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The Kepler's problem (inverse-square law of force) admits a conserved vector that lies in the 

plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz 

(LRL) among the conservation of the energy and the angular momentum. The property and 

geometry of the LRL vectors are discussed in terms of the Feynman hodograph diagram, which 

is extensively revised and improved here. It occurs with our finding of a construction line in the 

diagram. In this revised diagram, a various size of so-called LRL triangles (typically similar four 

triangles) clearly can be seen. In order to obtain the precise diagram, we calculate the coordinates 

of the intersections of circles and straight lines by using the Mathematica. 
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Fig.2 

 

Figs.1 and 2 Feynman hodograph diagram, where the Laplace-Runge-Lenz triangles are 

clearly seen. The construction line QG1 plays an important role to the revised 

version of Feynman hodograph diagram. The particle is located at the point Q on 

the elliptic orbit. 
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Fig.3 Laplace-Runge-Lenz (LRL) triangles in the Feynman hodograph diagram. The 

LRL vector connecting between two focus points, is denoted by the green line  
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1. Overview 

It is well known that a planet (such Earth) undergoes an elliptic orbit around the Sun (as one 

of focus in the ellipse). The eccentricity of the ellipse is positive and smaller than unity. There 

is a gravitational attractive interaction between the planet and the sun, forming the central force 

problem (Kepler model). The magnitude of the force is inversely proportional to the square of 

the distance between the planet and Sun. The following three laws are well-known as the Kepler's 

law’s three laws. 

1. Planets move around the sun in ellipse, with the Sun at one focus. 

2. The line connecting the sun to a plane sweeps equal areas in equal times (the angular 

momentum conservation). 

3. The square of the orbital period of a plane is proportional to the cube (3rd power) of the 

semi-major axis (distance) of the ellipse. 

In 1913, Niels Bohr proposed a Bohr model for electron in hydrogen atom, where an electron 

(negative charge) undergoes a circular orbit around a proton (positive charge) in the nucleus. 

There is an attractive Coulomb interaction between electron and proton. The magnitude of the 

force is inversely proportional to the square of the distance between electron and proton. The 
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energy of the electron is quantized. The Bohr model is the first success to the construction of 

quantum mechanics.  

In 1916, the Bohr’s model was revised by Sommerfeld. Sommerfeld showed that actually 

electron shows an elliptic orbit around the protons. The two quantum conditions are used in the 

form of  

 

p d n   ℏ�  and 
r rp dr n ℏ� , 

 

where n is the azimuthal quantum number and 
rn is the radial quantum number. When the 

principal quantum number n is defined by 

 

rn n n  , 

 

the energy of electron is obtained by the same form derived by Bohr. The significance of this 

extension may make it possible to account for the fine structure of the energy levels and spectrum 

lines in hydrogen and hydrogen-like atoms. We note that Wilson, Sommerfeld, and Ishiwara 

postulated, about the same time and quite independently, that each degree of freedom must be 

quantized separately. In other words, each degree of freedom should be fixed by its own separate 

quantum number. 

Sommerfeld’s analysis was quickly overtaken by the development of quantum mechanics 

by Heisenberg, Schrödinger, Dirac, and others. Application of the Schrödinger equation led to 

the quantized energy levels which is the same as those derived by Bohr and Sommerfeld. Once 

the Schrödinger equation appeared, no special attention on the Kepler-model and Sommerfeld-

model were seriously paid. Nevertheless, we think that it is necessary to discuss again the Kepler-

model and Sommerfeld model in terms of the Feynman hodograph model and the LRL vector.. 

The analysis described in this article may be useful to undergraduate students who want to know 

how the transition occurs from the simple Bohr model to the full solution of the Schrödinger 

equation in electron of hydrogen atom. Here we discuss the significant role of the Laplace-

Runge-Lenz (LRL) vector in the Feynman hodograph diagram (the Kepler-model and the 

Sommerfeld model without the quantized condition and relativistic correction). The LRL vector 

is always parallel to the semi-major axis, and the magnitude is universally constant.  In previous 

our article, we have discussed the detail of the Feynman hodograph diagram in the Kepler 

problem. Here, the Feynman hodograph diagram will be greatly extended and improved. The 

LRL triangles are clearly seen in the revised Feynman hodograph diagram. In order to get the 

revised Feynman hodograph diagram exactly, all the coordinates of the intersections of the 

straight lines and circles are calculated by using Mathematica, in spite of the usefulness of the 

geometry. 
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Thanks to Bohr, Sommerfeld, and the others, we realize that the electron undergoes an 

elliptic orbit around the protons in the nucleus. In general, the number of protons inside the 

nucleus is given by the atomic number Z; 1Z   for hydrogen atom. The Sommerfeld model is 

the first success in visualizing the shape of elliptic orbits in atoms, depending on the discrete 

energy and orbital angular momentum. Unfortunately, experimental results on atomic spectra 

data made at that times, could not be explained by the Sommerfeld model, partly because the 

existence of spins is not taken into account.  

One of our motivations to write this article is that we feel it necessary to understand the 

essential points of the Sommerfeld model. We tried to understand the experimental result of the 

energy separation of double (D)-lines of alkali metal atoms by using the spin-orbit interaction. 

We derived the effective proton charge effZ  for nP double energy separation. Unexpectedly, we 

get 1effZ   even for 3P double line energy separation. The nP orbits ( 3n  ) penetrate inside the 

2P orbits near the perihelion. As the eccentricity approaches unity, the velocity drastically 

increases. Relativistic correction should be necessary. The result of 1effZ   may be related to 

the Slater’s rule and Sommerfeld’s puzzle (these will be discussed in detail in other articles). 

 

2. Definition of Laplace-Runge-Lenz vector in the Kepler’s model and Sommerfeld’s 

model 

Laplace-Runge-Lenz (LRL) vector ((Wikipedia)) 

We find the definition of the LRL vector in Wikipedia. It is given as follows. In classical 

mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the 

shape and orientation of the orbit of one astronomical body around another, such as a binary 

star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the 

LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated 

on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL 

vector is conserved in all problems in which two bodies interact by a central force that varies as 

the inverse square of the distance between them; such problems are called Kepler problems.  

The hydrogen atom is a Kepler problem, since it comprises two charged particles interacting by 

Coulomb's law of electrostatics, another inverse-square central force. The LRL vector was 

essential in the first quantum mechanical derivation of the spectrum of the hydrogen atom,[7][8] 

before the development of the Schrödinger equation. However, this approach is rarely used 

today. 

https://en.wikipedia.org/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector 

 

We have presented an article titled "The Hodographic solution to the Kepler problem in 2015 

in the Bingweb, where planet undergoes an elliptic orbit around the Sun as one of the focus. 

There is an attractive gravitational interaction between the planet and the Sun (the Kepler model) 
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G

GMm
U

r
  , 

 

where G is the gravitational constant, M is the mass of Sun, and m is the mass of the planet.  

Recently we had an opportunity to study on the spin-orbit interaction in alkali metal atoms. 

