Polarizer and the photon polarization
 Masatsugu Sei Suzuki
 Department of Physics, State University of New York at Binghamton
 (Date: September 08, 2014).

For the Stern-Gerlach experiment with spin $1 / 2$, after the measurement of the spin direction Sz , the state of the system collapses into one of two states, $|+z\rangle$ and $|-z\rangle$. The situation is rather different for the light polarization, the state of the system collapses into one state depending on the direction of polarizer such as x-axis polarizer; the eigenket $|x\rangle$ for the x-polarizer, and the eigenket $|y\rangle$ for the y-polarizer. The final state is given by the projection operator which is applied to the initial state $|\psi\rangle$. Here we discuss the role of the projection operator for the photon polarization.

1. Stern-Gerlach experiment for the spin $\mathbf{1} / \mathbf{2}$ (as an example)

First we consider the Stern-Gerlach experiment $\left(\mathrm{SG}_{\mathrm{z}}\right)$. We have two eigenkets of the spin operator $\hat{S}_{z},|+z\rangle$ and $|-z\rangle$.

$$
\hat{S}_{z}|+z\rangle=\frac{\hbar}{2}|+z\rangle, \quad \hat{S}_{z}|-z\rangle=-\frac{\hbar}{2}|-z\rangle
$$

The projection operators are defined by

$$
\hat{P}_{+z}=|+z\rangle\langle+z|, \quad \hat{P}_{-z}=|-z\rangle\langle-z|
$$

The spin operator \hat{S}_{z} can be expressed by

$$
\hat{S}_{z}=\frac{\hbar}{2}(|+z\rangle\langle+z|-|-z\rangle\langle-z|)=\frac{\hbar}{2}\left(\hat{P}_{+z}-\hat{P}_{-z}\right)
$$

(a) The measurements: eigenvalue problem

The eigenkets $|+z\rangle$ and $|-z\rangle$ are determined from the eigenvalue problem. After the measurements the system collapses
(b) Projection operator

When the initial state of the system is is given by $|\psi\rangle$, the final states after the SG_{z} are

$$
\hat{P}_{+z}|\psi\rangle, \quad \hat{P}_{-z}|\psi\rangle
$$

using the projection operators.

(c) The probability

The probability of finding the system in the state $|+z\rangle$ is

$$
\langle+z| \hat{P}_{+z}|\psi\rangle=\langle+z \mid \psi\rangle
$$

The probability of finding the system in the state $|-z\rangle$ is

$$
\langle-z| \hat{P}_{-z}|\psi\rangle=\langle-z \mid \psi\rangle
$$

2. Photon polarization

(a) Projection operator

The final state of the light after passing the x-axis polarizer is given by

$$
\hat{P}_{x}|\psi\rangle=|x\rangle\langle x \mid \psi\rangle .
$$

The probability of finding the system in the state $|x\rangle$ is

$$
\left.\left|\langle x| \hat{P}_{x}\right| \psi\right\rangle\left.\right|^{2}=|\langle x \mid \psi\rangle|^{2}
$$

(b) The use of \boldsymbol{y}-axis polarizer

The final state of the light after passing the y-axis polarizer is given by

$$
\hat{P}_{y}|\psi\rangle=|y\rangle\langle y \mid \psi\rangle .
$$

The probability of finding the system in the state $|y\rangle$ is

$$
\left.\left|\langle y| \hat{P}_{y}\right| \psi\right\rangle\left.\right|^{2}=|\langle y \mid \psi\rangle|^{2} .
$$

(c) Th polarizer with the angle $\boldsymbol{\theta}$

The final state of the light after passing the angle θ polarizer is given by

$$
\hat{P}_{\theta}|\psi\rangle=|\theta\rangle\langle\theta \mid \psi\rangle .
$$

The probability of finding the system in the state $|\theta\rangle$ is

$$
\left.\left|\langle\theta| \hat{P}_{\theta}\right| \psi\right\rangle\left.\right|^{2}=|\langle\theta \mid \psi\rangle|^{2} .
$$

