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The fundamental of nuclear magnetic resonance (NMR), mainly rf spin echo method 

is discussed, based on the quantum mechanics. The expectation values of nuclear spin 

operators (spin 1/2) over the state vectors are calculated using the Mathematica. The state 

vector ( )t  in the laboratory reference frame is related to the state vector ( )t  in the 

rotational reference frame through the rotation operator with spin 1/2 angular momentum 

(in clockwise) as 

 

ˆ( ) exp( ) ( )
2

z

i
t t t    . 

 

in our Model (II). The time dependence of ˆ( ) ( )it I t   and ˆ( ) ( )it I t   will be 

examined in detail for the rf spin echo method.  

Here, we note that there are many standard textbooks on NMR, including the books on 

Principles of Magnetic Resonance (C.P. Slichter) and Spin Dynamics (by M.H. Levitt). 

Nevertheless, we think that the present note may be useful to understanding the principle 

of MRI (magnetic resonance image) from a view-point of quantum mechanics. In MRI, 

tissue can be characterized by two different relaxation times – 1T  and 2T . 1T  (longitudinal 

relaxation time) is the time constant which determines the rate at which excited protons 

return to equilibrium. It is a measure of the time taken for spinning protons to realign with 

the external magnetic field. 2T  (transverse relaxation time) is the time constant which 

determines the rate at which excited protons reach equilibrium or go out of phase with each 

other. It is a measure of the time taken for spinning protons to lose phase coherence among 

the nuclei spinning perpendicular to the main field. 
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Isidor Isaac Rabi (July 29, 1898– January 11, 1988) was an American physicist, who won 

the Nobel Prize in Physics in 1944 for his discovery of nuclear magnetic resonance, which 

is used in magnetic resonance imaging. He was also one of the first scientists in the United 

States to work on the cavity magnetron, which is used in microwave radar and microwave 

ovens. 

https://en.wikipedia.org/wiki/Isidor_Isaac_Rabi 

 

1. Nuclear magnetic resonance experiment 

In the NMR measurement, the stationary magnetic field 0B  is applied along the z axis. 

The direction of the axis for the solenoidal rf coil is perpendicular to the z axis. In the 

present case, the rf-field is applied along the x axis. The sample (with proton) is positioned 

in a stationary magnetic field 0B  inside or next to the rf coil. The rf coil is a part of an rf 

oscillator tuned to the angular frequency  . 



 

 

 

 
 

Fig.1 Schematic diagram of typical nuclear magnetic resonance. The direction of 

axis of the rf coil (rf-magnetic field) is along the x axis. The stationary 

magnetic field is directed along the z axis. 



 

 

 

 
 

Fig.2 A precessing magnetic moment at the center of a coil causes a periodic 

change in the flux through the coil, inducing an alternating electromotive 

force in the coil. Note that the flux from the magnetic moment m that links 

the coil is that which loops around outside it (Purcell and Morin). B B 0
  

 

2. Magnetic moment of proton 

Like electron and neutron, proton has a magnetic moment 

 

2
proton P pI I   

ℏ
. 

 

where 

 

2.79284734462p N  , 

 

and I is the nuclear spin angular momentum ( / 2ℏ ). The nuclear magneton is 

 



 

 

 

245.050783699 10
2

N

p

e

m c
   

ℏ
 emu  (erg/G). 

 

where pm  is the mass of proton. The gyromagnetic ratio of proton is 

 

42
2.675222005 10  rad/(s G)p P   

ℏ
. 

 

Note that proton NMR frequency f is related to the magnetic field B0
 as  

 

( ) 42.5775 (T)
2

pB
f MHz B




  . 

 

where 1 T = 104 Oe = 104 Gauss. 

 

((Note)) Magnetic moment of neutron (comparison) 

 

We note that the magnetic moment of neutron is given by 

 

2
neutron n nI I   

ℏ
  

 

Note that the values of n  and n  are negative,  

 

24

1.91304272(45)

9.6623647(23) 10  emu

n N 


 

  
 

 

and 

 

42
1.83247171(43) 10  rad/(s G)n n    

ℏ
 

 

3. Model (I) for NMR 

First, we consider that the static magnetic field and the rf (radio frequency) field are 

applied to the magnetic moment of proton as shown in Fig.3 The corresponding 

Hamiltonian is given by 

 



 

 

 

0 1

0 1

ˆ ˆ [ cos( ) ]

ˆ ˆ[ cos( ) ]

I p z x

p z x

H B e B t

B B t

 

   

   

  

σ e
  

 

We use the Pauli spin operators. 

 

 
 

Fig.3 Magnetic field directions. Stationary magnetic field along the z axis and rf 

magnetic field with angular frequency   along the x axis. 

0 1 cos( )z xB B t B e e . 