The experimental results (NIST Atomic Spectra Data) on the energy separations of np orbits (n 
2P3/2 and n 2P1/2) are compared with the theoretical calculations such as Sommerfeld model 

(relativistic) and Dirac relativistic electron theory. In 1916, Sommerfeld realized that an electron 

(a charge -e, e>0) undergoes an elliptic orbit around the nucleus with protons with positive 

charges Ze), where Z is the atomic number. There is a Coulomb interaction between An electron 

In a hydrogen-like atom, an electron In order to understand the physics, we need that the elliptic 

orbit. The we are interested in the Sommerfeld model where an electron (a charge -e, e>0) is 

rotated around the nucleus (charges Ze) with atomic number Z. There is a attractive Coulomb 

interaction between the electron and protons (the Sommerfeld model). The potential energy is 

 
2

e

Ze
U

r
  . 

 

Since the potential energy for both models is inversely proportional to the distance r, classically 

the property of the elliptic orbits is equivalent. Here we use the notations comment to both 

models. 

 

0

2 2

k m k
E

a a
  , 

 
2

0

(Coulomb)

    

(Kepler)

Ze

m

k

GM





 




,   (in units of cm3/s2) 

 

or 
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2

0

(Coulomb)

    

(Kepler)

Ze

k k m

GMm




  



  

 

Note that we also use the notation of eccentricity  , but not e, since we use -e for the charge of 

electron. 

Here we discuss on the Feynman hodograph diagram in the Kepler problem and Sommerfeld 

model. The Kepler model is a purely classical model, In thee Sommerfeld model is that the 

energy and the angular momentum are quantized in the Sommerfeld model. In the classical 

Kepler model, the energy and the angular momentum are continuous, but nit quantized. The 

hodographic solution to the Kepler problem was discussed in our web site (Bingweb), Here we 

continue to discuss the hodographic solution to both models such model which may be more 

useful to our understanding of physics of these models (classically). In another article, we will 

discuss the spin-orbit interactions of alkali metal atoms with the relativistic theory of 

Sommerfeld model and Dirac relativistic electron, by comparison with the corresponding 

classical versions. To this end, we use Mathematica for the schematic hodographic diagram. We 

use algebraic calculations, with the help of our knowledge on the elementary geometry. 

 

3. Eccentricity anomaly and polar coordinate 

 



10 

 

 
 

Fig.4 Elliptic orbit of particle (focus at the point F1). Auxiliary orbit with radius (semi-

major axis a).   is called the eccentricity anomaly. F1 and F2 are the focal points. 

The particle is located at the point Q. { , }r   are the two-dimensional polar 

coordinates.   is the azimuthal angle.  The equation of elliptic orbit is given by 

2 2

2 2

( )
1

x a y

a b


  . 

1 ( cos ,0)a G . 1 ( ,0)aF . ( cos , sin ) ( cos , sin )a b r r    Q  

 

((Position vector)) 

We circumscribe the ellipse with an auxiliary circle of radius a centered at the origin O, and 

project the point Q (defined by R) on to the circle at the point G. We consider a particle at the 



11 

 

point Q on the elliptic orbit. The position vector at the point Q is described by the Cartesian 

coordinates as 

 

2( , ) ( cos , sin ) (cos , 1 sin )OQ x y a b a        R
����

, 

 

where a is the semi-major axis, b is the semi-minor axis and   is the eccentricity. 

We also use the polar coordinates r  with the point F1 as a  

 

1 1 1OF FQ   R F r
���� ����

, 

 

with 

 

1 1 ( ,0)OF a F
����

, 

 

and 

 

1 ( cos , sin )F Q r r  r
����

, 

 

where r is the distance between the points Q and F1 and  . From these relations we have 

 

1 ( ,0) ( cos , sin )a r r     R F r , 

 

or 

 

cos sinx a a r     , 

 

sin siny b r   . 

 

From the definition, the velocity vector v rɺ  can be obtained as 

 

2

( sin , cos )

( sin , 1 cos )

a b

a

  

   



 

  

R = r

v

ɺ ɺ

ɺ

ɺ
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since 1 0Fɺ . The acceleration vector is simply defined by 

 

R = r aɺɺ ɺɺ , 

 

since 1 0Fɺɺ . 

We consider the expression of the angular momentum with respect to the origin (
R

L ) and 

the angular momentum with respect the point F1 ( L ), 

 

1 R r F . 

 

((Angular momentum)) 

 

R
L : The angular momentum around the origin O 

 

R R
 L R P . 

 

where 
R

mP Rɺ . 

 

L : The angular momentum around the F1 (focus) 

 

 L r p , 

 

with the linear momentum 

 

R R
m m  p v v p ,  

R
v v . 

 

We have 

 

1

1 1

( )

R R
m

m

m

 

  

  

L R v

r F v

L F v

  

 

or 
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1 1R m  L L F v . 

 

4. Central force problem (2D polar coordinates) 

We consider a system consisting of two bodies. A central force between two bodies is defined 

as a force which is directed along the line connecting of the two bodies. 

The angular momentum  L r p  around the focus (point F1. The torque is related to L  as 

 

 
d

dt
  

L
τ r F .  

 

For the central force with F  parallel tor , 0τ  and L is a constant of motion and therefore is 

conserved under the action of a central force. Since 0 L r , the motion of the system under a 

central force is confined to a 2D plane. The motion can be described in plane polar coordinates 

whose variables are r  and  . The angular momentum vector is perpendicular to the plane 

containing r  and v .Since L  is constant, the plane is invariant. 

The motion is confined to a plane perpendicular to L . The central force is along r  and can 

exerts no torque on the mass. Thus, the angular momentum L is a constant of motion, both in 

direction and in magnitude. r is always perpendicular to L  by the properties of cross product. 

Because L  is fixed in direction, the plane of the motion is also fixed, and r can only move in a 

plane perpendicular to L . 
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Fig.5 Central force problem.  L r p  around the focus (point F1). The torque is related 

to L  as 
d

dt
  

L
τ r F . For the central force with F  parallel tor , 0τ  and L is 

a constant of motion and therefore is conserved under the action of a central force. 

Since 0 L r , the motion of the system under a central force is confined to a 2D 

plane. 

 

5. Lagrange equation of motion: equation of ( )r   in the polar coordinates 

((Goldstein)) 

We consider the central force problem where the force is directed along the radial component 

of the position vector r.  
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Fig.6 Elliptic orbit (2D polar coordinates with r and ). r
v r ɺ  and v r  ɺ . 

(1 )
a

r a    (aphelion). (1 )
p

r a    (perihelion).  is the eccentricity. re  and 

e  are unit vectors with 0r  e e . 

 

Here, we start with a Lagrangian of the system given by 

 

2 2

2 2 2

( , ; , )

1
( ) ( )

2

1
( ) ( )

2

r

L r r T V

m v v U r

m r r U r



 



 

  

  

ɺɺ

ɺɺ

 

 

where T  is the kinetic energy and ( )U r  is the potential energy 

 

( )
k

U r
r

 . 

