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One of the best experimental methods to probe a microscopic structure of the target (system) 

is to examine the distribution of scattered particles (or wave) from the collision of particles 

with the target. The experimental results thus obtained are compared with the theory of 

scattering based on the quantum mechanics. Here we discuss the scattering theory in the 

quantum mechanics: the Born approximation and (ii) the Lippmann-Schwinger equation. 

Our understanding on the scattering has been greatly enhanced, thank to these two theories. 

 

Max Born (11 December 1882 – 5 January 1970) was a German born physicist and 

mathematician who was instrumental in the development of quantum mechanics. He also 

made contributions to solid-state physics and optics and supervised the work of a number 

of notable physicists in the 1920s and 30s. Born won the 1954 Nobel Prize in Physics 

(shared with Walther Bothe). 

 

 
http://en.wikipedia.org/wiki/Max_Born 

________________________________________________________________________ 

Julian Seymour Schwinger (February 12, 1918 – July 16, 1994) was an American theoretical 

physicist. He is best known for his work on the theory of quantum electrodynamics, in particular 

for developing a relativistically invariant perturbation theory, and for renormalizing QED to one 

loop order. Schwinger is recognized as one of the greatest physicists of the twentieth century, 

responsible for much of modern quantum field theory, including a variational approach, and the 

equations of motion for quantum fields. He developed the first electroweak model, and the first 

example of confinement in 1+1 dimensions. He is responsible for the theory of multiple neutrinos, 

Schwinger terms, and the theory of the spin 3/2 field. 
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http://en.wikipedia.org/wiki/Julian_Schwinger 

 

 
 

________________________________________________________________________ 

1 Green's function in scattering theory 

We start with the original Schrödinger equation. 
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under the potential energy )(rV , where  is the reduced mass. We assume that 
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Using the operator 
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we have the differential equation 
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We will discuss about the derivation of this Green function later. Then )(r  is formally 

given by 
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where )(r  is a solution of the homogeneous equation, satisfying 
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2. Choice between wave packet and plane wave as an incident wave 

((Sakurai and Napolitano)) 

“The reader may wonder here whether our formulation of scattering has anything to do with 

the motion of a particle bounced by a scattering center. The incident plane wave we have used is 

infinite in extent in both space and time. In a more realistic situation, we consider a wave packet 

(a difficult subject!) that approaches the scattering center. After a long time, we have both the 

original wave packet moving in the original direction, plus a spherical wave front that moves 

outward, as in Fig. shown here. Actually the use of a plane wave is satisfactory as long as the 

dimension of the wave packet is much larger than the size of the scatterer )or range of V).” 

 

  
 

Fig. (a) Incident wave packet (width w) approaching scattering center (size d) initially. (b) 

Incident wave packet continuing to move in the original direction plus spherical outgoing 

wave front (after a long-time duration) 

 

It is considered that the incident wave has a form of wave packet with width w, that approaches 

the scattering center. Nevertheless, we assume that the incident wave is simply expressed by a 

plane wave. When the size of the target (d) is much smaller than the width of the wave packet, the 

plane wave is the best choice as an incident wave.  
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Fig. Before the collision ( 0t  ), the wave packet approaches the target with constant velocity. 

The size of the target d, the size of wave packet w should satisfy the condition d w . 

 

3. Born approximation 

We start with 
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Fig. Vectors r and r’ in calculation of scattering amplitude in the first Born 

approximation. ru  is the unit vector: /r ru r . 
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The first term denotes the original plane wave in propagation direction k. The second 

denotes the term: outgoing spherical wave with amplitude, ),'( kkf , 
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The first Born approximation: 
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Note that ),'( kkf  is the Fourier transform of the potential energy with the wave vector 

Q; the scattering vector; 
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((Forward scattering)) 

Suppose that k' = k (Q = 0) Then we have 
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Suppose that the attractive potential is a type of square-well 
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Then we have 
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The total cross section (which is isotropic) is obtained as 
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The units of )0(f  is cm, and the units of   is cm2
.
 

