-clock wise) around the z axis. The 
position vector r is changed into r' in the same orthogonal basis {e1, e2}. 
 

 
 
In this Fig, we have 
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We define r and r' as 
 

''''' 22112211 eeeer xxxx  , 
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2211 eer xx  . 

 
Using the relation 
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(i) This rotation matrix is related to the definition of the angular momentum 
 

)( → )(ˆ)
ˆ
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z

z R
Ji


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. 

 
(ii) 
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with 
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
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
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)(Ŝ . 

 
APPENDIX-II Malus’s law 

When completely plane polarized light is incident on the analyzer, the intensity I of the light 
transmitted by the analyzer is directly proportional to the square of the cosine of angle between 
the transmission axes of the analyzer and the polarizer. 
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After the first polarizer with the x axis as a preferred axis, the state of the light is expressed 

by x . The next polarizer has the preferred axis with x' axis. The final state after passing the 

polarizer becomes 'x  state.  The corresponding probability P is 

 

22
cos'  xxP ,  (Malus's law) 

 
where 
 

yxx sincos'   . 

 

 
 

Fig. The light with the polarization x  passes through a filter with  . 

 

The projection operator for   is defined by 
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For the incident light with the polarization x , we have 
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The probability of finding the light with the polarization   is 

 

 2
2

cos)(ˆ  xPP . 

 
which is in agreement with the Malus' law.  

For the light with y , we have 















sin
sin

cos
sin

sin

cossin

1

0

sincossin

cossincos
)(ˆ

2

2

2





































yP

 

 

The probability of finding the light with the polarization   is 

 

 2
2

sin)(ˆ  yPP . 

 
APPENDIX-III Notation of the polarization vectors 
A. Jones vectors (R.C. Jones, 1941) 

In 1941 R. Clark Jones developed a method to represent polarization of light using vectors. 
Named after its inventor, these vector are called Jones vectors 
 

Jones suggested the orthogonal unit vectors 
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1  ee ,  1  ee . 

 
B. Schwinger (2001, p.470) 
 
In the book of Schwinger, Schwinger uses the following notations, 
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C. Grynberg et al (2010, p.125) 
 
In the book of Grynberg et al (2010), they use the following notations, 
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In this notation, we have the following expressions for the electric field for the right-circularly 
polarized wave and the left-circularly polarized wave. The direction of the rotation is the same as 
that for the Jones vector. 
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The electric field rotates in clock-wise direction with z (wavenumber k) (as the wave propagates 
forward). The electric field rotates in counter clock-wise direction with time (angular frequency 

). 
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(ii) 
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The electric field rotates in counter clock-wise direction with z (wavenumber k) (as the wave 
propagates forward). The electric field rotates in clock-wise direction with time (angular 

frequency ). 
 
APPENDIX-IV Projection operators 

Construction of the projection operators out of bras and kets for x-polarized and y-polarized 
photons. 
 

xxPx ˆ ,  yyPy ˆ , 

 

xx PxxxxxxxxxxP ˆ))((ˆ 2  , 

 

yy PyyyyyyyyyyP ˆ))((ˆ 2  , 

 

0))((ˆˆ  yyxxyyxxPP yx , 

 

0))((ˆˆ  xxyyxxyyPP xy . 
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The polarization is denoted by the projection operators in quantum mechanics,such as 
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For example, we have 
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APPENDIX-V 
Quantum interference with single photon with two kind of filters 
 
(a) 
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Fig. x-45° filters. The polarized light with x  enters the x-axis filter (0). The probability of 

finding the system in the state x  is 100% between the filters 0 and 1. After passing 

through the 45° filter (1), the polarized light becomes in the state 45  with the resultant 

probability of finding the system as 50%. 
______________________________________________________________________________ 
(b) 
 

 
 


























 45

2

1

1

1

2

1

1

0

11

11

2

1
)45(ˆ yP . 

 

Fig. y-45° filters. The polarized light with y  enters the y-axis filter (0). The probability of 

finding the system in the state y  is 100% between the filters 0 and 1. After passing 

through the 45° filter (1), the polarized light becomes in the state 45  with the resultant 

probability of finding the system as 50%. 
______________________________________________________________________________ 
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(c) 
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Fig. x-y filters. The polarized light with x  enters the x-axis filter (0). The probability of 

finding the system in the state x  is 100% between the filters 0 and 1. After passing 

through the y-axis fiter (1), the light disappears, which means that the resultant 

probability of finding the system in the y is 0 %. 

______________________________________________________________________________ 
(d) 
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Fig. x-x filers. The polarized light with x  enters the x-axis filter (0). The probability of 

finding the system in the state x  is 100% between the filters 0 and 1. After passing 

through the x-axis filter (1), the light remains in the same state ( x ). Th resultant 

probability of finding the system in the x is 100 %. 