 

where 

 

0

2

(Kepler)

   

(Coulomb)

GmM

k k m

Ze


  



 

 

The velocity of the particle is 

 

r
v r ɺ ,  v r  ɺ  

 

The canonical momentum is 

 

r

L
p mr

r


 


ɺ

ɺ
,  2L

p m r 



 


ɺ

ɺ
  (angular momentum) 

 

The Lagrange equation is 
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2( ) ( )r

d L L
p mr mr f r

dt r r


 
    

 
ɺɺ ɺɺ

ɺ
 

 

and 

 

( ) 0
d L L

p
dt

  
 

  
 

ɺ
ɺ

, 

 

or 

 
2p mr  ɺ .  (constant of motion, Noether's theorem) 

 

Note that the angular momentum around the focus F1 is defined as 

 

2

( ) ( )

( )

 

r r r

r

z

mr v v

mrv

mr

 

 



 

  

 



L r p

e e e

e e

eɺ

 

 

So that, we have 

 
2

z
L mr  ɺ =constant  (angular momentum conservation) 

 

The change of area swept by the orbit motion during a short time dt; 

 

21

2
dA r d . 

 

The areal velocity is related to the z component of the angular momentum as 

 

2 21 1 1
( )

2 2 2
z

dA
r mr L

dt m m
   ɺ ɺ , 
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Fig.7 Polar coordinates for the Kepler problem with sun (or proton) at the focus F1, 

Areal velocity in a central field. Definition of areal velocity. 

2 21 1

2 2

dA d
r r

dt dt


  ɺ . 

 

which is independent of time t (Kepler's 2nd law). This law will be discussed later in more detail. 

The Hamiltonian can be derived from the Lagrangian as 

 

2 2
2 2

2 2

2
2

2

1 1
( ) ( )

2 2

1
( ) ( )

2

r

z z
r

z
r

H p r p L

L L
p p U r

m mr m mr

L
p U r

m r

  

    

  

ɺɺ

 

 

Equation of motion (Lagrange equation): 

 

2( ) ( ) ( )
d

m r r f r U r
dr

   ɺɺɺ . 
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or 

 

2

2

2

2

3

2

2

( )

( ) ( )

( )

[ ( )]
2

z

z

z

d
mr mr U r

dr

L d
mr U r

mr dr

L d
U r

mr dr

Ld
U r

dr mr

 

 

 

  

ɺɺɺ

 

 

The effective potential is defined by 

 
2

2
( ) ( )

2

z
eff

L
U r U r

mr
  . 

 

The energy conservation law: 

Multiplying rɺ on both sides, we have 

  
2

2
[ ( )]

2

zLd
m rr r U r

dr m r
  ɺɺɺ ɺ , 

 

or 

 
2

2

2
( ) [ ( )]

2 2

zLd m d
r U r

dt dt mr
  ɺ , 

 

or 

 
2

2

2

1
( )

2 2

zL
mr U r E

mr
  ɺ .  (energy eigenvalue; 0E   for the bound state) 

 

For 

 

( )
k

U r
r

  , 
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we have 

 
2

2

2

1

2 2

zL k
mr E

mr r
  ɺ , 

 

where 

 
2

22

z
eff

Lk
U

r mr
   , 

 

is the effective potential. Note that 0E E   (elliptic orbit). 

 

2

0

1 2

2

effU x

U x


 , 

 

where
0

/x r r , 
2

0 2

z

mk
U

L
 , and

2

0
zL

r
mk

 . 

 

 
 

Fig.8 Normalized effective potential in the central force problem. . 0/effy U U vs

0/x r r . 
2

0 2

z

mk
U

L
 . 

2

0
zL

r
mk

 . 0E   for the bound state. 
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We now solve  

 
2

3
( ) ( )zL d

mr U r f r
mr dr

   ɺɺ . (central-force problem) 

 

r depends only on  
 

2

zLd d d d

dt dt d mr d


 

  , 

 

2 2
( ) z zL Ld d d d

dt dt m r d mr d 
 , 

 
2

2 2 3
[ ] ( ) ( )z z z

L L Ld dr d
U r f r

r d mr d mr dr 
    . 

 

We use 

 

1
u

r
 . 

 

2

2

1 1r u
u

r u  
  

  
  

. 

 
2 2

2 2 3

1
[ ] ( ) ( )z zL Ld dr d

U r f r
mr d r d mr dr 

    . 

 
2 2 2

2

1
( ) ( )z

L u d u
u f

m d u
   . 

 

Note that 

 

2

2
( ) ( )

d d k k
f r U r ku

dr dr r r
       . 

 

Thus, we get 
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2 2 2
2

2
( )z

L u d u
u ku

m d
  , 

 

or 

 
2

2 2

z

d u mk
u

d L
  . 

 

The solution of this equation (harmonic-oscillator type) is given by 

 

2

1 cos 1
( )

(1 ) ( )
u

a r

 


 


 


, 

 

such that ( ) ( )u u   .  

 
2(1 )

( )
1 cos 1 cos

a
r




   
 

 
 

. 

 

where  is the eccentricity of ellipse ( 0 1  ) and   is the semi-latus rectum and r    at 

2


  .   is called the semi-latus rectum 

 
22

2
(1 ) zLb

a
a mk

     . 

 

We use the notation   instead of e, since e is used as a charge. We now consider the energy 

conservation when 0r ɺ . The perihelion rp (the nearest distance) and aphelion rap (the farthest 

distance) are given by 

 

(1 )pr a     and  (1 )apr a   . 

 

We use semi-major axis a and semi-minor axis b,and 0E E   (the bound state). 

 
2

22

zL k
E

mr r
   , 
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or 

 
2

2 0
2

zL
E r kr

m
   . 

 

p
r  and 

apr  (
apr ) are the roots of this quadratic equation. Physically, rp (the perihelion) and 

apr  

(the aphelion) are the distances of the particle from the center (the origin O), when it is at each 

end of the major axis of the elliptic orbit.  

 

(1 ) (1 ) 2p ap

k
r r a a a

E
        , 

 
2

2 2(1 ) (1 ) (1 )
2

z
p ap

L
r r a a a a

m E
          , 

 

where 

 

(1 )pr a   , and (1 )apr a   . 

 

So that, we have 

 

2

k
a

E
 , 

 

and 

 
2

2 2 2(1 )
2

zL
b a

m E
   , 

 

or 

 
22

2

2 2
1

2

zLb

a m E a
   . 
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6. Feynman hodograph diagram in the Kepler’s model (revisited) 

We use the same definitions which are discussed in our article. Since the problem is 

spherically symmetric, the total angular momentum vector,  L r p  around the focus at the 

point F1 is conserved. It therefore follows that r  is always perpendicular to the fixed direction 

of L in space. This can be true only if r  always lies in a plane whose normal is parallel to L .  

 

 
 

Fig.9 Kepler ellipse with semi-major axis and semi-minor axis; perihelion, aphelion, 

eccentricity.  

Definition of elliptic orbit. The focus is at the point F1. 

O: center. 

a: semi-major axis. 

b: semi-minor axis. 

 : eccentricity. 

l: directrix. 

  : semi-latus rectum (
2b

a
  ). 

 : eccentric anomaly 

Auxiliary circle (denoted by blue line) of radius a centered at the origin O. 

