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________________________________________________________________________ 

Charles Hard Townes (born July 28, 1915) is an American Nobel Prize-winning physicist and 

educator. Townes is known for his work on the theory and application of the maser, on which he 

got the fundamental patent, and other work in quantum electronics connected with both maser and 

laser devices. He shared the Nobel Prize in Physics in 1964 with Nikolay Basov and Alexander 

Prokhorov.  

 

http://en.wikipedia.org/wiki/Charles_Hard_Townes 

 

 
 

http://www.nobelprize.org/nobel_prizes/physics/laureates/1964/townes.jpg 

 

1. Introduction 

 

MASER: Microwave Amplification by Stimulated Emission of Radiation 

 

“The maser was originally conceived in 1951 by Townes, who noted his thoughts on the back of 

an envelope during a period of contemplation on a bench in Franklin Park, Washington, DC. The 

device was realized experimentally by Gordon, Zeiger, and Townes (1954).” 

 

C.H. Townes, How the Laser Happened Adventures of a Scientist (Oxford University Press, 1999). 

 

A maser is a device that produces coherent electromagnetic waves through amplification due 

to stimulated emission. Historically the term came from the acronym "microwave amplification 

by stimulated emission of radiation", although modern masers emit over a broad portion of the 

electromagnetic spectrum. This has led some to replace "microwave" with "molecular" in the 

acronym, as suggested by Townes. When optical coherent oscillators were first developed, they 

were called optical masers, but it has become more common to refer to these as lasers. 
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Theoretically, reflecting principles previously discussed by Joseph Weber at the June 1952 

conference of the Institute of Radio Engineers, the principle of the maser was described by Nikolay 

Basov and Alexander Prokhorov from Lebedev Institute of Physics at an All-Union Conference 

on Radio-Spectroscopy held by USSR Academy of Sciences in May 1952. They subsequently 

published their results in October 1954. Independently, Charles H. Townes, J. P. Gordon, and H. 

J. Zeiger built the first maser at Columbia University in 1953. The device used stimulated emission 

in a stream of energized ammonia molecules to produce amplification of microwaves at a 

frequency of 23.786 GHz. Townes later worked with Arthur L. Schawlow to describe the principle 

of the optical maser, or laser, which Theodore H. Maiman first demonstrated in 1960. For their 

research in this field Townes, Basov and Prokhorov were awarded the Nobel Prize in Physics in 

1964. 

 

((Note)) 

Properties of NH3 maser 

 

(i) The microwave frequency: 

 

A20 ℏ  

f0 = 23.786 GHz 

 

(ii) The energy: 

 

098371.0)2(2 0  fA ℏ  meV  

 

(iii) The equivalent temperature:   T = 1.14155 K. 

(iv) The wavelength:   26037.1  cm 

 

2. The state of NH3 molecule 
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  1  when the nitrogen is up. 

 

   2  when the nitrogen is down. 

 

We consider the parity operator ̂ , such that 

 

21ˆ    12ˆ  . 

 

Therefore the kets 1  and 2  are not the eigenkets of ̂ . Since 

 

x ˆ
01

10
ˆ 








 , 

 

̂  is regarded as the Pauli matrix x̂ . The eigenkets of x̂  are x . 

 

xxx ̂ , 

 
with 

 

1
( 1 2 )

2
sx     ;   symmetric state.  

 

1
( 1 2 )

2
ax     ;  antisymmetric state 

 

These two states are the eigenkets of ̂ . We now consider the Hamiltonain Ĥ . The symmetry of 

two physical configuration suggests that  

 

02ˆ21ˆ1 EHH  . 

 

N

H

H

H

: electric  
    dipole  
    moment

N

H

H

H



 

4 

 

What about the off-diagonal elements? The vanishing of 1ˆ2 H  would mean that a molecule 

initially in the state 1  would remain in that state. If 01ˆ2 H , there is a small amplitude for 

the system to mix between the two states. 

 

AH 1ˆ2 , 

 

xAE
EA

AE
H ̂1̂ˆ

0

0

0 










 . 

 

under the basis of 1  and 2 . This Hamiltonian commutates with the parity operator: 0̂]ˆ,ˆ[ H  

since 

 

0]ˆ,ˆ1̂[]ˆ,ˆ[ 0  xxAEH  . 

 

((Eigenvalue problem)) 

 

xAExAExH x  ∓00 ()ˆ1̂(ˆ  , 

 

where 

 

xxx ̂ . 

 

 
 

Fig. The splitting of the energy level due to the perturbation A. 

 

3. Application of non-homogeneous static electric field 

 

E0

Ea=E0+A

Es=E0-A

2A=Ñw0

»1>,»2>

»fa>

»fs>
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When the electric filed is applied along the x axis (the axis of the electric dipole moment), the 

Hamiltonian is changed into 

 

 

ˆ H 
E0   A

A E0  









 E0

ˆ 1   ˆ z  A ˆ x . 

 

under the basis of 1  and 2 . The new Hamiltonian Ĥ  does not commutate with the parity 

operator ˆ ˆ (= )
x

  ; 

 

0 0
ˆ ˆˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ]x z x yH H i         . 

 

We have 

 

)ˆ
)(

ˆ
)(

()(1̂ˆ
2222

22

0 zx

AA

A
AEH 













 . 