 
4. Differential cross section 

 

 
 

 
 

Fig. Incoming plane wave ( ie k r ) and outgoing spherical wave ( ( )
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We define the differential cross section 
d

d
 as the number of particles per unit time 

scattered into an element of solid angle d  divided by the incident flux of particles. 

 
The probability flux associated with a wave function 
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which is the Fourier transform of the potential with respect to Q, where 
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case of x-ray and neutron diffraction, we use the scattering angle 2, instead of . 

 

r

d

dS

Detector

dS  r
2
d



13 

 

 
 

Fig. Ewald sphere for the present system (elastic scattering). ki = k. kf = k’. Q =q = k – 

k’ (scattering wave vector). 
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((Ewald sphere)) x-ray and neutron scattering 

 

 
 

Fig. Ewald sphere used for the x-ray and neutron scattering experiments. ki = k. kf = k’. 
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neutron scattering experiments, we use the angle 2, instead of  for both the x-ray 
and neutron scattering,  

 
5. Spherical symmetric potential 

When the potential energy V(r) is dependent only on r, it has a spherical symmetry. For 

simplicity we assume that ’ is an angle between Q and r’.  
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where  is an angle between k’ and k (Ewald’s sphere). 
 

6. Low energy soft-sphere scattering 

Suppose that 
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7. Yukawa potential 

 

Hideki Yukawa (23 January 1907 – 8 September 1981) was a Japanese theoretical 

physicis-t and the first Japanese Nobel laureate. 
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The Yukawa potential is given by 
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which is the Rutherford scattering cross section (that can be obtained classically). 
 

8. Validity of the first-order Born approximation 
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where 

 

'cos '

0

2
sin ' ' sin( ')

'

ikrd e kr
kr


    

 
Then we get 

 

1)'sin()'('
2

0

'

2




krrVedr
k

ikr

ℏ


. 

 

At k , the integrand oscillates rapidly. It becomes zero for r’>1/k. Then we have 

 

1'')'sin()'('
2
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0
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 



k

V
krdrV

k
krrVedr

k

k

ikr

ℏℏℏ


, 

 

or 
 

.10 
E

V
 

 

In other words, the Born approximation is applicable only for the scattering of particles 
with high energy. In the low energy limit, in turn the phase shift analysis is more useful. 

____________________________________________________________________ 
9. Lippmann-Schwinger equation 

 
The Lippmann–Schwinger equation (named after Bernard Lippmann and Julian 

Schwinger) is one of the most used equations to describe particle collisions– or, more 
precisely, scattering– in quantum mechanics. It may be used in scattering of molecules, 

atoms, neutrons, photons or any other particles and is important mainly in atomic, 
molecular, and optical physics, nuclear physics and particle physics, but also for seismic 

scattering problems in geophysics. It relates the scattered wave function with the 
interaction that produces the scattering (the scattering potential) and therefore allows 
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calculation of the relevant experimental parameters (scattering amplitude and cross 
sections). 

The Lippmann–Schwinger equation is equivalent to the Schrödinger equation plus the 
typical boundary conditions for scattering problems. In order to embed the boundary 

conditions, the Lippmann–Schwinger equation must be written as an integral equation. For 
scattering problems, the Lippmann–Schwinger equation is often more convenient than the 

original Schrödinger equation.  
(http://en.wikipedia.org/wiki/Lippmann%E2%80%93Schwinger_equation) 

 
B.A. Lippmann and J. Schwinger, Phys. Rev. 19, 469 (1950). 

________________________________________________________________________ 

The Hamiltonian Ĥ  of the system is given by 

 

VHH ˆˆˆ
0  , 

 

where H0 is the Hamiltonian of free particle. Let  be the eigenket of H0 with the energy 

eigenvalue E, 
 

 EH 0
ˆ . 

 

The basic Schrödinger equation is  
 

0
ˆ ˆ ˆ( )H H V E     . (1) 

 

Both 0Ĥ  and VH ˆˆ
0  exhibit continuous energy spectra. We look for a solution to Eq.(1) 

such that as 0V ,   , where   is the solution to the free particle Schrödinger 

equation with the same energy eigenvalue E. 
 