 
2 2 2 2a b a     2 2 2(1 )b a    
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In Fig.9, we have the relations 

 

cos
a

a


   , 

 

0
cos

a a
OL

 
  , 

 

1 0

2

2

(1 )

a
F L a

a

b

a









 






 

 

We consider triangles 
1OHF  and 

0OL H  which are similar. Their corresponding angles are 

congruent and corresponding sides are in equal portion. 

 

1 1

0 0

HF FOOH

OL L HOH
  , 

 

or 

 

0 0

a

aOL L

b a

H


   , 

 

yielding the sides of 0OL H  as 

 

0

a
OL


 , 0L

b
H


 . 

 

Parametric equation of the ellipse: 

 

cosx a  ,  siny b  . 
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The angle   is called the eccentricity anomaly The circle of radius a centered at the origin is 

called the auxiliary circle. 

 

 
 

Fig.10  Definition of directrix. Elliptic orbit with 1PF

PL
  (definition for the ellipse) 

 

2 2

1 ( )PF x a y   , 
a

PL x


  . 

 

where the particle is located at the position ( , )x y . 

 

2 2( )
a

x x a y 


    , 

 
2

2 2 2
( )

a
x x a y 


     
 

, 

 

or 

 
2 2

2 2
1

x y

a b
  .  (ellipse) 
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Fig.11 Definition of the directrix in the ellipse. 

 

( cos )
a

PL a r 


   , 

 

1
PF r , 

 

1PF

PL
 , 

 

( cos )

r

a
a r


 




 

. 

 

The radial distance as s function of azimuthal angle  , 

 
2 2(1 )

1 cos ) 1 cos )

b
r


   
 

 
 

. 
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7. Velocity and angular momentum conservation (J.C. Maxwell): Hodographic 

solution 

 

 
 

Fig.12 Original Feynman hodograph diagram. Hodographic solution to the Kepler 

problem (inverse-square law of force). Elliptic orbit. F1 and F2 are foci. The point 

H2 is on the circle of radius a centered at the origin O. 1 2
2

p ap
r r r r a     (M.S. 

Suzuki and Itsuko S. Suzuki). We will discuss much more detail below. 
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Fig.13 LRL vectors in the Feynman hodograph diagram. The line QG1 is a construction 

line which plays a significant role in constructing a revised Feynman hodograph 

diagram. The line 1 2O O
 is parallel to the x axis; 1 2O O a

. This is independent 

of the eccentricity anomaly  . 

 

Here we show that the magnitude of the velocity at the point Q on the elliptic orbit is given 

by 

 

2 2

z

E
v F P

L
    (James C. Maxwell) 

 

where 

 

2

k
E

a
 ,  

2
2 2 2(1 )

2

z
L

b a
m E

   , 
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or 

 

2 2

0

4 4zL m
ab ab

E k k
  , 

 

with 2 1/2(1 )b a   . Since 
z

E

L
 is conserved, the velocity v is proportional to the distance F P . 

The proof is given below. From the property of elliptic orbit, we have 

 

1 2 (1 ) (1 ) 2p apr r r r a a a         , (1) 

 

and 

 

1 2
FQK' F QK'=     

 

Note that the direction of the velocity at the point Q is tangential to the orbit and is along the 

direction of the vector
2

QH
�����

. For the triangle F2QF1, we apply the cosine law as 

 
2 2 2

1 2 1 2
(2 ) 2 cos(2 )a r r rr    , (2) 

 

where
1 2

FF 2a , 
2 2

F Q r , 
1 1

FQ r , and 
1 2FQF 2  . From Eqs.(1) and (2), we get 

 
2 2 2

1 2 1 2 1 2

2

1 2

2 2

1 2

4 ( ) 2 2 cos(2 )

4 2 [1 cos(2 )]

4 4 cos

a r r r r r r

a r r

a r r

 





   

  

 

 

 

or 

 
2 2 2 2

1 2
cos (1 )r r a b    . 

 

We now consider the angular momentum, which is directed along the z direction (perpendicular 

to the orbital plane). The angular momentum is conserved since the torque is equal to zero 

 



30 

 

0
d

dt
   

L
τ r F . 

 

Note that the position vector r is always parallel to the force F (the inverse-square law of force). 

The elliptic orbit lies in the (x, y) plane perpendicular to the angular momentum L (along the z 

axis for simplicity). Thus, we have 

 

1 1 1sin sin( ) cos
2

zL p mvr mvr mvr


        

 

(angular momentum conserved) 

 

Thus, we get the velocity as 

 

1

22

1 2

22

22 2

cos

cos
cos

cos

cos
(1 )

z

z

z

z

L
v

mr

L
r

mrr

L
r

mb

L
r

ma




















 

 

Note that that the energy and the angular momentum are conserved, 

 

0

2 2

k mk
E

a a
  ,  ( 0E   for the elliptic orbit) 

 

and 

 
2 2

2 2

2 2

0

2
2

0

2

2 (1 )

(1 )

zL m E b

m E a

m k a

b
m k

a







 

 



, 
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or 

 

2

0
z

k b
L m

a
 , 

 

where the unit of k is [erg cm], and the unit of k0 is [cm3/s2]. 

Then we get 

 
2

22 2

2 2

22 2

2

2 2

cos
(1 )

2 (1 )
cos

(1 )

2 cos

z

z

z

z

z

L
v r

ma L

m E a
r

ma L

E
r

L

E
F P

L























 

 

or 

 

2 2

z

E
v F P

L
 ,  (J.C. Maxwell) 

 

where 

 

2 2 22 cosF P r  . 

 

0

2
4 z

E k

L ab
 , 

 
2b

a
  , (  : semi-latus rectum) 

 

0

2 2

k mk
E

a a
  , 
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2

0

(Coulomb)

    

(Kepler)

Ze

m

k

GM





 




 

 

The velocity at the perihelion can be evaluated as 

 

2 2 2 22 2 (1 )F P F H a    , 

 

2 2

0

2

0

2

2 (1 )
4 

1

 1

p

z

E
v F P

L

k
a

ab

k

a








 






 

 

In the limit of 1  , the velocity pv  may be close to the velocity of light. The velocity at the 

aphelion can be evaluated as 

 

2 2 2 22 2 (1 )F P F H a    , 

 

2 2

0

2

0

2

2 (1 )
4 

1

1

ap

z

E
v F H

L

k
a

ab

k

a








 






 

 

We note that 

 

2 2

2 2 2 2

(1 )cos 1 sin
( , )

1 cos 1 cos

a a
F H

   
   

 
  

 
H F

������
. 
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Noting that the direction of the velocity vector is perpendicular to 2 2F H
������

, the velocity vector can 

be expressed by 

 

2 2

0

2

2

0

1 sin (1 )cos
( , )

 1 cos 1 cos

sin 1 cos
( , )

 1 cos 1 cos

k a a

ab

k

a

   
   

  
   

 
 

 


 

 

v

  

 

The magnitude of the velocity is 

 

0 1 cos

 1 cos

k

a

 
 





v . 

 

For the perihelion, 

 

0 1

 1

k

a








v . 

