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One of the best experimental methods to probe a microscopic structure of the target (system)
is to examine the distribution of scattered particles (or wave) from the collision of particles
with the target. The experimental results thus obtained are compared with the theory of
scattering based on the quantum mechanics. Here we discuss the scattering theory in the
quantum mechanics: the Born approximation and (ii) the Lippmann-Schwinger equation.
Our understanding on the scattering has been greatly enhanced, thank to these two theories.

Max Born (11 December 1882 — 5 January 1970) was a German born physicist and
mathematician who was instrumental in the development of quantum mechanics. He also
made contributions to solid-state physics and optics and supervised the work of a number
of notable physicists in the 1920s and 30s. Born won the 1954 Nobel Prize in Physics
(shared with Walther Bothe).

http://en.wikipedia.org/wiki/Max_Born

Julian Seymour Schwinger (February 12, 1918 — July 16, 1994) was an American theoretical
physicist. He is best known for his work on the theory of quantum electrodynamics, in particular
for developing a relativistically invariant perturbation theory, and for renormalizing QED to one
loop order. Schwinger is recognized as one of the greatest physicists of the twentieth century,
responsible for much of modern quantum field theory, including a variational approach, and the
equations of motion for quantum fields. He developed the first electroweak model, and the first
example of confinement in 1+1 dimensions. He is responsible for the theory of multiple neutrinos,
Schwinger terms, and the theory of the spin 3/2 field.
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1 Green's function in scattering theory
We start with the original Schrédinger equation.

V) + VW () = E(r),
U

or

V4 i—é‘E»w(r) . i—fV(r)t//(r) .

under the potential energy V' (r), where u is the reduced mass. We assume that



We put
f(r)= V(r)l// (r),
Using the operator
L=V*+ik.
we have the differential equation
Ly(r)=(V + )W (r)=—f(r).
Suppose that there exists a Green's function G(r) such that
(V.2 + )G (r 1) ==6(r - '),
with

GO (1) = exp(iklr — r'))

(Green function)
47z'|r - r'|

We will discuss about the derivation of this Green function later. Then y(r) is formally
given by

J~d ,exp(zk|r r')

y ()= ¢(r) + fdr'G(”(r,r')f(r') =9(r) - o vy ),

where ¢(r) is a solution of the homogeneous equation, satisfying

(V2 +k*)p(r) =0,

or

) = k) -

2n)” ——5zexp(ik-r), (plane wave)

with



ke =|k|
Note that

(V24 By (r) = (V2 + B )p(r) + [ dr' (VZ + k)G () (1)

=-[arse-r) @)
=—/f(r)

2 Choice between wave packet and plane wave as an incident wave
((Sakurai and Napolitano))

“The reader may wonder here whether our formulation of scattering has anything to do with
the motion of a particle bounced by a scattering center. The incident plane wave we have used is
infinite in extent in both space and time. In a more realistic situation, we consider a wave packet
(a difficult subject!) that approaches the scattering center. After a long time, we have both the
original wave packet moving in the original direction, plus a spherical wave front that moves
outward, as in Fig. shown here. Actually the use of a plane wave is satisfactory as long as the
dimension of the wave packet is much larger than the size of the scatterer )or range of V).”

Fig. (a) Incident wave packet (width w) approaching scattering center (size d) initially. (b)
Incident wave packet continuing to move in the original direction plus spherical outgoing
wave front (after a long-time duration)

It is considered that the incident wave has a form of wave packet with width w, that approaches
the scattering center. Nevertheless, we assume that the incident wave is simply expressed by a
plane wave. When the size of the target (d) is much smaller than the width of the wave packet, the
plane wave is the best choice as an incident wave.



Fig. Before the collision (¢ << 0 ), the wave packet approaches the target with constant velocity.
The size of the target d, the size of wave packet w should satisfy the condition d << w.

3. Born approximation
We start with

J~d ,exp(zk|r r|)

‘//(+)(r) =¢(l’) | V(r')(//(”(r'),

———exp(ik-r), (plane wave).