 

In the absence of any rf field, we have the Hamiltonian  

 
(0)

0
ˆ ˆ

I p zH B   . 

 

The eigenstate and energy eigenvalue of 
(0)ˆ

IH is  

 
(0)

0 0
ˆ ˆ

I p z pH z B z B z         , 

 



 

 

 

(0)

0 0
ˆ ˆ

I p z pH z B z B z        . 

 

 
 

Fig.4 Energy diagram with Zeeman splitting. The lower energy level: 0p B  (state 

z . The upper energy level: 0p B  (state z . The energy separation is 

02 p cB  ℏ    

 

The energy separation is 

 

0 02c p pB B   ℏ ℏ . 

 

We now start with the Hamiltonian 1Ĥ ,  
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where B0 is the magnitude of the static magnetic field along the z axis, and B1 is the 

amplitude of rf magnetic field (along the x axis), and 

 
(0) (1)ˆ ˆ ˆ

I I IH H H  , 

 



 

 

 

(0) 1ˆ ˆ
2

I c zH    ℏ ,  
(1)

1
ˆcos( )I p xH B t    , 

 

For convenience, we newly introduce the notation of 1  as 

 

1
1

0

c

B

B
  . 

 

The time-dependent Schrödinger equation can be written as 

 

ˆ( ) ( )Ii t H t
t
 





ℏ , 

 

with 

 

( )
( ) ( ) ( )

( )

A t
t A t z A t z

A t
 

 


 
      

 
, 

 

Here, we assume that 

 

(0)ˆ ˆ( ) exp( ) ( ) exp( ) ( )
2

I c z

i i
t H t t t t      

ℏ
  (Dirac picture) 

 

with 

 

( )
( ) ( ) ( )

( )

a t
t a t z a t z

a t
 

 


 
      

 
, 

 

and 

 

( 0) ( 0)t t    . 

 

Note that ˆexp( )
2

c z

i
t   is the rotation operator (with angle ct  in clockwise around the z 

axis). Then, the Schrödinger equation for ( )t  can be obtained as follows. 

 



 

 

 

1

ˆ ˆ ˆ( ) [ exp( ) ( ) exp( ) ( )
2 2 2

1
ˆ ˆ ˆ[ cos( ) ]exp( ) ( )
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        
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 
 

 

  

ℏ ℏ

ℏ

 

 

or 

 

1

1
ˆ ˆ ˆexp( ) ( ) ( cos( ) exp( ) ( )

2 2 2
c z x c z

i i
i t t t t t

t
        


 


ℏ ℏ , 

 

or 

 

1

1
ˆ ˆ ˆ( ) cos( )[exp( ) exp( )] ( )

2 2 2
c z x c z

i i
i t t t t t

t
        


  


ℏ ℏ  

 

For simplicity, we use ct  . Then, we have 

 
/2 /2

/2 /2
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ˆ ˆ ˆexp( ) exp( )]
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 
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    

 
  
 

  

 

under the basis of { , }z z  . Thus, we have 

 

1

( ) ( )01
cos( )

( ) ( )2 0

c

c

i t

t t

a t a te
i t

a t a tt e




 


 

 

    
           

ℏ ℏ . 

 

((Rotating wave approximation)) 

Here we use the rotating wave approximation. We neglect the high frequency term 
( )ci t

e
   . is neglected, while the low frequency tern ( )ci t

e
    is kept. Thus, we have 

 

1

( ) ( )

1

( )

1

1
( ) cos( ) ( )

2

1
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2 2

1
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4

c
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c
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

   

 
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




 

  






 
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 
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≃ ℏ
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1
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2

1
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2 2

1
( )

4
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i a t t e a t
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a t
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   

 

 





 

  



 


 


 


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≃ ℏ

 

 

(i) The resonance (
c

  ) 

First, we consider the case when 
c

   

 

1

1
( ) ( )

4
a t i a t ɺ ≃  

 

1

1
( ) ( )

4
a t i a t ɺ  

 

From the above two equations, we get 

 

2

1

1
( ) ( ) ( ) 0

4
a t a t  ɺɺ   (simple harmonics) 

 

The solution is as follows. 

 

1 1
1 2( ) cos( ) sin( )

4 4
a t C t C t

 
    

 

1 1

1 2

1

4
( ) ( ) [ sin( ) cos( )]

4 4
a t a t i C t C t

i

 
   ɺ  

 

The initial conditions [ (0) (0) 1A a    and (0) (0) 0A a   ] lead to 

 

1
1C  ,  

2
0C   

 

Thus, we have 

 

1( ) cos( )
4

a t t


  , 1( ) sin( )
4

a t i t


   



 

 

 

 

with the corresponding probability as 

 

2 2 1( ) ( ) cos ( )
4

P t A t t


   , 

 

2 2 1( ) ( ) sin ( )
4

P t A t t


   . 