 )ˆ(ˆ
0HEV  . 

 

Since  EH 0
ˆ  or )ˆ( 0HE   = 0, this can be rewritten as 

 

 )ˆ()ˆ(ˆ
00 HEHEV  , 

 

which leads to 
 

 VHE ˆ))(ˆ( 0  , 

 

or 
 

 VHE ˆ)ˆ(
1

0

 . 
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The presence of   is reasonable because   must reduce to   as V̂  vanishes. 

 

Lippmann-Schwinger equation: 

 
)(1

0

)( ˆ)ˆ(    ViHEkk  

 

by making Ek (= )2/
22 kℏ  slightly complex number (>0,  ≈0). This can be rewritten as 

 

   )(1

0

)( ˆ'')ˆ('  ViHEdr k rrrkrr  

 
where 

 

rkkr  ie
2/3)2(

1


, 

 
and 

 

''ˆ
'0 kk kEH  , 

 
with 

 

2
2

' '
2

kEk 
ℏ

 . 

 

The Green's function is defined by 
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0
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0
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1
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((Proof)) 
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or 
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where 

 

2
2

2
k


ℏ
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Then we have 
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So, we have 
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
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1
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where >0 is infinitesimally small value. In summary, we get 

 

   )()(

02

)( ˆ')',('
2



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or 

 

   )()(

02

)( ')'()',('
2




 rrrrrkrr VGd
ℏ

. 

 

More conveniently, the Lippmann-Schwinger equation can be rewritten as 

 
)(1

0

)( ˆ)ˆ(    ViHEkk  

 

with 
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1

0

2
)(

0 )ˆ(
2

ˆ   


iHEG k

ℏ
, 

 

and 

 

ViHEVG k
ˆ)ˆ(ˆˆ2 1

0

)(

02

  


ℏ
 

 

When two operators Â  and B̂  are not commutable, we have very useful formula as 

follows, 

 

A
AB

BB
AB

ABA ˆ

1
)ˆˆ(

ˆ

1

ˆ

1
)ˆˆ(

ˆ

1

ˆ

1

ˆ

1
 ,  (formula) 

 

((Proof)) 

 
1 1 1 1

1 1 1

1 1

ˆ ˆ ˆ ˆˆ ˆ(1 )

ˆ ˆˆ ˆ ˆ( )
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A B A B

   

  
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  

 

 
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B BA AA
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   
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  

 

 

 

 

_____________________________________________________________________ 

We assume that 

 

)ˆ(ˆ
0 iHEA k  ,  )ˆ(ˆ iHEB k   

 

VHHBA ˆˆˆˆˆ
0   

 

Then 

 
1

0

111

0 )ˆ(ˆ)ˆ()ˆ()ˆ(
   iHEViHEiHEiHE kkkk , 

 

from 1 1 1 1ˆ ˆ ˆˆ ˆ ˆ( )A B B B A A       
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or 

 
11

0

1

0

1
)ˆ(ˆ)ˆ()ˆ()ˆ(
   iHEViHEiHEiHE kkkk . 

 

from 1 1 1 1ˆ ˆ ˆˆ ˆ ˆ( )A B A B A B      . 

 

For simplicity, we newly define the two operators by 

 
1

00 )ˆ()(ˆ   iHEiEG kk  
 

1
)ˆ()(ˆ   iHEiEG kk  

 

where )(ˆ
0 iEG k   denotes an outgoing spherical wave and )(ˆ

0 iEG k   denotes an in-

coming spherical wave. We note that 
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Then we have 
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Then )( can be rewritten as 
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kk V
iHEk

ˆ
ˆ

1)(





 . 

 
Note that 

 
( ) 1 ( )

0
ˆ ˆ( )

k
G E i V      k . 

 

((Note)) Significance of Lippmann-Schwinger equation  

Translation from S. Sunagawa, Quantum theory of scattering (in Japanese) 

 

The method of Lippmann-Schwinger (LS) was developed after the World War II. 