 

For the aphelion, 

 

0 1

 1

k

a








v . 

 

Note that the velocity at the perihelion is much larger than that at the aphelion when the 

eccentricity   tends to unity.  
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Fig.14 Velocity vector v  (in the units of velocity 0 0 /v k a ) in the x-y plane, with the 

eccentric angle   being changed as parameter. The eccentricity   is changed as 

a parameter. 0.98 0.70    with 0.02  .  

 



35 

 

 
 

Fig.15 Velocity vector v  (in the units of velocity 0 0 /v k a ) in the x-y plane, with the 

eccentricity anomaly   being changed as parameter. The origin is the center of 

the elliptic orbit. The eccentricity is fixed as 0.98  . The velocity increases in 

the vicinity of the perihelion. 0 355   with 5   . The velocity direction 

at 0   coincides with the 
yv  axis. The center of the velocity circle is 

2
(0, )

1




, and the radius is 

2

1
.

1 
 in the 0( /xv v , 

0/ )yv v . The definition of 

the eccentricity anomaly   is the same as shown in Fig.17. 

 

8. Centripetal acceleration in the central force problem 

We start with the expression of the position vector 

 

2( cos , sin ) (cos , 1 sin )a b a      R . 
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Here we note that 

 

( ,0)a R r . 

 

From the definition, the velocity 
1v can be obtained as 

 

2

( sin , cos )

( sin , 1 cos )

a b

a

  

   



 

  

v = r

R

ɺ

ɺ

ɺ

ɺ

 

 

We use the expression of the velocity obtained above. 

 

2

0

20

sin 1 cos
( , )

 1 cos 1 cos

1
( sin , 1 cos )

 1 cos

k

a

k

a

  
   

  
 


 

 

  


v

 

 

Since 0   and   , 0xv  , the center of velocity circle is located on the yv  axis, and is calculated 

as 

 

20

0

2

0

2

1
[ ( 0) ( )]

2

1 1 1
1 ( )

2 1 1

1

c

y y yv v v

k

a

k

a

k a

b

  


 







   

  
 






 

 

The radius of the velocity circle is 
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



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9. Derivation of the Kepler’s third law from the angular velocity of eccentricity 

anomaly 

((Kepler’s 3rd law)) 

The squares of the orbital periods of the planets are directly proportional to the cubes of the 

semi-major axes of their orbits. 

From two equations for v above, we get the Kepler’s 3rd law (
2 3/ constntT a  ) 

 

0

3

1

 1 cos

kd

dt a




 
 


ɺ , 

 

or 

 

0

3

0

(1 cos )
 

k
dt d

a



    , 

 

or 

 

0 sint     .  (Kepler's equation) 

 

In this equation,   is called the eccentricity anomaly and 0M t  is called the mean anomaly. 

The period 
0

2
T




  is obtained as 
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(1 cos )
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




  

 

with 

 

0
0 3

2 k

T a


     

 

Note that we do not use the area of the ellipse ( A ab ). 

 

((Note)) 
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
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
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We use the Mathematica to calculate the integral. 

 

2

2 2 3/2 2
0

(1 ) tan
1 1 1 sin2[2arctan( ) ]

(1 cos ) (1 ) 1 cos1
d


   


    

 
 

  
   

 

which is the same as that given in the book of Marion.  

 

2 2

2 3/2 2

(1 ) tan
2 1 sin2[2arctan( ) ]

(1 ) 1 cos1
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t

T


   

  

 
 

 
 

 

or 

 

2
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2 1 1 sin
2arctan( tan )

1 2 1 cos

t
t

T

     


  
 

  
 

  (Kepler's equation) 

 

where 

 
2
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(1 )
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
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
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1
arctan( tan )

2 1 2

  






  

 

1
tan tan

2 1 2

  






  

 

From the definition, we have 
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


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10. Derivation of the Kepler’s third law from the areal velocity 

This law can be derived from the relation between the areal velocity and the angular 

momentum along the z axis 

 

2

0 0

1 1 1
(1 )

2 2 2
z

dA
L k a k

dt m
     . 

 

Noting that the total area of the elliptic orbit is  A ab  , the period T  is obtained as 
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





 

 

showing the Kepler’s third law. 

 

11. Centripetal acceleration vector ca  

We now calculate the acceleration vector ca , which should be parallel to r because of the 

Newton’s 2nd law. We use the Mathematica. 
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where 
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We note the position vector is expressed by 

 

1

2

( cos , sin ) ( ,0)

( cos , sin )

( cos , 1 sin )

F Q

a b a

a a b

a
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with 

 

1 1 (1 cos )F Q r a    
����

 

 

Thus, we have the relation between a and 1FQ
����

 as 
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So that, ca  is the centripetal acceleration vector (the unit of ca  is cm/s2}. We make a 

ParametricPlot of the acceleration vector a divided by 
3

0
/k a   
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Fig.16 ParametricPlot of 0 0[( ) / , ( ) / ]c x c c y ca aa a . 0.8  . Centripetal acceleration 

vector where the eccentric angle is changed as a parameter. Centripetal 

acceleration vector ca  (in the units of acceleration 0 0

2c

k
a

a
 ; cm/s2) in the x-y 

plane, with the eccentric angle   (units of degree) being changed as parameter. 

0 355   with 5   .  
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Fig,17 Centripetal acceleration vector ca  (in the units of acceleration 
0 0

2c

k
a

a
 ) in the x-

y plane, with the eccentricity anomaly   (units of degree) being changed as 

parameter. The origin is the center of the elliptic orbit. 0.8  . 0 355   with 

5   . 

 

((Note)) 

Unit of acceleration: 0

2c

k
a

a
   [cm/s2] 
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Unit of velocity 0 0 /v k a   (cm/s) 

Unit of 
0k    

0k   (cm3/s2) 

Unit of k    
0k k m  (erg cm) 

 

 
 

Fig.18 Time dependence of the eccentricity anomaly   , where   is changed as a 

parameter. 0.5 0.95    with 0.05  . 

 

12. Kepler's 3rd law (revisited) 

 

0

3

1

1 cos

kd

dt a


 




, 

 

3 3

0 00

(1 cos ) ( cos )
a a

t d
k k



         , 



46 

 

 

where 

 

3

0

2
a

T
k

 , 

 

sin[2 ( )]
2 2 2

t

T

  


  
  . 

 

13. Kepler's equation 

((Mathematica)) Trajectory of elliptic orbit as s function of time using the Kepler's equation 
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Fig.19 Elliptic orbit with a = 3 and b = 2. 5 / 3 0.74436   , where the time 

0 /t t T  being changed as a parameter. 0 0 1t   . 0 0.01t  .  