 

Note that 

 
ˆ

( ) ( ) ( ) ( ) ( )c z c ci t i t i tA t z t z e t e z t e a t             . 

 
ˆ

( ) ( ) ( ) ( ) ( )c z c ci t i t i tA t z t z e t e z t e a t      
        . 

 

(ii) The general case (
c

 ≃ );   is very close to 
c

  

We now solve the general case for the second order differential equation 

 

( )

1

1
( ) ( )

4
ci t

a t i e a t
  

 ɺ , 

 

( )

1

1
( ) ( )

4
ci t

a t i e a t
   

 ɺ , 

 

with the initial condition, (0) 1A  , (0) 0A   

 

(0) 1a  , (0) 0a   

 

1

1
(0) (0) 0

4
a i a  ɺ , 1 1

1 1
(0) (0)

4 4
a i a i   ɺ  

 

We get the second order differential equation 
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or 

 

2

1

1
( ) ( ) ( ) ( ) ( ) 0

4
ca t i a t a t       ɺɺ ɺ . 

 

The solution is as follows.   is the Rabi angular frequency, 

 

2
2 1( )

4


    ,   with   c       
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2
2 2
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2 2
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2
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         

      

  (the lower energy level) 

 
2

2 21

2
( ) ( ) sin

4 2

t
P t a t


 

      
   (the upper energy level) 

 

We solve the differential equation with initial conditions by using the Mathematica. 

 

((Mathematica-1)) 

The solution of the model-1 problem using Mathematica 

 



 

 

 

 
4. Method (II) with the use of clockwise rotation of rf magnetic field 

Here, we show that the physics of the model-II is equivalent to that of the model-I. We 

note that the Larmor pression of proton is in counterclockwise (CW). 

 



 

 

 

 
 

Fig.5 In classical model, The magnetic moment of proton undergoes a clock-wise 

(CW) Larmor precession with the angular frequency around the z axis in 

clockwise. The rf magnetic field applied along the x axis consists of CW and 

CCW rotations of rf magnetic fields. Here we choose the CW rotation of rf 

magnetic field. The rf field is expressed by 1 cos( ) xB t e  

 

The rf magnetic field applied along the x axis can be written as the combination of CW 

rotation and CCW rotation, 
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The first term and second term denote the CCW (rotation) and CW (rotation), respectively. 

The CCW rotation of rf magnetic field is neglected, while the CW rotation of rf 

magnetic field is kept, 

 

2 2

1
[ cos( ) sin( ) ]

2
x yB t B t e e , 

 



 

 

 

since the magnetic moment of proton undergoes a precession around the z axis in clockwise 

(CW). We now consider the new Hamiltonian (Zeeman energy) 2Ĥ  (as a model-2), given 

by 

 

0 1 1

0 1 1

1 1ˆ ˆ [ cos( ) sin( ) ]
2 2

1 1
ˆ ˆ ˆcos( ) sin( )

2 2

II p z x y

p z p x p y

H B B t B t

B B t B t

  

       

    

   

σ e e e

  

 

For simplicity, we define the parameters, 
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ℏ
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Thus, we get the matrix of ˆ
IIH  (2x2 matrix), 
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under the basis of { z , and z }. Note that 
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We now consider the Schrödinger equation for ( )t   
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
ℏ ,  (Schrödinger picture) 

 

with the time-dependent eigenket ( )t , 
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We introduce a new ket ( )t , 
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2
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ℏ

 is the rotation operator around the z axis by the 

angle t  in clockwise. The new state ( )t  is given by 
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with the initial condition, 
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and 

 

(0) (0)A a  ,  (0) (0)A a   

 

Then, the Schrödinger equation for the state ( )t  is obtained as follows. 

 

1 1

ˆ ˆ ˆ( ) [ exp( ) ( ) exp( ) ( )
2 2 2

1
ˆ ˆ ˆ ˆ[ cos( ) sin ]exp( ) ( )

2 4 4 2

z z z

c z x y z

i i i
i t i t t t t

t t

i
t t t t

       

          

 
 

 

   

ℏ ℏ

ℏ ℏ
ℏ

 

 

1 1

1 1

ˆ ˆ ˆ ˆ ˆ( ) exp( ) [ cos( ) sin ]exp( ) ( )
2 2 2 2 2

ˆ ˆ ˆ ˆ ˆexp( ) [ cos( ) sin ]exp( ) ( )
2 2 2 2 2

z z x y z

z z x y z

i i
i t t t t t t

t

i i
t t t t t

 
          

 
         


    



    

ℏ
ℏ

ℏ
 

 

or 

 

1 1

(1)

(1)

