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Isospin was introduced by Werner Heisenberg in 1932 to explain symmetries of the then newly
discovered neutron. The mass of the neutron and the proton are almost identical: they are nearly
degenerate, and both are thus often called nucleons. Although the proton has a positive charge, and the
neutron is neutral, they are almost identical in all other respects. The name isospin however, was
introduced by Eugene Wigner in 1937

If two or more nucleons are treated as identical particles, the state vector describing then in a
compound nucleus must refer not only to space and spin variables but also to isospins. The total state
vector must ne antisymmetric with respect to exchange.

1. Introduction of the concept of isospin ((Tomonaga))

In his book on the story of spin, Tpmonaga explained how Heisenberg got the idea of isospin.
1.1  Heisenberg’s explanation for the Attractive interaction between proton and neutron

It is an experimental fact that if the atomic number Z is not very large and therefore the charge Ze is
not very large, then Z is approximately 4/2 for many nuclei, where 4 is the mass number. This shows
that nuclei with approximately equal numbers of neutrons and protons are most stable.

From this fact, Heisenberg concluded that the attraction between neutrons and protons plays the
biggest role in the nucleus. For if the attraction between neutrons and protons were stronger, then nuclei
composed only of neutrons would be more stable, and therefore more such nuclei should exist. But this
contradicts the facts. The same thing can be said if the attraction between protons is stronger- namely
nuclei with only protons must be abundant.

1.2 Nuclear force is an exchange interaction

Next Heisenberg noticed the experimental fact that the binding energies of nuclei are approximately
proportional to the mass number 4 (the number of particles in nucleus). From this he was led to the idea
that the nuclear force is not the usual attractive force but is an exchange force. He reasoned as follows. If
the force acting between a neutron and a proton is the usual two-body force, then if the potential
between the K-th neutron and the L-th proton is written as Vk,L, and if the number of neutrons is written
as N and the number of protons is written as P, then total potential is

and the total binding energy must approximately equal the number of combinations pf pairs (K, L),
which is

In reality, it is proportional only to 4.

1.3.  Possibility of boson electron with spin zero
In the case of a neutron and a proton, both are fermions, and statistics is constant. But if we can
consider the neutron to composed of a proton and a particle with spin zero which may be called boson



electron, then it is not impossible to imagine that this boson electron is going back and forth between the
neutron and the proton. Heisenberg did refer to this idea. Nevertheless, he concluded that it was better to
ignore the existence of the boson electron, perhaps because he was not sure whether he could use
quantum mechanics for the shuttling of this particle even if this idea were adopted. He did not adopt this
idea.

1.4.  Introduction of the isospin

Heisenberg introduced isospin. Instead of considering the neutron and proton as different elementary
particles, he considered them as two different states of the same elementary particle; the proton state and
the neutron state. Both the neutron and proton are the fermion with spin 1/2.

1.5  Exchange force
There is no force if the nucleons are both neutrons of both protons. By using the wave packet
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we find that the transformation from a neutron into a proton or a proton into a neutron occurs with the
angular frequency,
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2. Isospin: proton state | p) and neutron states | )

Because of the symmetry between the proton and the neutron, it is convenient to regard proton and
neutron as two distinct states of the same particle, the nucleon. The state vector of a nucleon can be
expressed by

The proton state:
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The neutron state

These states correspond to spin-up and spin-down .In analogy to the ordinary spin we introduce three
matrices that connect neutron and proton states (the isotopic spin matrices)
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Heisenberg chose the state for which the eigenvalue of 7, is +1 to be the neutron state and the state for
which the eigenbalue is -1 to be the proton state.
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The charge operator:

with the commutation relation
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We introduce the charge-symmetry operator S , Which interchanges neutron and proton. Among many
possible choices of S , We take
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3. The system composed of two nucleons
For a system of two interacting nucleons such as the combinations of (neutron-neutron, proton-
neutron) , the total isospin operator is given by

T:i+é.