Thanks to this method, the theoretical study on the scattering has a significant progress. 

One of the reasons is that LS equation can be used for a complicated case such that the 

scattering does not occur due to the potential; that is to say, when the target is a complicated 

structure consisting of many particles. In this case, the Hamiltonian 0Ĥ  in the propagator 

)(

0
ˆ 

G  cannot be expressed in simple way, leading to the difficulties in expressing the 

concrete form, 
)(

0
ˆ 

G . In the LS equation, 0Ĥ  in 
)(

0
ˆ 

G  can be replaced by the 

corresponding Hamiltonian without knowing any knowledge of 0Ĥ . So, the theoretical 

treatment can be done smoothly. The second reason is that we can also consider the 

interaction between fields as well as the potential form. In other words, the LS equation 

can be applied to the quantum field theory. 

 
10. The higher order Born Approximation 

From the iteration, )(  can be expressed as 
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The Lippmann-Schwinger equation is given by 
 

kkk TiEGViEG
kk

ˆ)(ˆˆ)(ˆ
0

)(

0

)(   

,
 

 

where the transition operator T̂  is defined as 
 

kTV ˆˆ )(   
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or 
 

kkk TiEGVVVT
k

ˆ)(ˆˆˆˆˆ
0

)(     

 

This is supposed to hold for any k taken to be any plane-wave state. 

 

TiEGVVT k
ˆ)(ˆˆˆˆ

0  . 

 

The scattering amplitude ),'( kkf  can now be written as 
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2
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((Note)) Derivation of the scattering amplitude 

 
)(1

0

)( ˆ)ˆ(    ViHE
k

k  

 
( ) 1 ( )

0

1 ( )

0

1 ( )

0

ˆ ˆ( )

ˆ ˆ' ( ) ' '

ˆ' ( ) ' ( ') '

k

k

k

E H i V

d E H i V

d E H i V

  

 

 

  

 

 

   

   

   




r r k r

r k r r r r

r k r r r r r

 

 

Here we use the expressions  
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Using the approximation 
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So that, we have the scattering amplitude as 
 

3 ( )

2

3

2

2 1 ˆ( ', ) (2 ) '
4

2 1 ˆ(2 ) '
4

f V

T


 







 

 

k k k

k k

ℏ

ℏ

 

 

since  ( )ˆ ˆV T   k . 

________________________________________________________________________ 

Using the iteration, we have the Dyson equation 
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Correspondingly, we can expand ),'( kkf  as follows: 
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Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations. 

kk  is the initial state of the incoming particle and '' kk  is the final state 

of the incoming particle. V̂  is the interaction. (a) V̂ . (b) 0
ˆ ˆVG V , and (c) 0 0

ˆ ˆ ˆVG VG V . 

 

 

11. Optical Theorem 

The scattering amplitude and the total cross section are related by the identity 

 

tot
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where 

 

),()0( kkff  : scattering in the forward direction. 
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This formula is known as the optical theorem, and holds for collisions in general. 
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Fig. Optical theorem. The intensity of the incident wave is /kℏ . The intensity of the 

forward wave is )]0(Im[)/4()/( fk  ℏℏ  . The waves with the total intensity 

totkf  )/()]0(Im[)/4( ℏℏ   is scattered for all the directions, as the scattering 

spherical waves. Note that a multiplication factor 31/ (2 )  is required for the 

expression of probability current. 
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Hermitian conjugate: 
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Now we use the well-known relation 
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((Note)) The violation of optical theorem (E. Merzbacher) 

The first Born approximation violates the optical theorem. It can be remedied by 
including the second Born approximation for the forward scattering amplitude. 

 

12. Probability Current 

Here we discuss the Probability current for the three cases. 
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For simplicity, we use the wave function 

 

(a) In-coming plane wave 
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(b) Outgoing spherical wave 

When we use the wave function 
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(c) Outgoing wave with spherical wave and plane wave propagating the forward direction 
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The first term 
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 yields null after integration over the sphere.  
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The third and the fourth terms are the interference ones; 
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In the limit of 0   (forward scattering),  
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Fig. The forward scattering. 
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Fig. Surface area contributing to the forward scattering. 