ˆ ˆ ˆ ˆ ˆ( ) exp( ) [ cos( ) sin ]exp( ) ( )
2 2 2 2 2

ˆˆ ˆexp( ) exp( ) ( )
2 2

ˆ ' ( )

z z x y z

z II z

II

i i
i t t t t t t

t

i i
t H t t

H t

 
          

    




    



 



ℏ
ℏ

 

 

where 

 

(1) 1 1

1

1

1ˆ ˆ ˆ ˆ[ cos( ) sin( ) ]
2 2 2

1 2

2

2

II z x y

i t

i t

H t t

e

e





 
    







   

   
  

   
 

ℏ

ℏ

 

 

Here we note that 
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1

/2 /2
1 1
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e
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e e
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
 

 


 
 


 

 
 






            
         

            
   

  

 

We define the new Hamiltonian defined as 

 
(0) (1)ˆ ˆ ˆ 'II II IIH H H   

 

(1) 1ˆ ˆ' ( )
2 2

II z xH


   
ℏ

. 

 

with 

 

(0) 1ˆ ˆ
2

II zH   ℏ  

 

Thus, we have 

 

(1)ˆ( ) ' ( )IIi t H t
t
 





ℏ , 

 

with 

 

ˆ( ) exp( ) ( )
2

z

i
t t t     

 

and 

 

(1) 11ˆ ˆ ˆ' ( )
2 2

II z xH


   ℏ  

 

In the condition of resonance ( c  ), we have  

 

(1)

1
ˆ ˆ'

4
II xH 

ℏ
. 

 

Since the new Hamiltonian is independent of t, we can get the time evolution operator 

 



 

 

 

(1)

1
ˆ '

ˆ( ) exp( ) (0) exp( ) (0)
4

II
x

iH t i t
t


     

ℏ
. 

 

We note that 

 

(1) 1

1

ˆ ˆ ˆ' [ ]
2 2

ˆ ˆ( )
2 2

ˆ( )
2

II z x

z x

H


 


 

   


    

 

   σ n

ℏ

ℏ

ℏ

 

 

with the unit vector n as 

 

1

2
z x


  

 
n e e . 

 

The initial condition is 

 

1
(0)

0
z

 
    

 
. 

 

 
 



 

 

 

Fig.6 The unit vector 1

2
z x


  

 
n e e  which lies in the x-z plane. 

2
2 1( )

4


    ; Rabi angular frequency. 

 

Note that the Rabi angular frequency is defined as 

 

2
2 1( )

4


    , 

 

with 

 

c     . 

 

Note that the value of   for the model-2 is the same as that for the model-1. 

The probability of finding the system in the z  state (the excited state in the two-level 

system) 

 
2

21

2

1
( ) sin ( )

4 2
P t t


  


. 

 

The probability of finding the system in the z  state (the ground state in the two-level-

system) 

 
2

21

2

1
( ) 1 ( ) 1 sin ( )

4 2
P t P t t


     


, 

 

where 

 

( 0) 0P t   ,  ( 0) 1P t   . 

 

For the model-I, we have the parameter 1  and the Rabi angular frequency as 

 

1

1

0

c

B

B
    

2
2 1( )

4


    . 

 



 

 

 

Here, we make a plot of the amplitude of ( )P t  as a function of / c   where the 

parameter 1 / c   kept as constant. 
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Fig.7 Amplitude of ( )P t  as a function of / cx     with a parameter 

1 / 0.25c     

________________________________________________________________________ 

((Note-1)) Derivation of the time evolution operator 
(1 )

2
ˆ

exp( )
a

iH t

ℏ

 without use 

Mathematica 

 

We start with the formula, 

 

ˆˆ ˆexp[ ( )] 1cos sin ( )
2 2 2

i
i

 
    σ n σ n . 

 

Then, we have 
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2

1

1

1

ˆ '
ˆexp( ) exp[ ( )

2

ˆ ˆ1cos( ) sin( )( )
2 2

ˆ ˆ ˆ1cos( ) sin( )( )
2 2 2

cos( ) sin( ) sin( )
2 2 2 2

sin( ) cos( ) sin( )
2 2 2 2

z x

iH t i t

t t
i

t t
i

t t t
i i

t t t
i i


 



 


  

 
  

  
   

 
        

     
   

σ n

σ n

ℏ

  

 

((Mathematica-2)) Solving the model-2 problem using Mathematica 

 

 



 

 

 

 
 

5. rf-spin echo method; 90° pulse and 180° pulse 

Using the Model-II, we now discuss the rf spin echo method under the resonance 

condition ( 0c      ). We note that 

 

2

(1)

2

cos sin
ˆ 2 2 2'

exp( )

sin cos
2 2 2

cos sin
2 2

sin cos
2 2

II

it t

iH t

i t t
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i
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i