If we neglect the electromagnetic interaction and the mass difference of proton and neutron, the
interaction Hamiltonian conserves isospin and so commutes with all the components of isospin

where

So H can be a function of the operator 7,-T,. The commutation relation [fl,fl-fz] =0 implies that
there are simultaneous states of # and 7, -7,.

4. Eigenvalue problem for 72
We consider the eigenvalue problem of 72
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We note that
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The state in which nucleon 1 is a neutron and nucleon 2 is a proton can be expressed as the product,
), ®|p),-

The state in which nucleon 1 is a proton and nucleon 2 is a neutron can be expressed as the product,
|p), ®ln),

Using the Mathematica we obtain the eigenstates and eigenvalues.
D, xDy,, =D, + D,.

leading to 7'=1 (triplet) and 7 = 0 (singlet).

(i) The eigenvalue 2 [=T(T+1)]; 7= +1.

where
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Using the Dirac exchange operator B, = §(1+ 7,-7,), We note that 7, -7, can be expressed as

~

7,-7,=2F,-1.

5. Eigenstate of 7.
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We note that [fz,fz] =0, which mean that there are simultaneous eigenkets of 72 and f .

T|p)|p), =|P)|P),.

So | p),|p), is the eigenket of T. with the eigenvalue 1.




So |n),|n), is the eigenket of 7. with the eigenvalue -1.
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|p),|n), and |n) | p), are the degenerate states with the same eigenvalue. These states are not the

eigenstates of T2 . However, from the two equations, we get the super-positions such that
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6. Simultaneous eigenstate of 72 and f

From the above discussion, we have the simultaneous eigenstate of 72 and f“ which can be
expressed by the kets |77, ).

Eigenvalue: Eigenkets
Triplet
r=1 TI;=1, r,-1,=1 111 =|p),|p), (symmetric)

1 i
T=1 T;=0 7,-7,=1 11,0) = ﬁ[|p>l|n>2 +|n).|p),1, (symmetric)
=1 Ty=-1 T, -7,=1 L-1) =|n),|n),, (symmetric)
Singlet:

1 . .
T=0 T3=0 7,-1,=1 0,0) = ﬁ[|p>l|n>2 —|n).|p),1. (antisymmetric)

((Note)) Clebsch-Gordan coefficients



Clear["Global +"7];

CCeGI{JL , ml }, {J2 , m2_}, {J_, m_}] :=
Module[{sl1},

sl=I1F[Abs[ml] < J1&& Abs[m2] < J2 && Abs[m] < j,
ClebschGordan[{j1, m1}, {jJ2, m2}, {J, m}]1,
011;CGI{J_, m},J1 , 2.1 :=

Sum[CCCG[{j1, ml}, {§J2, m=-ml}, {j, m}]
afji, ml] b[j2, m-mi]y, {ml, -j1, ji}]

jl=1/2and j2=112
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CGI{1, 1}, j1, j2]
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7. Eigenstates of charge operator
The charge operator is defined by

A
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or
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We note that [Q,fz] =0, which mean that there are simultaneous eigenkets of 7' and Q
A p)|p),=2p)|p),,

So [11) =|p),| p), is the eigenket of O with the eigenvalue 2.

So [1,-1) =|n),|n), is the eigenket of O with the eigenvalue 0.

Ap)n), =|p)ln),. Amp), =|m,|p),

| p),|n), and |n) | p), are the degenerate states with the same eigenvalue. These states are not the

eigenstates of T2 However, from the two equations, we get the super-positions such that
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which means that [1,0) = |p>1|n>2j§|n>l|p>2 and [0,0) = (P2, —|n)|p), are the simultaneous eigenkets
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of T? and Q.

In summary, we have

Q|1,1> =211, charge2¢  (e>0)
O[1,0) =1]1), charge e
OL-1)=0, charge 0

0/0,0)=10,0), charge e



8. The n-mesons, z*, 70, 7~
The pi mesons 7+ 70 z- have zero spin and nearly equal masses

m(7*) =139.6 MeV/c?, m(7°) =135 MeV/c2.