 

The scattering intensity for 0     ( 0 ≃ ) is given by 
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In the limit of r   but with 0   , the exponential terms (1 cos )ikre   and  tend to 

zero because of strong oscillation for the slightest change of k.  
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where 
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37 

 

*(0) (0)
Im (0)

2

f f
f

i


 , 

 

Thus, we have the scattering intensity for the forward scattering (the scattering intensity behind 
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leading to the optical theorem 
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We now evaluation of  J   

 

(a) Incoming plane wave 
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(b) Outgoing spherical wave 
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(c) Outgoing wave with spherical wave and plane wave propagating the forward direction 
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which is on the order of 1/r3. In the limit of r  , we get 

 

0
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as well as 0
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((Mathematica)) 

Evaluation of the probability current density 
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13. Summary 

Comparison between the partial wave approximation (low-energy scattering) ans high-energy 

scattering (Born approximation). 
 



42 

 

(i) Although the partial wave expansion is “straightforward”, when the energy of incident 
particles is high (or the potential weak), many partial waves contribute. In this case, it is 

convenient to switch to a different formalism, the Born approximation. 
 

(ii)  At low energies, the partial wave expansion is dominated by small orbital angular 
momentum. 

 
14. Example 

Here we discuss the Problem 6-1 of Sakurai amd Napolitano. 
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((Solution)) 

We use the Lippmann-Schwinger equation 
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((Jordan’s lemma, residue theorem)) 

 

The integrand has poles in the complex k-plane at  
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Combining Eqs.(1) and (2), 
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T: probability 

R: probability of reflection 
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(c) 

The wave function of bound state 

 

Schrodinger equation 
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The value of k corresponding to the bound state is 
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APPENDIX - I 

Free particle wave function   satisfies the Schrödinger equation 

 


 kE 2
2

2

ℏ
, 

 

where m is the mass of particle,  

 

2

22
k

Ek

ℏ
 , 

 

is the energy of the particle, and k is the wave number. This equation can be rewritten as 

 

0)(
22  k . 

 

This equation is solved in a formal way as 
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(separation variables), where L is the angular momentum: 
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In the limit of r →∞, we have 
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  (outgoing and incoming spherical waves) 

 

________________________________________________________________________ 

APPENDIX II 

For the potential 
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Calculate in Born approximation the quantities )(f  and 
d
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. Specify the limits of validity of 

your calculation for both high- and low-energy scattering, respectively.. 

((Schaum, Quantum Mechanics)) 
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Validity of the Born approximation 
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for the potential with the spherical symmetry. In the present case 
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(i) In the limit of kR<<1 (low energy limit), 
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(ii) For high energies, 

 

1)sin(
2

20 kR
k

RV
ℏ


 

 

 

APPENDIX III The i prescription  

We derive the formula 

 

)(
11

xi
x

P
ix





∓

, 

 

where  (0) is a positive infinitesimally small quantity. 

 

(1) Case-I 
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Since the only singularity near the real axis is z = i, we make the following deformation of the 

contour without changing the value of I. The contour runs along the real axis (the path ) and 

goes around counterclockwise, below the origin in a semicircle (C1), and resumes along the real 

axis (the path ). 
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(2) Case-II 
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Since the only singularity near the real axis is z = -i, we make the following deformation of 

the contour without changing the value of I2 The contour runs along the real axis (the path 1) and 

goes around clockwise, above the origin in a semicircle (C2), and resumes along the real axis (the 

path 2). 
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APPENDIX IV Plane wave form 

There are two-types of wave functions depending on the size of space. 

(a) Plane wave in the finite space 

For the plane wave in the cube with the size L3, , the wave function can be expressed by 
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The constant C can be determined as 
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(b) Plane wave in the free space 

 

For the plane wave in the free space, , the wave function can be expressed by 
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where  ( )p kℏ  is a continuous momentum.  
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Using the property of Dirac delta function, we get 
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