      
         
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         

      
    
    

     
    

    

ℏ

  

 



 

 

 

where 
2

2 1 1( )
4 2

 
     . Suppose that

1
(0)

0
z

 
    

 
. Then we get 

 
(1)ˆ '

( ) exp( ) (0)

cos( )
2

sin( )
2

IIiH t
t

t

t
i

  

 
 

  
  

 

ℏ

  

 

(i) When 2 (90 ) (90 )
2 2

t t
 

      (for 90° rf pulse), we have 

 

cos( )
114

[ (90 )]
2

sin( )
4

t y
i

i






 
   

       
    
 

 

 

((Evaluation of (90 )t  ))  

 

2
2

1
(90 ) (90 )  (90 )

2 2 2
pt t B t

 
        

 

4

2  (90 ) 1.174 10  s G
p

B t



     

 

using the gyromagnetic ratio for proton 

 

42
2.675222005 10  rad/(s G)p P   

ℏ
 

 



 

 

 

 
 

Fig.8 90° rf pulse. Measurement of transverse relaxation time (T2). x’-y’-z’ plane 

(RCF).  

 



 

 

 

 
 

Fig.9 1rfB B  for the 90° rf-pulse with angular frequency  . The period (90 )t  . 

 

(ii) When 2 (180 )t    (for 180° rf pulse), we have 

 

cos( )
02

[ (180 )]

sin( )
2

t i z
i

i






 
   

       
    
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Fig.10 180° rf pulse. Measurement of longitudinal relaxation time or the spin-

lattice relaxation time (T1). Rotating reference frame (RRF). After the 180° 

rf pulse, the magnetization decays from -z direction to +z direction with a 

longitudinal relaxation time T1. The shift of the red arrows along the x’ axis 

has nothing to do with the spin dynamics. 

 



 

 

 

 
 

Fig.11 2rfB B  for the 180° rf-pulse with angular frequency  . The period 

(180 )t  . 

 

((Evaluation)) (180 )t   

 

2 2

1
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2
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(iii) When 2 (360 ) 2
2

T


   (360° pulse), we have 

 

cos( ) 1
[ (360 )

sin( ) 0
T z

i





   

        
   

 

 

which is not equal to z . Note that 
cos(2 ) 1

[ (720 )
sin(2 ) 0

T z
i





   

       
   
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6. Expectation value ˆ( ) ( )it S t  in the Model-II (laboratory reference frame) 

We just take a look at the form of the new Hamiltonian for the model-2 

 

(1) 1ˆ ˆ ˆ' ( )
2 2

II z xH


   
ℏ

,  
(0) 1ˆ ˆ

2
II zH   ℏ . 

 

The time evolution operator is obtained as 

 

(1)ˆ ˆ( ) exp( ' )II

i
T t H t 

ℏ
. 

 

which is the rotation operator for the rotation around the x-axis by angle 1 / 2t  in 

clockwise. 

 

(1)ˆ ˆ( ) ( ) ( 0) exp( ' ) ( 0)II

i
t T t t H t t      

ℏ
 

 

It is reasonable to assume that in thermal equilibrium, ( 0)t z    . Finally, we have 

 

(1)

(1)

ˆ( ) exp( ) ( )
2

ˆˆexp( ) exp( ' ) (0)
2

ˆˆexp( ) exp( ' )
2

z

z II

z II

i
t t t

i i
t H t

i i
t H t z

   

  

 



 

  

ℏ

ℏ

 

 

Now we discuss the expectation value ˆ( ) ( )i it
I t I t   ( , ,i x y z ) in the laboratory 

reference frame (LFF) 

 

(1) (1)

ˆ( ) ( )

ˆ ˆ ˆ( ) exp( ) exp( ) ( )
2 2 2

ˆ ˆˆ ˆ ˆexp( ' )exp( ) exp( ) exp( ' )
2 2 2
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z i z

II z i z II

I t I t

i i
t t t t t

i i i i
z H t t t H t z

 

       

    



 

    

ℏ

ℏ

ℏ ℏ

  

 

with i = x, y, z. Using the Mathematica, we get the expectation value in LFF 
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2
[ 2 cos( )sin sin( )sin( )]

4 2
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X t t t


  

        

ℏ
, 

 

21

2
[2 sin( )sin cos( )sin( )]
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t
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
  

       

ℏ
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 2 2 2 2 2 2

1 12
{4[( ) ] [ 4( ) 4 ]cos }

16
Z t             


ℏ

. 