 

 
 

N

H

H
H : electric  

    dipole  
    moment


electric 
field

N

H
H

H



energy = -energy = 
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2 2 2 2
( ,  0,  )

( ) ( )

A

A A



 
 

 
n , 

 

n  ˆ)(1̂ˆ 22

0 AEH , 

 

ˆ( )     n n n , 

 

where 

 

2
2

sin1
2

cos


 n , 

 
and 

 

2
2

cos1
2

sin


 n , 

 
where 

 

22)(
sin

A

A





  

22)(
cos

A





 . 

 

Thus, we have 
 

nn  ))((ˆ 22

0 AEH  , 

 

 
 

In a weak electric field, using the Taylor expansion, we have 

 

E0

Ea=E0+A

Es=E0-A

2A=Ñw0

»1>,»2>

»fa>

»fs>

A HperturbationL e Helectric fieldL

E0+ A2 + HmeL2

E0- A2 + HmeL2
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2 2 2 2

0 02
1 ...

2
sE E A E A

A A

   
        

 
2 2 2 2

0 02
1 ...

2
aE E A E A

A A

   
        

 

 
 

Let us consider NH3 in a region where  is weak but where 2 has a strong gradient in the x-

direction (i.e., along the axis of molecules). 

 
d

dx
( 2

)   . 

 

The molecules in the state s  are subjected to a force parallel to the x axis: 

 

Fs  
dEs

dx


1

2


 2

A
. 

 

Similarly, the molecules in the state a  are subjected to an opposite force: 

 

Adx

dE
F a

a

2

2

1 
 . 

 

This is the basis of the method which is used in the ammonia maser to sort the molecules and 

select those in the higher energy state. 

We note that just before entering the maser cavity, the states are { s , a } since there is no 

non-homogeneous external electric field.  

 

NH3

x

 2

a

s
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Fig. Diagram of NH3 maser. Molecules produced by oven are collimated, screened into state 

a  (higher energy state) [focusing field], and passed through maser cavity. They give up 

their energy to the electric field in accordance with the Rabi flopping formula. No pumping 

is necessary, unlike lasers.  

 

 
 

Fig. (C. Townes, Nobel lecture 1964). The ammonia (beam-type) maser. Molecules diffuse 

from the source into a focuser where the excited molecules (open circles) are focused into 

a cavity and molecules in the ground state (solid circles) are rejected. A sufficient number 

of excited molecules will initiate an oscillating electromagnetic field in the cavity, which 

is emitted as the output microwaves. Because of energy given to the field, some molecules 

return to the ground state toward the end of their transit through the cavity. 

 

((Charles H. Townes)) 

Charles H. Townes, How the Laser Happened: Adventures of a Scientist (Oxford, 

1999).p.57 

 

Maser cavity (frequency 0)

vT

s

all

electric field

NH3

s

a

 2
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On that morning in Franklin Park, the goal of boosting energy gave me an incentive to think 

more deeply about stimulated emission than I had before. How could one get such a 

nonequilibrium set up? Answers were actually well known; they had been in front of me and the 

physics community for decades. Rabi, right at Columbia, had been working with molecular and 

atomic beams (streams of gases) that he manipulated by deflecting atoms in excited states from 

those of lower energies. The result could be a beam enriched in excited atoms. At Harvard, Ed 

Purcell and Norman Ramsey had proposed a conceptual name to describe systems with such 

inverted populations; they had coined the term “negative temperature,” to contrast with the positive 

temperatures, because these “negative” temperatures inverted the relative excess of lower-level 

over upper-level states in equilibrated systems. It is perhaps a hackneyed device among dramatists 

to have a scientist scribble his thinking on the back of an envelope, but that is what I did. I took an 

envelope from my pocket to try to figure out how many molecules it would take to make an 

oscillator able to produce and amplify millimeter or submillimeter waves. All the required numbers 

about my friend, the ammonia molecule, were in my head. Ammonia appeared to be the most 

favorable medium. I quickly showed that we still needed a resonator, but now we would not have 

to pump electromagnetic energy into it. We could merely send a stream, or beam, of excited 

molecules through it, which would do the work! Any resonator has losses, so we would need a 

certain threshold number of molecules in the flow to keep the wave from dying out. Beyond that 

threshold, a wave would not only sustain itself bouncing back and forth, but it would gain energy 

with each pass. The power would be limited only by the rate at which molecules carried energy 

into the cavity. 

 

3. Change of basis 

In the ammonia maser, the beam with molecules in the state a  and with the higher energy 

is sent through a resonant cavity. Here we note that 

 

1ˆ
1

1

2

1
Uxs 







 ,  for (E0 - A) 

 

2ˆ
1

1

2

1
Uxa 










   for (E0+ A) 

 

where the unitary operator is defined by 

 












11

11

2

1
Û , 










 

11

11

2

1ˆˆ 1
UU . 

 

We now consider the system inside the maser cavity. The Hamiltonian Ĥ is given by 
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












)(

)(
)(ˆ

0

0

tEA

AtE
tH




  under the basis of 1  and 2 . 

 

in the presence of a time-dependent electric field (t) inside the maser cavity. We assume that 

 

1 2( ) ( ) 1 ( ) 2 ( ) ( )a a s st c t c t c t c t       

 

where 

 

{ , }i s aa   , {1 , 2 }ib  . 

