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Here we discuss the Hermitian operator for photon polarization. These operators are derived from 

the projection operators. These operators are closely related to the Pauli matrices for spin 1/2 electron. 
The rotation operator for the photon polarization will be also discussed. 
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yxz PP ,  (corresponding to the Pauli matrix ẑ ) 

 

xxz ̂ , yyz ̂ . 

 
The commutation relation: 
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0]ˆ,ˆ[ yx PP , 

 
since 
 

0ˆˆ  yyxxPP yx , 0ˆˆ  xxyyPP yx . 

 

The kets x  and y  are compatible. We note that x  and y  are orthogonal and form the complete 

set of basis.  
 

0yx , 1̂ yyxx . (Closure relation, Completeness) 

 

Thus x  and y  are the eigenkets of the matrix ẑ  with the eigenvalues +1, and -1, respectively. ẑ  

can be expressed by  
 

yyxxyyxxzz  )(ˆˆ . 

 

 
 

Fig. Measurement of yxz PP ˆˆˆ  . xxz ̂ . yyz ̂ . The state   is the superposition 

of x  and y . 

 

2. Basis {  ,  } 

(i) Basis   

We define the basis by 
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The projection operator is defined by 
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(ii) Basis   

We define   as 
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The projection operator is 
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1̂ˆˆ   PP .  (Closure relation, completeness) 

 

0ˆ   P , 0ˆ   P . 

 
The commutation relation; 
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We also get the Hermitian operator ̂  as follows. 
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Then we have 
 

    )ˆˆ(ˆ PP ,      )ˆˆ(ˆ PP . 

 

Note that   and   are orthogonal and form the complete set of basis;   and   are the 

eigenkets of ̂  with the eigenvalues +1 and -1, respectively. 
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We note that 
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Fig. Measurement of  
ˆ , where  n  for convenience.  ̂ . 

  
ˆ . 

 
((Note)) 

Using the Pauli matrices, ̂  can be expressed as 

 

nσ  ˆˆ)2sin(ˆ)2cos(ˆ
xz  , 

 
where ))2cos(,0),2(sin( n . We note that 
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3. Basis {
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We define the ket vectors as 
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We note that 
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The projection operators: 
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Then we have  
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The Hermitian operator is defined by 
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Note that 
4


 and 

4


  are orthonogonal and form the complete set of basis; 

4


 and 
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  are the 

eigenkets of x̂  with the eigenvalues +1 and -1, respectively. 

 

Thus 
4


 and 
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  are the eigenkets of x̂  with the eigenvalues +1, and -1, respectively. 

 

 
 

Fig. Measurement of 4/4/
ˆˆˆ
  PPx . 4/4/ˆ   x . 4/4/ˆ   x  

 

4. The basis { R  and L } 

(i) Right- hand circularly polarized photon (clockwise) 
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where  and  are complex numbers,  
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(ii) Left-hand circularly polarized photon (counter clockwise) 
Similarly we get 
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((Example)) The RHC (right-hand circularly polarized light) passes the polarizer with angle . 
 

 
 

Probability of finding the system in the state  ; 
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It should be noted that this probability RP  is independent of  . 

We define the projection operator: 
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Note that 
 

RRPR ˆ ,  LLPL ˆ , 

 
and 
 

1̂ˆˆ  LR PP . (Closure relation, completeness) 

 
We define the matrix 
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with 
 

1̂ˆ 2  y . 

 
Then we have 
 

RRPPR LRy  )ˆˆ(ˆ ,  LLPPL LRy  )ˆˆ(ˆ  

 

Note that R  and L  are orthogonal and form the complete set of basis; R  and L  are the eigenkets 

of ŷ  with the eigenvalues +1 and -1, respectively. Thus R  and L  are the eigenkets of ŷ  with the 

eigenvalues +1 and -1, respectively. We use ŷ  instead of ̂ , because of the similarity with the Pauli 

matrix ŷ   
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Fig. Measurement of ŷ . RRy ̂ . LLy ̂ . 

 
5. Rotation operator 

We now consider the rotation operator defined by )ˆexp( yi  
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This rotation operator can be also derived in a different way. 
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The rotation operator )(ˆ S  is defined by 
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Note that 
 

ReRS i )(ˆ , LeLS i )(ˆ . 

 

R  is the eigenket of )(ˆ S  with the eigenvalue ie , and L  is the eigenket of )(ˆ S  with the 

eigenvalue ie . Since the eigenket of )(ˆ S  is the same as that of ŷ , we have 
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If we apply the rotation operator )ˆexp( yi  to the ket vectors of the { x  and y } basis, we get the 

rotated vectors  and  . 
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We also note that 
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Thus the ket vectors R  and L  differ from R  and L  by a phase factor only and they represent 

the same physical states.  
 
6. Summary 

In summary we show a list of basis which is based on the basis { x  and y }. 
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The rotation operator is given by 
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