 

In the resonance condition ( 0   and 1

2


  ), we have the expectation values in LFF 

 

1sin( )sin( )
2 2

t
X t




ℏ
, 1cos( )sin( )

2 2

t
Y t




ℏ
, 1cos

2 2

t
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   
 

ℏ
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((Mathematica-3)) 

 



 

 

 

 
 

7. The expectation values of spin operator in the rotating reference frame 



 

 

 

Mathematically, the expectation of spin operator in the rotation coordinate frame (RFF) 

is related to that in the LFF  

 

' ' ' ' ' 'x y z x y zX Y Z X Y Z    e e e e e e , 

 

for the rotation around the z axis by angle t   with 

 

' ' ' ' ' 'x y zX Y Z e e e ; expectation in the RFF, 

 

x y zX Y Z e e e ; expectation in the LFF. 

 

 
 

Fig.12 x, y, z (LFF; laboratory reference frame). x’, y’, z’ (RFF; rotational reference 

frame). z’=z. Rotation around the z axis by the angle t  . 

 

Thus, we have 

 

1

2
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[ 1 cos( )]
4
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where t   

 

' cos sin 0

' sin cos 0

' 0 0 1

X X

Y Y

Z Z

 
 

    
        
    
    

. 

 

In the resonance condition ( 0  ), we have 1

2


   

 

' 0X  , 1 1' sin( )
2 2

t
Y

 

ℏ

, 1' cos }
2 2

t
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 
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((Mathematica 3S)) 

 



 

 

 

 



 

 

 

 
 

8. The expectation values: Method-II using the quantum mechanics 

Now we discuss the expectation value of ˆ( ) ( )i it
I t I t    ( , ,i x y z ). 

 

(1) (1)ˆ ˆ ˆˆ( ) ( ) exp( ' ) exp( ' )
2

i II i II
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ℏ ℏ
, 

 

where 

 

(1) 1ˆ ˆ ˆ' ( )
2 2
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

   
ℏ

, 

 

1

2

ˆ' ( ) ( )

[ 1 cos( )]
4

xX t I t

t

 

 




   



ℏ  



 

 

 

 

1

ˆ' ( ) ( )

sin( )
4

yY t I t

t

 





 

ℏ

  

 

 2 2 2 2 2 2

1 12

ˆ' ( ) ( )

{4[( ) ] [ 4( ) 4 ]cos }
16

zZ t I t

t

 

   



          

ℏ  

 

So that, the results of X’, Y’, and Z’ agree with those obtained from the mathematical 

calculation above described, 

 

((Mathematica-4)) 



 

 

 

 
 

((Note)) The calculation of the matrix elements with the use of Mathematica (version 

13). 



 

 

 

 

9. ParametricPlot3D of (X’, Y’, Z’) [rotational reference frame (RRF)] 

 

 
 

(a) The off-resonance condition. 1 0.08  , 0.009 k   (k=-5, -4, -3, -2, -1, 0, 

1, 2, 3, 4, 5). x’-y’-z’ plane. 



 

 

 

 

 
 

(b) The off resonance condition. 1 0.08  , 0.005 k   (k=-5, -4, -3, -2, -1, 0, 

1, 2, 3, 4, 5). 

 



 

 

 

 
 

(c) Near the resonance condition. 1 0.08  , 0.001 k   (k=-5, -4, -3, -2, -1, 0, 

1, 2, 3, 4, 5) 

 

Fig.13 (a), (b), and (c) 

The ParametricPlot3D of ( ' , ' ')X Y Z  [RRF] as a function of time during the rf 90 

pulse period.  

 

10. ParametricPlot3D of (X, Y, Z) [LRF] and (X’, Y’, Z’) [RRF] 

We make a ParametricPlot3D of (X, Y, Z) [LRF] as 

 

(X, Y, Z)={ ˆ( ) ( )xt I t  , ˆ( ) ( )yt I t  , ˆ( ) ( )zt I t  }  (LRF) 

 

and 

 

(X’, Y’, Z’)={ ˆ( ) ( )xt I t  , ˆ( ) ( )yt I t  , ˆ( ) ( )zt I t  }  (RRF) 

 

as function of t, with parameters of  , 1  in the rf pulse period. Note that after the rf 

pulse period, we need to put 1 0  . 

 



 

 

 

 
 

(a) Rotational reference frame (RRF). 

 

 
 

(b) Laboratory reference frame (LRF). 

 

Fig.14(a) and (b) 

ParametricPlot3D. 1 0.08  , 0.005   . 1.   

(a) blue (rotation, RRF). (b) Red (laboratory; LRF). 

(b) (X, Y, Z)={ ˆ( ) ( )xt I t  , ˆ( ) ( )yt I t  , ˆ( ) ( )zt I t  } (LCF) 

 

11. Resonance condition 



 

 

 

In resonance, we have 

 

0  , 1    
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B
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t

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sin( )
2

X t
ℏ

, cos( )
2

Y t
ℏ
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12. Spin dynamics after the rf 90 pulse 

After the rf 90 pulse, the system is in the  y  state. The rf field is turned off ( 1 0  ) 

at t = 0. 
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Using these relations, we have 

 

' sin( )
2

X t  
ℏ

, ' cos( )
2

Y t 
ℏ

, ' 0Z  . 