 

Since 

 

2( cos , sin ) (cos , 1 sin )a b a      R  

 

20 1
( sin , 1 cos )

 1 cos
R

k

a
  

 
   


v v  

 

2

0

( )

( )

1

1 cos

R R

z

m

m

k a
m

a


 

 

 






L R v

R v

e
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and 

 

0
1 1

2

2

0

1
0 0

1 cos
sin 1 cos 0

1
cos

1 cos

x y z

z

k
m m a

a

k a
m

a


 

  


 

 

 


 






e e e

F v

e

  

 

we have 

 

1

2 2

0 0

2

0

2

0

1 1
cos

1 cos 1 cos

1
(1 cos )

1 cos

1

R

z z

z

z

m

k ka a
m m

a a

k a
m

a

m k a

 
 

   


 

 



  

 
 

 


 



 

L L F v

e e

e

e

 

 

or 

 

2
2

0 0(1 )z

b
L m k a m k

a
   , (angular momentum is conserved  

 

which is conserved. 

 

13. Laplace-Runge-Lenz vector A   

We use the vector A  as 

 

1
( )

k k

m r r
     A p L r v L r , 

 

20 1
( sin , 1 cos )

 1 cos

k

a
  

 
  


v , 
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2
2

0 01 z z z z

b
m k a m k L

a
   L e e e , 

 

So that, we have 

 

2
20

0

2

0

2
2

0

( , ,0)

1
( 1 cos ,sin )

 1 cos

1
( 1 cos , sin )

1 cos

1
( 1 cos ,sin )

1 cos

z y xL v v

kb
m k

a a

b
k m
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k m

  
 

  
 


  

 

  

 


 



 



v L

  

 

2

1 (cos , 1 sin )a        r R F  

 

20
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(cos , 1 sin )
(1 cos )

(cos , 1 sin )
1 cos

k mak

r a

k m

   
 

   
 

  


  


r

 

 

where 

 

2

0z

z

b
L m k

a
 . 

 

Finally, we have 
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2
2 20

0
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1
( 1 cos ,sin ) (cos , 1 sin )

1 cos 1 cos

( )

2 ( )

x

x

x

x

k

r

k m
k m

k m

k

k
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a

E a


      

   








  


    

 








A v L r

e

e

e

e

 

 

Thus, the vector A is independent of t. and  . 
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Fig.20 LRL triangles in the Feynman hodograph diagram, where the point F2 of the LRL 

triangle (H2F2O) shifts to the position (Q) of the particle on the elliptic orbit. In 

the LRL vector, ( 2F O
�����

) is denoted by the green line. ( 2 2F H
������

) is denoted by the red 

line. (
2H O
�����

) is denoted by the blue line. 2F O a
�����

. 

 

1
( )

k mk

r m r
     A v L r p L r , 

 

2

2

( )

( )

( )

( )

1

1
z

k

r

k

r

kr

kr

kr
m

L kr
m

     

    

   

   

 

 

r A r v L r

r v L r r

r v L

L r v

L

 

 

Using the relation 
0 x xk m k  A e e   

 

2

2

( )

1

1

x

z

k

kr
m

L kr
m

   

 

 

r A r e

L  

 

or 

 

21
cos zk r L kr

m
    , 

 

or 
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2

1 cos 1 cos

zL

mkr
   


 

 
, 

 

with 

 
2 2 21zL mkb b

mk mk a a
    . 

 

Note that 

 

1
pr







,  (at 0  ), 

 

1
apr







.  (at   ). 

 

Using the property of ellipse, we have 

 

2
1 1

p apr r a
 

 
   

 
, 

 

leading to the relation 

 
2

2
(1 )

b
a

a
    . 

 

((Note)) 

 

( ) 0
k

r
     A L v L r L . 

 

So that, A  is perpendicular to L  at all points of the motion. It lies in the plane of motion. 

 

14. Laplace-Runge-Lenz law for Kepler's law 

 

((Goldstein)) 
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We start with 

 
2

zmr L ɺ , 

 

2

zL
d dt
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  , 
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  
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1
( )( )p ap

dr k
r r r r r

dt ma r
    ɺ , 

 

( )( )p ap

ma rdr
dt

k r r r r


 
, 

 

2

( )( )

z

z

p ap

L
d dt

mr

a dr
L

mk r r r r r

 


 

 

 

( )( )
p

r

z

r p ap

a dr
L

mk r r r r r
 

  , 

 

we use 
1

u
r

 . Since 
2

2

1
du dr u dr

r
    , using Mathematica we get  
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where 
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b a
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k b
L m

a
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0k mk , 

 

2

1
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p
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u
r

u
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





, 
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leading to the relation 
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u
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or 
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




, 

 

with 
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2
2

(1 )
b

a
a

    . 

 

15. Relation between the azimuthal angle  and the eccentric angle   
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a
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2 2 2

1 tan (1 tan ) (1 )(1 tan )
2 2 2

1 tan 1 tan (1 tan )
2 2 2

  
 

  

    


   
. 

 

Using Mathematica, we get the relation 

 

1
tan tan

2 1 2

  






. 

 

Thus, we have a unique correspondence between   and  .  
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Fig. 21 Relation between the azimuthal angle  and eccentric anomaly  . The 

eccentricity   is changed as a parameter. 0.4 0.9   with 0.1  . 

 

16. The Laplace-Runge-Lenz vector; 0
d

dt


A
  

((Goldstein)) 

The Laplace Runge-Lentz vector provides still another way of deriving the orbit equation for 

the Kepler problem. The vector A is in the direction of the radius vector to the perihelion point 

on the orbit, and has a magnitude 0k m . For the Kepler problem we have identified two vector 

constants of the motion L and A, and a scalar E.  

We take a derivative of A  with respect to t, 
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k

r
  A v L r . 

 

The derivative 
d

dt

A
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d d d k d k dr
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k d k
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     
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where the torque is given by 
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m
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r F
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1
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( ) ( )

m
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   

F L F r v

F v r F r v

  

 

( )

( ) ( )

   

   

v τ v r F

v F r v r F
  

 

3

k

r
 F r .  (central force) 

 

So that, we have 
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2

3

3 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

d k d k
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k k

r r
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          
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

A r r
F v r F r v v F r v r F v r

F r v v F r v v r r

v v r r v v r r

  

 

which means that A is independent of time t. 

 

17. Equation of velocity circle 

We start with 

 

k

r
  r v L A . 

 

Thus, we get 

 

( ) ( )
k k

r r
      r r v L A v L A , 

 

or 

 

2

2 2 2 2

0 0( )z y xz
m k L v mk L v   , 

 

or 

 

2 2 20 0( ) ( )y x

z z

mk mk
v v

L L


   ,  (velocity circle) 

 

with 

 

0 0

2

z

mk k a

L b
 . 

 

This is in agreement with the equation of velocity circle which is derived in different approach 

(described above). 
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Fig.22 Feynman hodograph diagram with 0  . The direction of the velocity at the 

perihelion. The magnitude of the velocity becomes the largest one. 

 

At 0  , we have 

 

0 (1 ,0)k m   v L ,   

 

0 (1,0)
k

mk
r

r . 
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So that, we have 

 

0 0
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We note that 

 

2

1

1
(cos , 1 sin )

2
a      O , 

 

and 

 

2

2

1
(cos , 1 sin )

2
a      O . 

 

Thus, we have 

 

1 2 ( ,0)a O O , 

 

1 2 ( cos , sin )a b   O O Q . 

