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What is the wave packet? 

In physics, a wave packet is a short "burst" or "envelope" of localized wave action 
that travels as a unit. A wave packet can be analyzed into, or can be synthesized from, an 
infinite set of component sinusoidal waves of different wavenumbers, with phases and 
amplitudes such that they interfere constructively only over a small region of space, and 
destructively elsewhere. Each component wave function, and hence the wave packet, are 
solutions of a wave equation. Depending on the wave equation, the wave packet's profile 
may remain constant (no dispersion) or it may change (dispersion) while propagating. 
http://en.wikipedia.org/wiki/Wave_packet 
 
1. Schrödinger equation (separation variable) 

The state function for a system develops in time according to the equation 
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where Ĥ  is the time-dependent Hamiltonian. The time dependent Schrödinger equation 
for the wavefunction )(tr  is given by 
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We assume that 
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where E is constant, independent of t and r. Thus we get 
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Then we have 
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where {n(r)} (n = 1, 2, 3,…..): discrete set of eigenfunctions 
 
2. One dimensional case 
The Hamiltonian of the free particle with mass m is given by 
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The Schrödinger equation: 
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where )(xk  satisfies the second order differential equation, 
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((Plane wave solution)): 
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where A is constant. The phase velocity is defined as 
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The group velocity is defined by 
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which is different from the phase velocity. Note that 
22

),( Atxk  , that is uniformly 

probable to find the particle anywhere along the x axis. The state function that better 
represents a classical (localized) particle is a wave packet. 
 
3. Gaussian wave packet 

A wave packet is a localized disturbance that results from the sum of many different 
wave forms. If the packet is strongly localized, more frequencies are needed to allow the 
constructive superposition in the region of localization and destructive superposition 
outside the region. From the basic solutions in one dimension, a general form of a wave 
packet can be expressed as some superposition of waves. 

x

 
 
Fig. Gaussian wave packet propagating along the +x axis. 
 
We consider the wave characterized by the wavenumber k, 
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where A is constant, and )(kf  is a Gaussian distribution function with a peak at 0kk   

and the width k , 
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If the Gaussian distribution )(kf  has a narrow enough peak at 0kk  , a good 

approximation is obtained by expanding )(k  as a series of powers of 0kk  . This is 

because the main contributions to the integral come in a region of the order of the width 
of the peak in the Gauss distribution. Thus we obtain  
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We set 
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For free electron with the energy dispersion 2
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So we get 
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We now consider the superposition of waves defined by 
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With 0kk  , this becomes 
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If 0 , then the integral part is only a function of tVxx g 0 . 

If 0 , we have 
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Note that we use the Mathematica to calculate the integral. 
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Normalization: 
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Thus we have 
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The final form of 1

*
1 EE  is given by 
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which has the same form as the Gaussian distribution 
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where the standard deviation  is dependent on t and is given by 
 

422 )(1
2

1
kt

k



  . 
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4. Physical meaning of the equation for the wave packet 
 
The position of center: 
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The velocity of center, which is called as the group velocity 
 

0kk
g k

V
dt

xd
















. 

 
The spreading of the wave packet: 
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For times so short that 1)( 422 kt  , we have  
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The amplitude of 
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The evolution of the wave packet is not confined to a simple displacement at a velocity v0. 
The wave packet also undergoes a deformation. The amplitude decreases with increasing 
t, while the width x  increases with increasing time. Note that the peak position moves 
at the constant velocity along the +x direction. 
 
The Heisenberg’s principle of uncertainty: 
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Fig. Propagation of Gaussian wave packet. Plot of 
2

),( tx  as a function of x. The 

time t is changed as a parameter; t = 0 - 1 with t = 0.05. m = 1. 1 . k0 = 2. k 
= 7. x0 = 0. 
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5. Group velocity and phase velocity 
(a) Photon 

The dispersion relation of photon is given by 
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The group velocity is given by 
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which is the same as the phase velocity, 
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The parameter  is given by 
 

0
)(

0

2

2














kk
k

k . 

 
(b) Free electron with mass m 

The dispersion relation of electron is given by 
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The group velocity is given by 
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which is not the same as the phase velocity 
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The parameter  is given by 
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6. Simulation 

Using the Mathematica, we make a plot of 
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as a function of t, where the standard deviation  is given by 
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((Mathematica)) 



 

11 
 

Evolution of Gaussian Wave packet Gaussian 
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