 
ˆ 1s U  ,  for (E0 - A). 

 
ˆ 2a U  ,  for (E0+ A). 

 
(a) The matrix element (I): 

 

ˆ

i i j j

j

i j j

j

a a b b

b U b b

 










 

 

11 11

21 12

s

a

  

  

    
        

 

 

or 

 

1

2

( ) ( )1 11

( ) ( )1 12

s

a

C t C t

C t C t

    
       

 

 

(b) The matrix element (II): 

 

ˆ

i i j j

j

i j j

j

b b a a

b U b a

 










 

 

1 1 11

2 1 12

s

a

  

  

    
        
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or 

 

1

2

( )( ) 1 11

( )( ) 1 12

s

a

C tC t

C tC t

    
         

 

 

(c) Schrödinger equation 

 

The Schrödinger equation is given by 

 

)(ˆ)( tHt
t

i  



ℏ , 

 

or 

 

ˆ( ) ( )

ˆ ( )

i i

i j j

j

i a t a H t
t

a H a a t

 








 

ℏ

 

 

or 

 

ˆ( ) ( )

ˆ ( )

i i

i j j

j

i b t b H t
t

b H b b t

 








 

ℏ

 

 

Note that 

 
ˆ ˆ ˆ ˆ

i j i ja H a b U HU b   

 

and 

 

0

0

0

0

( )1 1 1 11 1ˆ ˆ ˆ
( )1 1 1 12 2

( )

( )

i j

E t A
b U HU b

A E t

E A t

t E A








      
           

 
   

  

 

Thus we have 

 

01 1

02 2

( )( ) ( )

( )( ) ( )

E t Ac t c t
i

A E tc t c tt




     
           

ℏ . under the basis {1 , 2 }ib   
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and 

 

0

0

( ) ( ) ( )

( ) ( ) ( )

s s

a a

c t E A t c td
i

c t t E A c tdt




     
          

ℏ   under the basis { , }i s aa    

 

Thanks to our choice of the basis { , }i s aa   , when ( ) 0t  , 

 

0

0

( ) 0 ( )

( ) 0 ( )

s s

a a

c t E A c td
i

c t E A c tdt

     
          

ℏ  

 

or 
 

0( )

( )
i E A t

s sc t e



 ℏ ,  

0( )

( )
i E A t

a ac t e



 ℏ . 

 

where s
  and a

  are constants. 

________________________________________________________________________ 

((Mathematica)) 
 

 
 
_________________________________________________________________________ 

When ( ) 0t  , first we write 

 

ℏ

tAEi

ss ettc

)( 0

)()(




  , 

 

ℏ

tAEi

aa ettc

)( 0

)()(




  , 

 
We obtain a system of coupled differential equations, showing that the electric field (actually 

polarization vector associated with induced photon) induces transition between the states 

{ , }s a  . 

Clear "Global` " ; U1
1

2

1 1

1 1
; UR Inverse U1 ;

H1
E0 A

A E0
; f1 UR.H1.U1 Simplify;

f1 MatrixForm

A E0

A E0
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)()(
)(

0 tet
dt

td
i a

tis 
 ℏ , 

 

  
iℏ

d a (t)

dt
 (t)e

i0t s (t), 

 
where 

 

AEE sa 20  ℏ , 

 

with 
 

AEEa  0 , AEEs  0 , 

 

 
 

We consider the case: 
 

(t)  20 cost  0 (e
it  e

it
). 

 
Then we have 

 

  
iℏ

d s (t)

dt
 0[e

i(  0 ) t  e
 i(  0 ) t

] a(t) , 

 

  
iℏ

d a (t)

dt
 0[e

i(  0 )t  e
 i(  0 )t

] s (t) . 

 
4. Rotating wave approximation 

The terms with ( + 0) oscillate very rapidly about an average value of zero and, therefore 

do not contribute very much on the average to the rate of change of . 
 

  
iℏ

d s (t)

dt
 0e

i ( 0 )t a( t), 

 

E0

Ea=E0+A

Es=E0-A

2A=Ñw0

»1>,»2>

»fa>

»fs>
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iℏ

d a (t)

dt
 0e

 i(  0 ) t s (t) . 

 
5. Rabi angular frequency 

5.1 Derivation 

The molecules enter the cavity, the cavity field-oscillating at exactly the right frequency-

induces transition from the upper to the lower states, and the energy released is fed into the 
oscillatory field. The molecular energy is converted into the energy of an external electromagnetic 

field. We define that 
 

0  ,  
ℏ

0
0


 , 

 
and 

 
2

2

0
4

R


    ,  (Rabi angular frequency)  

 

(we follow the definition of the Rabi angular frequency based on the book of Sakurai and 
Napolitano), with 

 

A20 ℏ . 

 

For convenience, here we use   instead of R  

 
2 2

02 4R        

 

For the following calculations. Then, we get 
 

)()(
)(

0
0 tete

dt

td
i a

ti

a

tis 
  
ℏ

, 

 

)()(
)(

0
0 tete

dt

td
i s

ti

s

tia 
  
ℏ

, 

 
with the initial condition 

 

1)0( a , 0)0( s . 

 

The solution is as follows, using the Mathematica (which will be shown later) 
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2
20

0

1
2 sin( )

sin( )2( )

it
it

R
s

R

ie t
ie t

t




   
   

 
, 

 
( )

2 [ ( )]
( )

2

it

it

a

e e
t


       




. 