3. Examples-1

Suppose we use two polarizers (angles α and β) in series; $\alpha-\beta$

The projection operators for the polarizers α and β are

$$
\hat{P}_{\alpha}=|\alpha\rangle\langle\alpha|=\binom{\cos \alpha}{\sin \alpha}\left(\begin{array}{ll}
\cos \alpha & \sin \alpha
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right)
$$

and

$$
\hat{P}_{\beta}=|\beta\rangle\langle\beta|=\binom{\cos \beta}{\sin \beta}\left(\begin{array}{ll}
\cos \beta & \sin \beta
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \beta & \sin \beta \cos \beta \\
\sin \beta \cos \beta & \sin ^{2} \beta
\end{array}\right)
$$

where

$$
|\alpha\rangle=\binom{\cos \alpha}{\sin \alpha}, \quad|\beta\rangle=\binom{\cos \beta}{\sin \beta}
$$

The initial state is given by $|\psi\rangle$. After passing through two polarizers α and β, the final state is obtained as

$$
\hat{P}_{\beta} \hat{P}_{\alpha}|\psi\rangle
$$

The probability amplitude for the system in the final state $|\beta\rangle$, is given by

$$
\langle\beta| \hat{P}_{\beta} \hat{P}_{\alpha}|\psi\rangle=\langle\beta \mid \alpha\rangle\langle\alpha \mid \psi\rangle
$$

The corresponding probability is

$$
P_{\alpha \beta}=|\langle\beta \mid \alpha\rangle|^{2}|\langle\alpha \mid \psi\rangle|^{2}=|\langle\alpha \mid \psi\rangle|^{2} \cos ^{2}(\beta-\alpha) . \quad \text { (Malus' law) }
$$

where

$$
\langle\beta \mid \alpha\rangle=\left(\begin{array}{ll}
\cos \beta & \sin \beta
\end{array}\right)\binom{\cos \alpha}{\sin \alpha}=\cos (\beta-\alpha)
$$

4. Example-II

Next we consider n polarizers (angles $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{\mathrm{n}-1}, \alpha_{\mathrm{n}}$) in series. The initial state is given by $|\psi\rangle$. After passing through n polarizers (angles $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{\mathrm{n}-1}, \alpha_{\mathrm{n}}$) in series, the final state can be obtained as

$$
\hat{P}_{\alpha_{n}} \hat{P}_{\alpha_{n-1}} \cdots \hat{P}_{\alpha_{4}} \hat{P}_{\alpha_{3}} \hat{P}_{\alpha_{2}} \hat{P}_{\alpha_{1}}|\psi\rangle
$$

The probability amplitude for the system in the final state $\left|\alpha_{n}\right\rangle$, is given by

$$
\left\langle\alpha_{n}\right| \hat{P}_{\alpha_{n}} \hat{P}_{\alpha_{n-1}} \cdots \hat{P}_{\alpha_{4}} \hat{P}_{\alpha_{3}} \hat{P}_{\alpha_{2}} \hat{P}_{\alpha_{1}}|\psi\rangle=\left\langle\alpha_{n} \mid \alpha_{n-1}\right\rangle \cdots\left\langle\alpha_{3} \mid \alpha_{2}\right\rangle\left\langle\alpha_{2} \mid \alpha_{1}\right\rangle\left\langle\alpha_{1} \mid \psi\right\rangle
$$

where

$$
\hat{P}_{\alpha_{k}}=\left|\alpha_{k}\right\rangle\left\langle\alpha_{k}\right|=\left(\begin{array}{cc}
\cos ^{2} \alpha_{k} & \sin \alpha_{k} \cos \alpha_{k} \\
\sin \alpha_{k} \cos \alpha_{k} & \sin ^{2} \alpha_{k}
\end{array}\right)
$$

The corresponding probability is

$$
P=\left|\left\langle\alpha_{1} \mid \psi\right\rangle\right|^{2} \cos ^{2}\left(\alpha_{n}-\alpha_{n-1}\right) \cos ^{2}\left(\alpha_{n-1}-\alpha_{n-2}\right) \cdots \cos ^{2}\left(\alpha_{3}-\alpha_{2}\right) \cos ^{2}\left(\alpha_{2}-\alpha_{1}\right)
$$

REFERENCES

Richard P. Feynman and Albert R. Hibbs, Quantum Mechanics and Path Integrals, emended by Daniel F. Styer, Emended edition (Dover Publications, Inc. New York, 2010).