 

We may conclude that the vector 
1 2 ( ,0)a O O  is independent of the eccentric anomaly   and 

is related as 

 

0 0
1 2( ,0) ( )

mk mk
a

a a
  A O O . 

 

Note that the position vector 
1 2O O  is parallel to the x axis, independent of the eccentricity 

anomaly  . 

 

((Determination of the energy from the Laplace-Runge-Lenz equation)) 
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We also note that 
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Fig.23  Detail of the Feynman hodograph diagram. 

 

18. Geometry of Feynman hodograph diasgram 
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2 1 2 1 2 22 ( ) 2    P F H F F H . 
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We also note that 
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Using the two vectors 
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If a line is drawn in a triangle so that it is parallel to one of the sides and it intersects the other 

two sides then the segments are of proportional lengths: 

 

19. The geometrical analysis (Mathematica) 

The hodographic solution to the Kepler problem which was discussed previously by us, is 

now discussed in more detail, using the Mathematica. 
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Fig.24 The point Q is on the elliptic orbit. F1 and F2 are foci of the elliptic orbit. (i) 

1 1QF r .
2 2QF r , 1 2 2r r a  .  (ii) 1 2' 'F QK F QK     . (iii) The points at H1 

and H2 are located on a circle of radius a (semi major axis) centered at the origin. 

(iv) The length F2P2 is proportional to the magnitude of the velocity of charge at 

the point Q. (v) The product of the lengths F1H1 and F2H2 is constant and is equal 

to 2b , where b is the semi minor axis. 2 2

1 2 cosr r b  . (vi) The points k1, k2, and 

L2 are on the same circle of the radius cosa   centered at the origin O. When 

/ 2  , these points coincide with the origin. 

 

O: (0,0)O ,   (the origin) 

F1: 1 ( ,0)aeF    (the focus) 

F2; 2 ( ,0)ae F    (the focus) 

Q: ( cos , sin )a b Q   the point on the elliptic orbit 
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Tangential line at the point Q on the elliptic orbit 
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sin ( cos )

sin

b
y b x a

a


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
    , 

 

where  is an eccentric angle.  Note that the tangential line crosses the x axis at 
cos

a
x


 . The 

auxiliary circle is the circle of radius a centered at the origin 

 
2 2 2x y a  . 

 

The intersections (H1 and H2) of the tangential line and this circle of radius a; 
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2
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a
     O . 

 

Relation between H1 and O1; 

 

1 1
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
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Since the angle 1 1 1 1
2

QG F QH F


   , it is found that the points Q, G1, F1, and H1 are on the 

same circle of the radius
1 / 2r . The center of the circle is at the point O1, 
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Relation between K1 and H1; 
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We also note that 
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1 1 1
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The line 1 2O O  is parallel to the line 1 2F F ,  

 

1 2 ( ,0)a O O . 

 

From these, it is concluded that the point K1 is on the line 'KK  and is on the circle of radius r1/2 

centered at the point O1. The line 'KK  is an angle bisector divides in the angle into two angles 

with equal measures. H1QK1F1 forms a square where the points H1, Q, K1, and F1 are on the same 

circle.  
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The product of 1 1 FH  and 2 2F H  is constant, independent of the angle . 

 
2 2 2

1 1 2 2 (1 )FH F H a b   . 

 

Since the angle 1 2 2 2
2

QG F QH F


    , it is found that the points Q, G1, F2, and H2 are on the 

same circle of the radius
2 / 2r . The center of the circle is at the point O2. 
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Relation between H2 and O2; 

 

2 2

2

1 cos 



H O . 

 

The intersection (K2) of extension line of 
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point O2. 
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and 

 

2 cosa K . 

 

The point L2 on the x axis is defined as 



73 

 

 

2 ( cos ,0)a L . 

 

We note that the points K2, L2, and K1 are on the same circle of the radius cosa  , centered at 

the origin O. We also note that G1 is the intersection of the extension 
1G Q  and the circle of radius 

a centered at the origin O.  

 

G: ( cos , sin )a a G . 

 

G1: 1 ( cos ,0)a G . 
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M1: 
2

1 ( cos ,0)a M  

 

1 (1 cos )(1 cos )QM b        

 

20. Summary: the property of elliptic orbit 

For the elliptic orbit, we have 

 

1 2 2r r a  . 

 

The line 'KK  is perpendicular to the tangential line at the point Q on the ellipse orbit. This line 

bisects the angle
1 2 2FQF   ; 

 

1 2' 'FQK F QK     . 

 

The distance between Q and F1 is 1
r and is calculated as 
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Similarly, the distance between Q and F2 is 2
r  and is calculated as 
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Thus, we have 

 

1 (1 cos )r a    , 2 (1 cos )r a    . 

 

These relations can be understood as follows. 

 

We note that 1
cosOK a  , 1 1 1

K H r , and 1
OH a  

 

1 1 1 1OH OK K H  ,  (on the straight line) 

 

or 

 

1 (1 cos )r a    . 

 

We also note that 2
cosOK a  , 2 2 2

K H r , and 2
OH a  

 

2 2 2 2K H K O OH  ,  (on the straight line) 
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or 

 

2 (1 cos )r a    . 

 

We apply the cosine law for the triangle QF1F2. 

 
2 2 2 2

1 2 1 22 cos(2 ) 4r r r r a    .  (1) 

 

Using the relation (
1 2 2r r a  ) 
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From Eqs.(1) and (2), we get 
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Fig,25 Elliptic orbit (red) with a = 3 and b = 2. The trajectories of the points K1. K2, O1, 

and O2, where the eccentricity anomaly  is changed as a parameter ( 0 2   ). 

 

((The relationship between the angles  and )) 

 
2

2

2 2

1
cos

1 cos




 





. 

 

 

 
 

Fig.26  The plot of the angle a as a function of the eccentricity anomaly    

 

21. The relationship between the angles  and the eccentric angle ; 

Using the relations 

 

1 cos cosr a a    , 

 

and 
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
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




. 

 

22. Examples: Feynman hodograph diagram in the Kepler’s model and Sommerfeld’s 

model 
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Fig.27 (a) 10   . 
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Fig.27 (b) 20   . 
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Fig.27 (c) 30   . 
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Fig.27 (d) 40   . 
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Fig.27 (e) 50   . 
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Fig.27 (f) 60   . 
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Fig.27 (g) 70   . 
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Fig.27 (h) 80   . 

 



86 

 

 
 

Fig.27 (i) 90   . 
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Fig.27 (j) 110   . 
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Fig.27 (k) 120   . 
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Fig.27 (j) 130   . 
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Fig.27 (k) 140   . 
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Fig.27(l) 150   . 
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Fig.27(m) 160   . 

 

24. CONCLUSION 

In 1916, the circular orbit (Bohr model) was revised by Sommerfeld as an elliptic orbit in the 

hydrogen atom. From the quantum condition which he assumed, he could show that the total 

energy has the same form as that predicted from Bohr. The angular momentum are conserved 

and also discretely quantized. Without the quantum conditions, the Sommerfeld model and are 

the Kepler central force problem are essentially the same. While studying the spin orbit 

interactions of alkali metal atoms, we have an opportunity to take a closer a look at the hodograph 

diagram.  