 
The probabilities are given by 

 

22

0

22

0

2

0

22

0

22

0

22

0

*

4

]4cos(1[2

4

)4
2

(sin4

)()()(













t

t

tttP sss 

 

 

22

0

22

0

2

0

22

0*

4

)4cos(22
)()()(






t
tttP aaa  . 

 

Note that 
 

1)()(  tPtP as . 

 

We make a plot of Ps(t) and Pa(t) as a function of t, where 0 = 10 and  is changed as a 

parameter in the vicinity of 10 . 

 

 
 

w0=10w=10

w=9.8

w=9.6

w=9.4

w=9.2

w=9.0

2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

Ps
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Fig. Probability of finding the NH3 atoms in the ground state. 0 = 10.  is changed as a 

parameter between  = 9.0 and 10.0. 0 = 0.5. Ps has a maximum at 
2

0


 t  when  = 0. 

 

 
 

Fig. Probability of finding the NH3 atoms in the excited state. 0 = 10.  is changed as a 

parameter between  = 9.0 and 10.0. 0 = 0.5. Note that Pa has a minimum at 
2

0


 t  for 

 = 0 ( 0  ). 

 
5.2. Mathematica 

Here we show how to solve the differential equations (time-dependent Schrödinger equations 
whose Hamiltonian is time dependent) by using the Mathematica. 

 
 

w0=10

w=10
w=9.8

w=9.6

w=9.4

w=9.2

w=9.0

2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

Pa
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6. Resonance condition 

 

When 0  and 
ℏ

0
0


 ,  

 
we have 

 

)cos()( 0tta  , )(cos)( 0

2 ttPa  , 

 

and 
 

)sin()( 0tits  , )(sin)( 0

2 ttPs  , 

 

Clear "Global` " ; SuperStar;

expr : expr . Complex a , b Complex a, b ;

=  - 0, 4 02 2

2
2

, 0
0

eq1 D a t , t 0 Exp t s t ;

eq2 D s t , t 0 Exp t a t ;

s11 DSolve eq1, eq2, a 0 1, s 0 0 , a t , s t ,

t Simplify , 0, 0 0 &;

s12 s11 . 4 0
2 2

,
1

4 02 2

1
Simplify;

a t a t . s12 1 ComplexExpand FullSimplify

1
2

t t

2

s t s t . s12 1 ComplexExpand FullSimplify

2
t
2 0 Sin

t

2
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Fig. Probabilities for the two states [Pa(t) and Ps(t)] of the ammonia molecules in a sinusoidal 

electric field. 00   . When 
2

0


 t , Ps = 1 and Pa = 0. 

 
7. Physical meaning 

((Feynman, vol.3. 9-12)) 
Let us suppose that it takes the time t = T to go through the cavity. If we make the cavity just 

long enough so that 
 

2//00   ℏTT ,  

 

then a molecule which enters in the upper state a  will certainly leave it in the lower state s . 

 

 
 
In other words, its energy is decreased, and the loss of energy cannot go anywhere else but into 

the machinery which generates the field. By energy conservation the molecules deliver energy to 
the electromagnetic field. This process is called stimulated emission. If the molecules are initially 

in the state 
s

 , they will absorb energy from the electromagnetic field in going to the state 
a

 , 

a process called stimulated absorption. When the size of the resonant cavity is L, L should be on 

the same order as L vT , where v is the average velocity of the molecules. Note that the velocity 

is not the same. They obey the Maxwell distribution. 
 

8. Alternative method for solving the differential equation 

8-1 Formulation 

Pa

Ps

D=0

0
p

4

p

2

3 p

4
p

G0 t

0.2

0.4

0.6

0.8

1.0

cavity

a s
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Here we use the same technique which is used in the discussion of the magnetic resonance in 

order to obtain the probability of finding the system in the a  and s  states. We start with the 

eqs., 
 

  
iℏ

d s (t)

dt
 0e

i ( 0 )t a( t), 

 

  
iℏ

d a (t)

dt
 0e

 i(  0 ) t s (t) . 

 
We assume that 

 

0  , 
ℏ

0
0


 , 

 
2

2

0
4

R


    .  (Rabbi angular frequency) 

 
We also use the notation 

 
2 2

02 4R       . 

 

For convenience, we put 
 

)()( 2/ tet s

ti

s   , 

 

)()( 2/ tet a

ti

a    

 
This is related to the relation between the rotating reference frame and the laboratory frame in 

the case of nuclear magnetic resonance. Substituting these expressions in the above differential 
equations, we get 

 

a

titi

s

ti

s

ti eeeiei  2/

0

2/2/ )
2

(  


 ℏɺℏ , 

 

s

titi

a

ti

a

ti eeeiei  2/

0

2/2/ )
2

(  


 ℏɺℏ , 

 

or 
 

ass ii  0)
2

1
(  ℏɺℏ , 
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saa ii  0)
2

1
(  ℏɺℏ , 

 

or 
 

)
2

1
( 0 assi   ℏɺℏ , 

 

)
2

1
( 0 saai   ℏɺℏ . 

 

These equations can be rewritten in the form of the Schrödinger equation for )(' t ,  

 

)(''ˆ)(' tHt
t

i  



ℏ , 

 

where 
 











)(

)(
)('

t

t
t

a

s




 , 

 

under the basis of  
 

za  ,  zs  . 