 

The spin vector rotates in either clockwise or counterclockwise with angular frequency 

( c ) in the x-y plane. At t = 0 (just after the 90 rf pulse is turned off), 

' 0,  ' ,  Z'=0.
2

X Y 
ℏ

 For t>0, the spin rotates around the z’ axis in the x’-y’ plane.  

 



 

 

 

 
 

Fig.15 Rotation of spin after the rf 90 pulse is turned off. Counterclockwise 

( >0 ). Clockwise ( <0)  

 

((Mathematica-5)) 



 

 

 

 
 

13. Spin dynamics after the rf 180 pulse 

After the rf 180 pulse, the system is in the i z  state. The rf field is turned off 

( 1 0  ) at t = 0. 
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14, Measurement of T2 using the rf-pulse method 

What is the role of rf 180 pulse? It is the analogy of egalitarian foot race for the 

kindergarten class. 

 

((egalitarian foot race for the kindergarten class)) 

The 180 pulse allows the x-y spin to re-phase to the value it would have had with 

perfect magnet. This is analogous to an egalitarian foot race for the kindergarten class, the 

race that makes everyone in the class a winner. Suppose that you made the following rules. 

Each kid would run in a straight line as fast as he or she could and when the teacher blows 

the whistle, every child would turn around and run back to the finish line at the same time. 

The 180 pulse is like that whistle. The spins in the larger field get out of phase by + in 

a time . After the 180 pulse, they continue to precess faster than M but at 2 they return 

to the in-phase condition. The slower precessing spins do just the opposite, but again 

rephase after a time 2. (Teachspin instruction manual). 

 



 

 

 

 
 

Fig.16 Pulse sequence for the rf spin echo experiment with 90 pulse and 180 
pulses. 

 

Sequence of rf pulse. rf 90 (x’ axis) and rf 180 (x’ axis)  [counterclockwise] 

 
 

0t t≃   (rf-90 pulse) 

 



 

 

 

 
 

0 1t t t   

 

 
 

2t t≃  (rf-180 pulse) 

 



 

 

 

 
 

 
 



 

 

 

 
 

3t t≃   (rf-180 pulse) 

 

 
 



 

 

 

 
 

0 1t t t   

 

 
 

3t t≃  (rf-180 pulse) 

 

Fig.17 rf spin echo method with a sequence of 90 and 180 rf pulses to determine 

the transverse relaxation time T2 . 



 

 

 

 

((Wikipedia))  Spin echo method 

We find a very interesting article on the rf-spin echo method for determination of the 

transverse relaxation time.in 

https://en.wikipedia.org/wiki/Spin_echo 

 

 
 

 

Fig.18 

(a) The vertical red arrow is the average magnetic moment of a group of spins, such as 

protons. All are vertical in the vertical magnetic field and spinning on their long axis, but 

this illustration is in a rotating reference frame where the spins are stationary on average. 

(b) A 90 pulse has been applied that flips the arrow into the horizontal (x’-y’) plane. 

(c) Due to local magnetic field inhomogeneities (variations in the magnetic field at 

different parts of the sample that are constant in time), as the net moment precesses, 

some spins slow down due to lower local field strength (and so begin to 

progressively trail behind) while some speed up due to higher field strength and 

start getting ahead of the others. This makes the signal decay. 

(d) Progressively, the fast moments catch up with the main moment and the slow 

moments drift back toward the main moment. At some moment between E and F 

the sampling of the echo starts. 

(e) Complete refocusing has occurred and at this time, an accurate T2 echo can be 

measured with all T2
* effects removed. Quite separately, return of the red arrow 

towards the vertical (not shown) would reflect the T1 relaxation. 180 degrees is π 

radians so 180° pulses are often called π pulses. 



 

 

 

 

 
 

Fig.19 Free induction decay. Measurement of the relaxation time T2 for the 

exponential decay such as exp( / )t T2 .  

 

15. Summary 

We discussed the principle of nuclear magnetic resonance (rf echo method) based on 

the quantum mechanics [Model-(II))]. The expectation value of spin can be easily 

calculated with the use of Mathematica. Experimentally the rf field is applied along the x 

axis. Since this rf field consists of the rf fields with CW (clockwise) and CCW 

(counterclockwise) in the rotating reference frame. Experimentally, we use only the CW rf 

field since the nuclear spins undergo a precession (CW rotation) around the z axis 

(magnetic field direction). In the rf echo method, the application of rf field along the x’-

direction of rotating reference frame is equivalent to that of the rf field along the x-direction 

of the laboratory reference frame. The use of rotational reference frame is essential to 

understanding the principle of the measurement of relaxation time in the rf spin echo 

method. In quantum mechanics, the state vector  ( )t  in the laboratory reference frame 

is related to the state vector ( )t  in the rotational reference frame through the rotation 

operator (rotation around the z axis by angle t  in clockwise, 

 

ˆ( ) exp( ) ( )
2

z

i
t t t    . 