In previous article, we have discussed the geometry of the Kepler problem (Feynman 

hodograph diagram) in much detail. Unexpectedly we have found a so-called Laplace-Runge-

Lenz (LRL) triangles inside the hodograph. We can find four LRL triangles which are similar to 

each other.  
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Our discussion starts with a finding of an construction line (auxiliary line) 
1QG , where the 

line 1QG  is perpendicular to the x axis where  1 ( cos ,0)a G . We tried to draw one auxiliary 

line (in this case, the line QG1). The line QG1 is perpendicular to the horizontal axis (the x axis). 

The point G1 lies on the x axis. We realize that this line plays an important role in changing our 

vision of the hodographic solution. We determine the coordinates of each point by using 

Mathematica program. We realize that the four points Q, H2, F2, anf G1 are on the same circle 

centered at the point O2, since both the angle QH2F2 and the angle QG1F2 are equal to 90 . We 

also find that the four points Q, H1, F1, and G1 are on the same circle centered at the point O1, 

since both the angle QH1F1 and the angle QG1F1 are equal to 90 . From the property of the 

ellipsoid, the line KK’ is the bisector line such that the angle F2QK’ is equal to the angle F1QK’.  

The LRL vector is universally constant as  

 

0
1

k mk

r a
   A v L r F ,  

 

where 
1F  is the position vector of the focus (Sun in the Kepler's model and electron in the 

Sommerfeld's model). This may correspond to the Kepler's first law. The angular momentum is 

perpendicular to the 2D plane of motion, and is conserved. This corresponds to the Kepler's 

second law. The relation  

 

2 2 22
x z

E
A L k

m
  , 

 

with 

 

xA k , 
2

2

z

b
L mk mk

a
   ,  

2

k
E

a
    

 

is equivalent to the most familiar expression  

 
2 2 2(1 )b a   . 
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Fig.28 Detail of the Feynman hodograph diagram which is improved here. 

 

__________________________________________________________________________ 
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____________________________________________________________________________ 

APPENDIX 

The notations used in this article are shown for the sake of convenience. 

 

O:  (0,0)O ,   (the origin) 

F2;  
2 ( ,0)ae F    (the focus) 

F1:  
1 ( ,0)aeF    (the focus) 
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(1 )apr a    aphelion (the farthest distance from the 

focus) 

(1 )pr a    perihelion (nearest distance from the 

focus) 

0k k m   

0k       (units of cm3/s2) 

       eccentricity 

a       semi-major axis; radius of auxiliary circle 

b  21b a       semi-minor axis 

       azimuthal angle 

       eccentricity anomaly 

l:      directrix. 

  

2
2(1 )

b
a

a
       semi-latus rectum 

 

2

0
z

k b
L m

a
  angular momentum along the z axis 

(conserved, Kepler’s second law) 

 
2

2 2 0
z

k b
L m mk

a
    

 

0

2 2

k mk
E

a a
      Energy (conserved) 

 

0

2

2

z

E k

L ab
      (units of 1/s) 

 

2

1 zL

mka
     

 

3

0 0

2
2

a
T

k





        T, period, Kepler's third law 
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0 sint      Kepler's equation 

0t : mean anomaly 

 ; eccentricity anomaly 

 

0

2

c

y

k a
v

b
      center of velocity circle 

 

(1 cos )
1 cos

r a  
 


  


 

 
2

zmr L ɺ  

 

0 x x

k
mk k

r
     A v L r e e   Laplace-Runge-Lenz vector 

 

2 2 22E
k

m
 A L  

 

2
2

0

0
2

1
( 1 cos ,sin )

1 cos
k m

k m
K Q

a


  

 


  




v L

�����
 

 

2

2

1
(cos , 1 sin )

2
a      O  

 

20

0
1 2 2

(cos , 1 sin )
1 cos

(O Q K O )

k mk

r

k m

a

   
 

  


 

r

����� ������
 

 

where 
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1 2 2 1 2 2

2

O Q K O ( ) (O K )

(cos , 1 sin )
1 cos

a
   

 

    

  


Q Q
����� ������

 

 

 

0

1 2

0

( )

x

k

r

k m

a

k m
a

a


  

 



A v L r

O O

e

 

 

1 1

1
( )

2
 O Q F   

 

2 2

1
( )

2
 O Q F  

 

1 1 1  K F Q H  

 

2 2 2

1 1 2 2 1 2
 (1 )FH F H X X a b     

 

2 2 2

1 cos

1 cos
X F H b

 
 


 


, 

 

1 1 1

1 cos

1 cos
X F H b

 
 


 


 

 

1 (1 cos )r a    , 
2 (1 cos )r a     

 

Velocity 
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1 2 2

0
22

0

2

0

2

1 cos

1 cos

1 cos

1 cos

z

E
v F H

L

k
X

ab

k
b

ab

k

a

 
 

 
 















 

 

2 1 1

0
12

0

2

1 cos

1 cos

z

E
v F H

L

k
X

ab

k

a

 
 










 

 

0
1 2

k
v v

a
  

 

Angular momentum: 

 

1 1 1 1 1 1 1sin sin( ) cos
2

L v r v r v r


       

 

2 2 2

2 2

2 2

2 2

sin( )

sin( )

sin( )
2

cos( )

L v r

v r

v r

v r

 








 



 



 

 

1 1 0 (1 cos )(1 cos )v r ak        

 

2 2 0 (1 cos )(1 cos )v r ak        
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From the conservation of angular momentum, we have 

 

1 1 2 2v r v r    1 2

2 1

v r

v r
  

 

Triangle H2OF2 (LRL triangle) 

 

2F O a . 2OH a , 2 2 2

1 cos

1 cos
F H X b

 
 


 


 

 
2

1 ( cos ,0)a M  

 

Triangle QM1F1 which is similar to triangle H2OF2: 

 

1 1 (1 cos )M F a    . 
1 1 (1 cos )F Q r a      

 

1 2 (1 cos )

1 cos
(1 cos )

1 cos

(1 cos )(1 cos )

QM X

b

b

 

 
 

 

   

 


 



  

 

 

Central force: 

 

3

20

2 3
(cos , 1 sin )

(1 cos )

k

r

k m

a
   

 

 

   


F r

 

 

with 

 

21 1
(cos , 1 sin )

1 cos
r

r
   

 
   


e r  

 

Acceleration vector: 
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20

2 3

0
23 2

0
22

1

(cos , 1 sin )
 (1 cos )

 (1 cos )

 

c

mk
m

a

mk

a

mk

ar

   
 

 

   


 


 



a

H

H

F

  

 

where 

 

0

3

1

 1 cos

k

a


 



ɺ . 

 

2

2
(cos , 1 sin )

1 cos

a
   

 
  


H  

 

The angles: 

 

2

2

2

1
cos

(1 cos )(1 cos )

X

r




   


 
 

 

 

2


    

 

2sin 1 sin
tan

( cos ) ( cos )

b

a

  


   


 
 

 

 

1
tan tan

2 1 2

  






 