 
(we use this notation for the simplicity, from the analogy from the spin 1/2 case). The new 

Hamiltonian 'Ĥ  is independent of time t and be expressed by 
 

)ˆ
4

2
ˆ

4
(4

2

)ˆˆ
2

1
(

2

1
2

1

'ˆ

22

0

0

22

0

22

0

0

0

0

xz

xz

H






































ℏ

ℏ

ℏ

 

 
or 

 

)ˆ(4
2

'ˆ 22

0 nσ 
ℏ

H , 
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where n is the unit vector in the x-z plane. The angle between the z axis and n is . 
 

)cos,0,(sin)
4

,0,
4

2
(

22

0

22

0

0 







n . 

 

The ket vector n  is the eigenvector of )ˆ( nσ   with the eigenvalues 1 , 

 

nnnσ  )ˆ( . 

 

Thus n  is the eigenket of  ̂H ' with the eigenvalues E  with 

 

nnnnσn  EH 22

0

22

0 4
2

)ˆ(4
2

'ˆ ℏℏ
, 

 

where 
 

2




ℏ
E , 

 

with 
 

22

04  . 

 
We note that 
 

zzas 
2

sin
2

cos
2

sin
2

cos








n , 

 

and 
 

zzas 
2

cos
2

sin
2

cos
2

sin








n , 

 
where 

 

22

04
cos




 ,  

22

0

0

4

2
sin




 . 

 

The new state vector )(' t  is related to the original state vector )(t  by 

 

zteezteet a

tAEti

s

tAEti   )()()(
/)(2//)(2/ 00  ℏℏ

, 
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ztztt as  )()()('  . 

 
8-2. Rabi’s formula 

We assume that the initial condition is given by 
 

ztt a   )0()0(' ,  (initial condition) 

 

which means that 
 

1)0( ta ,  1)0( ts . 

 
Then we get 

 

nnnn

nnnn

nnnn













)
2

exp()
2

exp(

)
'ˆ

exp(
'ˆ

exp(

))(
'ˆ

exp()
'ˆ

exp(

titi

tHitHi

tHitHi

ℏℏ

ℏℏ

 

 

nn

nnnn



















)
2

exp()
2

cos()
2

sin()
2

exp(

)
2

exp()
2

exp(

)
'ˆ

exp()('

titi

z
ti

z
ti

z
tHi

t




ℏ

 

 

Using these relations, we have the matrix elements as 

 

)
2

sin(cos)
2

cos(

)
2

exp()cos1(
2

1
)

2
exp()cos1(

2

1

)]
2

exp()
2

(cos)
2

exp()
2

(sin

)
2

exp()
2

cos()
2

sin()
2

exp()('

22

tit

titi

titi

ztiztitz


































 nn
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)
2

sin()sin(

)
2

sin()
2

cos()
2

sin(2

)]
2

exp()
2

)[exp(
2

cos()
2

sin(

)]
2

exp()
2

cos()
2

sin()
2

exp()
2

cos()
2

sin(

)
2

exp()
2

cos()
2

sin()
2

exp()('

ti

ti

titi

titi

ztiztitz




































 nn

 

 

Pa(t) is the probability for finding the spin in the state az  , 

 

 

)4
2

(sin
4

4
1

)
2

(sinsin1

)]
2

(sincos)
2

(cos

)('

)()(

22

0

2

2

0

2

2

0

2

1

222

222

2

2



















t

t

tt

tz

tztPa









 

 

Note that 1)0( tPa . Ps(t) is the probability for finding the spin in the state 
s

z   . 

 

 

)4
2

(sin
4

4

)
2

(sinsin

)
2

(sinsin

)('

)()(

22

0

2

2

0

2

2

0

2

1

222

22

2

2
















t

t

t

tz

tztPs









 

 
((Alternative method)) 

We use the formula for the spin 1/2. 
 

)ˆ)(
2

sin()
2

cos(1̂)]ˆ(
2

exp[ nσnσ 


 i
i

. 
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The Hamiltonian is given by 

 

)ˆ(
2

)ˆ(4
2

'ˆ 22

0 nσnσ 



ℏℏ

H . 

 
Then the time evolution is obtained as 

 

)ˆ)(
2

sin()
2

cos(1̂)]ˆ(
2

exp[)
'ˆ

exp( nσnσ 









t

i
tt

i
tHi

ℏ
, 

 
using the above formula. Then we get 

 


































































































cos)
2

sin()
2

cos(

sin)
2

sin(

1

0

cos)
2

sin()
2

cos(sin)
2

sin(

sin)
2

sin(cos)
2

sin()
2

cos(

)]sincos)(
2

sin()
2

cos(1̂[

)]ˆ)(
2

sin()
2

cos(1̂[

)
'ˆ

exp()('

t
i

t

t
i

t
i

tt
i

t
i

t
i

t

z
t

i
t

z
t

i
t

z
tHi

t

xz

nσ

ℏ

 

 

 

)4
2

(sin
4

4
1

)
2

(sinsin1

)]
2

(sincos)
2

(cos

|cos)
2

sin()
2

cos(|

)(')(

22

0

2

2

0

2

2

0

2

1

222

222

2

2























t

t

tt

t
i

t

tztPa









 

 

8-3 The use of Mathematica 

We obtain the time dependence of the Schrödinger equation with the time-independent 

Hamiltonian; 
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




















2

1
2

1

'ˆ

0

0

ℏH . 