 

________________________________________________________________________ 
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APPENDIX I  Formula in quantum mechanics 

(a) Baker-Campbell-Hausdorff theorem (I) 

 

2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆexp( ) exp( ) [ , ] [ ,[ , ]] [ ,[ ,[ , ]]] ...
1! 2! 3!

x x x
xA B xA B A B A A B A A A B       

 

(b) Baker-Campbell-Hausdorff theorem (II) 

If the commutator of two operators Â  and B̂  commutes with each of them ( Â  and B̂ ) 

 

0̂]]ˆ,ˆ[,ˆ[ BAA , 0̂]]ˆ,ˆ[,ˆ[ BAB . 

 

One has an identity 

 

])ˆ,ˆ[
2

1
exp()ˆexp()ˆexp()ˆˆexp( BABABA  . 

 



 

 

 

(c) Rotation operator 
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ˆˆ ˆexp[ ( ) ] 1cos sin ( )
2 2 2

i
i

 
    σ n σ n . (n: unit vector in the 3D space) 

 

(d) 

 

ˆˆ ˆ ˆ( )( ) 1( ) ( )i      σ A σ B A B σ A B  

 

(e) Pauli operator 

 

ˆ ˆ ˆ[ , ] 2x y zi   , ˆ ˆ ˆ[ , ] 2y z xi   , ˆ ˆ ˆ[ , ] 2z x yi   . 
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(f) Eigenstates of spin 1/2 
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_______________________________________________________________________ 

((Nomenclature)) 

Rotation operator 

Pauli matrices 

Eigenstate and eigenvalue 

Free induction decay (FID) 

Rotating wave approximation 

Rotational reference frame (RRF) 

Laboratory reference frame (FRF) 

The 90 pulse 

The rephasing 180 pulse (refocusing pulse) 

Rabi angular frequency 

Time evolution operator 

Schrődinger equation 

Time evolution operator 

Dirac picture and Schrődinger picture in quantum mechanics 

Transverse relaxation time 

Longitudinal relaxation time 

Baker-Campbell-Haudorff theorem 

 

APPENDIX II 

The discovery of the spin echo method by Erwin.L. Hahn (1921-2016) 

https://arxiv.org/ftp/arxiv/papers/1906/1906.03428.pdf 

 

Erwin Louis Hahn was one of the most innovative and influential physical scientists 

in recent history, impacting generations of scientists through his work in nuclear magnetic 

resonance (NMR), optics, and the intersection of these two fields. Starting with his 

discovery of the spin echo, a phenomenon of monumental significance and practical 

importance, Hahn launched a major revolution in how we think about spin physics, with 

numerous implications to follow in many other areas of science. Students of NMR and 

coherent optics quickly discover that many of the key concepts and techniques in these 

fields derive directly from his work. 

________________________________________________________________________ 

Hahn was happy to tell the story of his “accidental” discovery of the spin echo, the 

most famous of his achievements. He was a post-doctoral fellow when he discovered spin 

echoes, though he emphasized that at that time he was given freedom to work more like an 

independent research scientist. While studying nuclear spin coherence relaxation, he 

applied not one but two driving pulses separated by a time interval. What he saw (and what 

he at first thought to be a “glitch”) was that, in addition to decaying FID (free induction 



 

 

 

decay) signals following each of the two separate pulses, there was a third “ghost” signal 

appearing at a time following the second pulse equal to the time separation between the 

two pulses. This was puzzling because it was not clear where the signal came from; the 

echo occurred long after the FID following each of the pulses died out due to dephasing, 

then thought of as an irreversible process in the thermodynamic sense. Eventually, Hahn 

recognized that the “echo” signal was due to “refocusing” of the precession of different 

nuclei in the sample occurring at slightly different frequencies due to magnetic-field 

inhomogeneities and that the system’s order was “hidden” but not gone. The second pulse, 

in effect, creates a kind of time reversal, where the relative phases accumulated by the spins 

during the evolution between the pulses are undone during the evolution after the second 

pulse. Today, the spin echo and its countless generalizations, for instance to sequences of 

not two but up to thousands of pulses, constitute the basis of essentially all magnetic 

resonance applications, including the familiar medical-diagnostic magnetic resonance 

imaging (MRI). 