The relatively small mass difference is thought to be due to electromagnetic interaction, in the absence
of which the pions would form a perfect isospin triplet with 7= 1.

The 7-mesons, z*, 79, 7z~ can be considered as constituting three states of a particle having an
isotopic spin equal to unity, with base vectors

7y =[11) = |7°) =[1.0)=

o O -
o — O

0
.|y =0 =|0
1

In this case the operations of the three components (é:(él,éz,é3) of the isotopic spin operator are
given by the matrices for isospin 7'= 1.

Isospin and scattering amplitude

Dy x D,y =Dy, + D,y

Clebsch-Gordan co-efficients
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where N:nucleon and 7z meson.

j=3/2
|7T_!p> |7T0’p> . (7T+1p)
m=3/2
m=-1/2 m=1/2
@ [T n> 17°,n> |rt* n>
m=-3/2
j=1/2
|7 p> I7°,p>
m=-1/2 m=1/2
7% n> |7T*,n>

From these equations, we also get
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((Mathematica)) Clebsch-Gordan co-efficient : 71 = 1 and 72 = 1/2.
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CCGOL{J1_, ml }, {J2_, m2_}, {J_, m_}] :=
Module[ {s1},
sl=I1F[Abs[ml] < J1 && Abs[m2] < J2 && Abs[m] <,
ClebschGordan[{j1, m1}, {J2, m2}, {J, m}]1, O1]

CGL{J_, m 1}, 1 , 32 ] :=
Sum[CCGG[{j1, ml}, {j2, m-ml}, {j, m}lafjl, ml]
b[j2, m-miy, {mi, -ji, ji}]

j1=1andj2 =1/2;
J1=1;32=1/2;
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We consider the reactions

Elastic process:

@) T+ po>T +p
(b) +p->r+p
(©) TTHpo>T +p
(d) 7t+n—>r+n
(e) 2+n—->7"+n
()] T +n—>1 +n

Charge exchange processes:

(9) i +n—->r+p
(h) +poa+n
0] +n—->x +p
() T +po>n’+n

Then the reactions (a) and (f) are pure 3/2.
@ T+ po>T+p,

U] T 4+n—o>x +n

Other reactions are mixture (coefficients given by the Clebsch-Gordans),
(c) TTH+p—oT +p

() T +p—o>n’+n
1 2 V2 2
Ac :§A3/2+§A1/2’ Aj :?AMZ_?AUZ

With a proportionality constant K equal for all we obtain

o(r"+p—o>n+p)= K|Ag,2|2
o(r"+n—>n +n)= K|A3,2|2
2

o(r +po>n +p)= K%AN2 —i—%Al,2
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If 412 =0, then we have

ot +pora+p)icn +p—o>n +p)io(x +p—>a’+n)

K 2K
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We define
Cpa(m' P)=0(x"+p—>7"+p)
o, p)=c(x +p>a +p)+o(x +p—>a’+n)
Then the isospin symmetry predictes

Utotal (7[+p) — g — 3
Gtotal (ﬂ_p) 3

Figure shows the two total cross-sections at low energies. There are clear peaks with Breit-Wigner forms
at a mass of 1232 MeV corresponding to the production of the hadronic resonance D(1232) (/ = 3/2) and
the ratio of the peaks is in good agreement with the predection (=3).
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Fig.  Total cross-sections for 7~ p and =" p scattering. (B.R. Martin, Nuclear and Particle Physics).
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APPENDIX



Mass
Hadron (MeV/c?) I I3

p 9383 1/2 1/2
n 939.6 1/2 —1/2
at 139.6 1 1
70 1350 1 0
- 1396 1 -1
K+ 4946 1/2  1/2
K° 497.7 1/2 -1)2
K 977  1/2  1/2
K- 4946 1/2 —1/2
n° 5488 0 0
A° 11156 0 0
¥+ 1189.4 1 1
0 11926 1 0
»- 11974 1 -1
0- 16724 0 0

Table: Isotopic spin assignments of a representative group of relatively long-lived hadrons