 

We calculate the time dependence of the wave function given by 

 

)0()'ˆexp( tH
i

ℏ
 , 

 

using the Mathematica. 

 

((Matheamtica)) 

 

 

Clear "Global` " ;

exp : exp . Complex re , im Complex re, im ;

H1
2

2 0

2 0
; M1 MatrixExp H1 t FullSimplify;

rule1
2

4 0
2

,
1

2 4 02
;

M2 M1 . rule1 Simplify;

P11: Probabilityof  finding in the excited state  | a>

P21: Probability of finding in the ground state | s>

with

2
4 0

2

P1 0, 1 .M2. 0, 1 Simplify;

P11 P1 P1 Simplify

Cos
t

2

2
2
Sin

t

2

2

2

P2 1, 0 .M2. 0, 1 Simplify;

P21 P2 P2 Simplify

4 0
2
Sin

t

2

2

2
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10. Transition of resonance ((Feynman)) 

We consider the case that the electric field is small, and, also the period of time T is small. So 

that  

 

TT
ℏ

0
0


 , 

 

is much less than 1. The probability Ps(t) is still small at t = T. Note that Ps(T) is the probability 

which is related to the absorption of energy from the high energy state of NH3 molecules into the 

system (cavity) at time t = T. 

 

2

2

22

022

0

22

0

22

0

2

)
2

(sin

4

)4
2

(sin4

)(








 









T

T

T

T

TPs , 

 

or 

 

Clear@"Global`∗"D; SuperStar;

expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;

D=w - w0, 4 ∂02 µ2

—2
+ ∆2 = Ω, G0 = m ¶0

Ñ

eq1 = � D@γa@tD, tD � Γ0 Exp@−� ∆ tD γs@tD;

eq2 = � D@γs@tD, tD � Γ0 Exp@� ∆ tD γa@tD;

s11 = DSolve@8eq1, eq2, γa@0D � 1, γs@0D � 0<, 8γa@tD, γs@tD<, tD êê
Simplify@
, 8∆ > 0, Γ0 > 0<D &;

s12 = s11 ê. : 4 Γ02 + ∆2 → Ω,
1

4 Γ02 + ∆2

→
1

Ω
> êê Simplify;

γa@t_D = γa@tD ê. s12@@1DD êê ComplexExpand êê FullSimplify

�
−1
2

� t H∆+ΩL I−∆ + Ω + �� t Ω H∆ + ΩLM
2 Ω

γs@t_D = γs@tD ê. s12@@1DD êê ComplexExpand êê FullSimplify

−
2 � �

� t ∆
2 Γ0 SinA t Ω

2
E

Ω
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2

2

2

2

22

0

)(sin

2

)
2

(sin
)(

x

x

T

T

T

TP
y s 








 






 , 

 

We make a plot of y as a function of )(
22

0 



TT

x . 

 

 
 

Fig. Plot of 
22

0

)(

T

TP
y s


  as a function of 

2




T
x . Note that T is a fixed time, not a temperature. 

 

The curve falls rather abruptly to zero for  2/)(Tx  and never regains significant size for 

larger frequency derivations. In fact, by far the greatest part of the area under the curve lies 

within the range 2/ . We note that 

 






dx
x

x
2

2
sin

. 

 

Thus the area under the curve is  and is equal to the area of the rectangle enclosed by the blue 

lines (
2


x  and 10  y ). In other words, y is described by a Dirac delta function which has a 

peak at 0  . The value of y is equal to 1 for 

 

x=TDê2

y

-3 p - 5 p

2
-2 p - 3 p

2
-p - p

2
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p

2
p

3 p

2
2 p

5 p

2
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T


  0 , 

 

and zero for  

 

T


  0 . 

 

((Example)) 

In the NH3 maser,  

 

TfTf

ff

000

0

0

0

2

1












. 

 

Suppose that we assume T = 1ms. Since f0 = 23.786 GHz, we have 

 

Tff

ff

00

0

2

1



 = 2.1 x 10-8. 

 

leading to the quality factor 
70 4.8 10

f
Q

f
  


 (we will discuss later). The frequency must be 

very close to 0
f , in order to get a significant transition probability. 

 

11. Stimulated emission of light 

We have discussed the behavior of a NH3 molecule under the influence of an electric 

field, whether the electric field is confined in a cavity or not. So, we could be simply shining 

a beam of light at the microwave frequencies at the molecule. Here we calculate the 

transition probability of the stimulate emission, where the light shining on such a system 

is not exactly monochromatic. The light has the intensity  dI )(  between   and  d , 

covering a broad range including 0  . To this end, we start with the probability given 

by  

 

2

2

2

2

0

2

)
2

(sin

)(








 











T

T

TTPs
ℏ


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From the APPENDIX described below, we have the expression for the time-average of the 

energy density u  and the magnitude of the Poynting vector  S , 
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where 

 

00

~
E  (the maximum of the electric field), 

 

and 
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Then we have 
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The probability transition now becomes  
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Here we note that )(I  will vary much more slowly with  that the sharp resonance term 

(which forms such a Dirac delta function). In such a case, we can replace )(I by its value 

)( 0I  at the center of the sharp resonance curve and take it outside of the integral,  
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Noting that 
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we get the result that 

 

 TI
c

TPs 02

2
2

16)( 



ℏ

 . 