______________________________________________________________________________ 
(e) 
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Fig. y-x filters. The polarized light with y  enters the x-axis filter (0). The probability of 

finding the system in the state y  is 100% between the filters 0 and 1. After passing 

through the x-axis fiter (1), the light disappears, which means that the resultant 

probability of finding the system in the x is 0 %. 

______________________________________________________________________________ 
APPENDIX-VII Quantum interference with single photon with three kind of filters 
 
(a) 
 



 

69 
 

 
 

xxPP
2

1

0

1

2

1

1

1

00

01

2

1

0

1

11

11

2

1

00

01
)45(ˆ)0(ˆ 


















































 . 

 

Fig. x-45°-x filters. The polarized light with x  enters the x-axis filter (0). The probability of 

finding the photon in the state x  is 100% between the filters 0 and 1. After passing 

through the 45° fiter (1), only the light with 45  appears between the 0 and 1 filters. 

The probability of finding the photon in the 45 is 50 %. After passing through the x-

filter (2), only the light with x  appears. The resultant probability of finding the photon 

in the x is 25 % after the x-filter (2).  

 
______________________________________________________________________________ 
(b) 
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Fig. x-45°-y filters. The polarized light with x  enters the x-axis filter (0). The probability of 

finding the photon in the state x  is 100% between the filters 0 and 1. After passing 

through the 45° fiter (1), only the light with 45  appears between the 0 and 1 filters. 

The probability of finding the photon in the 45 is 50 %. After passing through the y-

filter (2), only the light with y  appears. The resultant probability of finding the photon 

in the y is 25 % after the x-filter (2).  
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Fig. y-45°-x filters. The polarized light with y  enters the y-axis filter (0). The probability of 

finding the photon in the state y  is 100% between the filters 0 and 1. After passing 

through the 45° fiter (1), only the light with 45  appears between the 0 and 1 filters. 

The probability of finding the photon in the 45 is 50 %. After passing through the x-
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filter (2), only the light with x  appears. The resultant probability of finding the photon 

in the x is 25 % after the x-filter (2).  
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(d) 
 

 
 

yyPP
2

1

1

0

2

1

1

1

10

00

2

1

1

0

11

11

2

1

10

00
)45(ˆ)90(ˆ 


















































 . 

 

Fig. y-45°-y filters. The polarized light with y  enters the y-axis filter (0). The probability of 

finding the photon in the state y  is 100% between the filters 0 and 1. After passing 

through the 45° fiter (1), only the light with 45  appears between the 0 and 1 filters. 

The probability of finding the photon in the 45 is 50 %. After passing through the y-

filter (2), only the light with y  appears. The resultant probability of finding the photon 

in the y is 25 % after the x-filter (2).  

 
APPENDIX-VI  Calcite 

Calcite is transparent to opaque and may occasionally show phosphorescence or fluorescence. 
A transparent variety called Iceland spar is used for optical purposes. Acute scalenohedral 
crystals are sometimes referred to as "dogtooth spar" while the rhombohedral form is sometimes 
referred to as "nailhead spar". Single calcite crystals display an optical property called 
birefringence (double refraction). This strong birefringence causes objects viewed through a 
clear piece of calcite to appear doubled. The birefringent effect (using calcite) was first described 
by the Danish scientist Rasmus Bartholin in 1669. At a wavelength of ~590 nm calcite has 
ordinary and extraordinary refractive indices of 1.658 and 1.486, respectively. Between 190 and 
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1700 nm, the ordinary refractive index varies roughly between 1.9 and 1.5, while the 
extraordinary refractive index varies between 1.6 and 1.4. 
http://en.wikipedia.org/wiki/Calcite 
 

A birefringence in calcite can be observed in calcite. 
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Fig. Schematic diagram of the propagating o-ray and e-ray in calcite crystal. E. Hecht, 

Schaum's outline of theory and problems of optics (McGraw-Hill, 1975). 
 

 
 
Fig. A light with two orthogonal field components traversing a calcite section. (M. Fox, 

Optical Properties of Solids (Oxford, 2001). 
 

Double refraction in a natural calcite crystal. The shape of the crystal and the orientation of 
the optic axis is determined by the cleavage planes of calcite. An un-polarized incident light ray 
is split into two spatially separated orthogonally polarized rays. The ● symbol for the o-ray 
indicates that it is polarized with its E-field pointing out of the page. 
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Fig. A narrow beam of natural light can be split into two beams by a doubly refracting crystal. 

(F.W. Sears, Optics) p.180. Fig.7.11 
 
((Calcite)) 
Index of refraction for calcite: 
 

no = 1.6583, 
ne = 1.4864, 

 = 102°,  = 78°. 
 
((Youtube)) 
Double refraction in calcite 
http://www.youtube.com/watch?v=MoZar-gCj3E 
 
Circular polarization 
http://www.youtube.com/watch?v=ycY2mUZHS84 
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Fig. Calcite [(pictures taken by the author (M.S.)] 
 