 

This is the expression of the stimulated emission (or absorption) of light by molecular or atomic 

system. First, this probability is proportional to T. In other words, there is a constant probability 

per unit time that transitions will occur. Second, it is proportional the intensity of light on the 

system. Third, it is proportional to 2.  

 

((Note)) The spontaneous emission and the stimulated emission in maser 

In maser, the rate of the spontaneous emission A21 is much smaller than the rate of the 

stimulated emission B21; 

 
3

3021
03

21

8
1

hfA

B c


    

 

since 0 23.786f  GHz is much lower than frequencies of visible light (600 THz for 500   

nm). So that, the effect of the spontaneous emission can be neglected. 

 

12. Polarization vector 

Here we note the property of electric field in the cavity. There is a photon inside the cavity. 

The electric field (the polarization vector) is expressed by the plane wave with the angular 

frequency 
2A

 
ℏ

. The electric dipole moment has a perturbation energy which is given by 

 
ˆ ' .H  μ ε  

 

where  

 

0 02 cos ( )i t i tt e e         
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Fig. A physical model of two base states for the ammonia molecule. These states have the 

electric dipole moments μ . (R.P. Feynman, Lectures on Physics III). 

 

 
 

Cavity

k
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Fig. The cavity. The polarization vector (the direction of the electric field) is along the z axis. 

The direction of the wave vector for the plane wave is perpendicular to the polarization 

vector. A possible electric field (polarization vector) of one photon due to the spontaneous 

emission may give rise to a subsequent chain reactions of stimulated emission of many 

photons in the cavity. 

 

Using the above figure, we have 

 
ˆ ' 1 1H  ,  ˆ ' 2 2H    

 

Inside the cavity consisting of two parallel mirrors, when photons with 
2A

 
ℏ

 interacts with the 

ammonia atoms with excited state (inversion population), leading to the stimulated emission. One 

at a time there are two photons, one is the incident photon and the other is from the stimulated 

emission. When these events are repeated many times, the photon becomes perfectly coherent 

wave with the angular frequency with 
2A

 
ℏ

. 

 

 
 

13.  Feynman’s discussion 

Excellent discussion on the ammonia maser is obtained by Feynman (The Feynman Lectures 

on Physics, Feynman, Leighton, Sands, volume III 9-1). 
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2A 0

Stimulated emission
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The molecule enters the cavity, the cavity field – oscillating at exactly the right frequency – induces 

transitions from the upper to the lower state, and that the energy released is fed into the oscillating 

field. In an operating maser the molecules deliver enough energy to maintain the cavity oscillations 

– not only providing enough power to make up for the cavity losses but even providing small 

amounts of excess power that can be drawn from the cavity. Thus, the molecular energy is 

converted into the energy of an external electromagnetic field. 

 

 

14. Evaluation for the Q factor and number density n 

 

(a) Velocity of NH3 molecules inside the cavity 

Here we discuss the velocity of NH3 running inside the cavity. Suppose that the gas of NH# 

molecules in the oven obey the Maxwell-Boltzmann distribution in the velocity. The temperature 

oven is s
T  (K). The most probable velocity of NH3 molecules (leading to the peak value of the 

probability), is 

 

3

2 B s
mp

NH

k T
v

m
 . 

 

Where kB is the Boltzmann constant. Using the mass of NH3 as 17.031 g/mol, the most probable 

velocity is 

 

31.3473  mp sv T  (m/s). 

 

When 300
s

T   K, 0.5421mpv   km/s, and for 500
s

T   K, 0.69871mpv   km/s. When the length 

of the cavity is 1m, the time t0 for the NH3 molecules to stay in the cavity is 
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0 1.42
mp

L
t

v
   ms, 

 

at Ts = 500 K. 

 

(b) The electric dipole moment of NH3 molecule 

The electric dipole moment of NH3 molecule is 1.47 D, where D is the Debye unit and is 

 

1D = 1 x 10-18 esu-cm,  1D = 3.34 x 10-30 Cm 

 

In cgs units, 
181.47 10    esu-cm. In S.I. units, 

304.9098 10   Cm. 

 

(c) Evaluation of electric field 

We use a rough estimation for the maximum electric field as follows. 
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or 

 

0

02

L
t

v




 
ℏ

  

 

Using mpv v , we have 
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0 7.87 10
2
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
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 statvolt/cm (in c.g.s. units). 

 

or 

 

2

0 2.36 10
2

mpv

L





  

ℏ
 V/m (in SI units). 

 

(d) Quality factor ((Sargent, Scully, and Lamb)) 

 

Reference: M. Sargent III, M.O. Scully, and W.E. Lamb, Jr. Laser Physics (Addison-Wesley, 

1974). 

 

Here we discuss the quality factor Q (c.g.s. units). Note that the related discussion based on the SI 

units is made in the above Reference. Only difference is the use of the averaged electromagnetic 

energy.  
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The condition for oscillation is that the energy lost in the cavity per time (loss) is equal to the 

energy gained per unit time (saturated gain) from the NH3 molecules, that is, 

 

Loss = saturated gain. 

 

We write the loss in terms of an important ratio Q called the cavity factor and defined by 

 

0

energy stored in field energy stored in field
2

energy dissipsted per cycle energylost/second
Q    . 

 

The energy stored in the field is given by 

 

2 2 2 2
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V V V
E B E 

  
     (in c.g.s. units) 

 

where V is the volume of the maser cavity and 0
  is the maximum of the electric field. Thus, we 

have the energy lost per second: 
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The enery gained per second is 

 

Saturated gain = 0( )s

v
N P t

L
ℏ . 

 

Here N is the number of molecules in the cavity. 
v

N
L

 is the number of molecules leaving the 

cavity per sec. The frequency  of the electric field is close to the cavity frequency (for central 

tuning), although a quantitative relationship cannot be determined from our present, simple 

analysis. Since 
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where 

 

0
    ,  0

0


 

ℏ
. 

 

Them the quality factor Q can be obtained as 
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where  
N

n
V

  (density) and 0
0


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
ℏ

. When 0   (in resonance), we get 
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In the limit of ,  

 
21 8 nL

Q v




ℏ
. 

 

We use 
181.47 10    esu-cm., L = 100 cm, 0.69871mpv v   km/s. Thus, we get 

 
101.357 10

Q
n


   or 

101.357 10
n

Q


 . 

 

If Q is required to be 36000 (for example), the number density should be on the order of 
53.77 10n    cm-3. From the expression for Q given by 0

/Q f f  , the uncertainty in frequency 

f  is 660 kHz. The number density of photon is surprisingly small, possibly because of the use 

of gaseous state of NH3 molecules.  

0 0
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
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If we use n = 1.5651 x 106 cm-3, which is evaluated in the APPENDIX C, the quality factor Q 

can be evaluated as  

 
38.67 10Q   . 

 

15. Summary 

In the ammonium (NH3) masers, the transition on which laser action occurs is related to a two-

level system. In these devices a molecular beam is prepared in the excited state by a Stern–Gerlach 

type method, allowing selection of the excited molecules only. This beam of totally inverted 

molecules then traverses a resonant cavity which performs a role analogous to that of the optical 

cavity of a laser. A significant fraction of the molecules is then transferred to the ground state by 

stimulated emission. The molecules then leave the cavity. The ground state molecules are in this 

way physically removed from the cavity, thus ensuring that the population inversion is maintained.  

 

((Stimulated emission)) 

 

 
 

((Light amplification)) 
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APPENDIX-A 

A.1 Plane wave representation of the energy density and the Poynting vector  

We use the Maxwell's equation in the units of c.g.s. which is described by the plane wave 

representation. Here we suppose that 

 

2

~~

]
~

Re[]
~

Re[

*

00
0

)(

0




ii
iti ee

ee


 


EE
EEE

rk
, 

 

2

~~

]
~

Re[]
~

Re[

*

00
0

)(

0




ii
iti ee

ee


 


BB
BBB

rk
, 

 

where 

 

t  rk . 

 

From 
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0 E , and 0 B . 

 

we have 
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where k̂  is the unit vector along the wave vector k. 

 

((Note)) Dispersion relation 

From 

EEE
2

2

22

2

2

2 11

tctc 






 , 

 

we have a dispersion relation 

 

kcck  . 

 

______________________________________________________________________ 

The energy density is defined by 
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The Poynting vector is defined by 

 



 

40 

 

)(
4

BES 

c

. 

 

Calculation of 
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The time-average of the energy density is given by 
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Here we note 
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Then we have 
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Calculation of Poynting vector S 
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Note that 
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Then we have 
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or 
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A.2 Physical meaning of the Poynting vector 

 

 
 

S  is the energy flux (energy per unit area per unit time). We define the intensity I given by 
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We now consider the photon (the velocity is c) flows. During the time t , the total energy 

passing through the area A is  
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where the volume is tAc  and the energy density is u . 
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APPENDIX B. 

Key words in maser physics 

 

Maser (Microwave amplification by stimulated emission of radiation) 

Stimulated emission 

Negative temperature 

Population inversion 

Resonant cavity 

Rabi frequency 

Rabi formula 

Rotating wave approximation 

Coherent radiation 

 

((Hydrogen maser)) 

A hydrogen maser, also known as hydrogen frequency standard, is a specific type of maser 

that uses the intrinsic properties of the hydrogen atom to serve as a precision frequency reference.  

Both the proton and electron of a hydrogen atom have spins. The atom has a higher energy if both 

are spinning in the same direction, and a lower energy if they spin in opposite directions. The 

amount of energy needed to reverse the spin of the electron is equivalent to a photon at the 

frequency of 1.420,405,751.786 GHz, which corresponds to the 21cm line in hydrogen spectrum.  

See LN hydrogen 21 cm line (hyperfine structure). 

 

APPENDIX-C 

Rough evaluation of number density of photon 

 

We start with the expression 
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where V is the volume of the system (cavity), 
max

E  is the maximum value of the electric field, and 

N is the number of photon with 0 . Thus, we have 
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Where n is the number density of photons having the same 0 . Suppose that 
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in order to avoid the absorption process. Using this condition, we can evaluate  
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where we use 

 

0.69871v   km/s, 1L   m = 100 cm,  
181.47 1.47 10D     statC.m, 

0 0
2 f  , with 

0
23.786f   GHz 

 