1
¢(r)=<r|k> 272_)3/2
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Fig. Vectors » and 7’ in calculation of scattering amplitude in the first Born
approximation. u, is the unit vector: u, =r/r.
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Here we consider the case of " (r)

|r—r'|2 =P +r>=2r-r"
~(r*=2r-r'"

=r2(1—2—f-r')
r

or

[r—r|



|r r |~r(l— S r)'?
7
=r(l —Lz"")
7
r 1
=7y—"-r
7
=r—e. r'
or
|r r‘| ~r—e. -r
=ke,
eik‘r—r" ~ eik(r—r'.er) — eikre—ik'-r' for large 7.
[
|r — r'| r
Then we have
4 1 2 1 e kr —ik'-r' +
v (r) = )" exp(ik - r)——ﬂ——jd e TV (K ()

or

ikr

(+) _ 1 ikr , € '
l// (l")— (272_)3/2 e + y f(k ak)]

The first term denotes the original plane wave in propagation direction k. The second
denotes the term: outgoing spherical wave with amplitude, /' (k', k),

FK) ===y > 2E [ e ().
4 fi

The first Born approximation:

Fe ) == 2 e Ty (et




when " (r) is approximated by

(+) (l") ~ 1 ik-r

(272_)3/2 €

Note that f(k',k) is the Fourier transform of the potential energy with the wave vector
Q; the scattering vector;

Q=k—k

Formally f(k',k) can be rewritten as

f(k' k) =— ” o~ Qz) (k'|P|k)

“;j”< n

where

(k' |k) = j d*r(K'|r)V (r)(r|k)

re " * TRy ()

(27f)

with
1
<r|k> = S exp(ik - r).

((Forward scattering))
Suppose that &' = k (Q = 0) Then we have

f(0)= —%;—gj-dr'eik"'V(r')eik"'

- j ar'v(r')

Suppose that the attractive potential is a type of square-well

-V, r<R
Vr)=
0 r>R



Then we have

2u4Vy s MV s
0)==O0R 2 0R
/O 3 " n’

The total cross section (which is isotropic) is obtained as

V 2
o =47 f(0) = 47{/; 0 R3J .

The units of f(0) is cm, and the units of & is cm?

4. Differential cross section

Detector

>» z

ik -r

ikr
Fig. Incoming plane wave (™" ) and outgoing spherical wave ( c ().
r

: : . d : L
We define the differential cross section d—g as the number of particles per unit time

scattered into an element of solid angle dQ divided by the incident flux of particles.

The probability flux associated with a wave function
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1 ik-r 1 ikz
.(r)=(r|k) =We =We ,

1s obtained as

L omk_ 1
Q) p Qn)

/ /unit area
=7,

«Zo,
U

relative
velocity

h . 0 d v
N.=J, —2—m.[¢>k (r)acok(r)—cvk(r)gcok (r]=

Fig.  Probability flux.

volume = h— x1
7,

ikz

2
=1 means that there is one particle per unit volume. J; is the probability flow

le
(probability per unit area per unit time) of the incident beam crossing a unit surface
perpendicular to OZ

The probability flux associated with the scattered wave function

1 & .
7= WT £(6) (spherical wave)
is
- A R A O]
To2ui T or” Tror ™ QY ou
Since dA4 = r*dQ,
v |fo)f v :
AN =J,d4 =——"——"-r*dQ=——|f(0)] dO
2z)y r (27)

where J; is the probability flow (probability per unit area per unit time)
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Detector

The differential cross section

do AN 2
—dQ =——= 0)| dQ
70 N |£(0)]

or
oo 2
a—Q—|f(¢9)| :

First-order Born amplitude:
\ 1 2p
f(k' k)= —E(zsz(k V| k)
—_ 27,;;2 J‘aﬂryefi(k'fk)-rV(rv) ,

:——27‘;;2 Jd3r'e’iQ"V(r')

which is the Fourier transform of the potential with respect to Q, where

0 = k'—k : scattering wave vector.
.0 . .
|Q| =0=2k s1n5 for the elastic scattering.

The Ewald sphere is given by this figure. Note that the scattering angle is @ here. In the
case of x-ray and neutron diffraction, we use the scattering angle 26, instead of 6.
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Fig. Ewald sphere for the present system (elastic scattering). ki =k. ke=k’. Q =q = k —

k> (scattering wave vector). |Q| = 2k sing .

((Ewald sphere)) x-ray and neutron scattering

0,

Ewald sphere

Fig. Ewald sphere used for the x-ray and neutron scattering experiments. ki = k. ke=k’.
0 =q = k — k’ (scattering wave vector). Note that in the conventional x-ray and
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neutron scattering experiments, we use the angle 26, instead of & for both the x-ray
and neutron scattering,

5. Spherical symmetric potential

When the potential energy V(r) is dependent only on 7, it has a spherical symmetry. For
simplicity we assume that & is an angle between Q and r’.

Q- r'=0Qr'cosé'.
We can perform the angular integration over &.

OO == [dre v

1 2
= —E—‘u-[d Jd@' SOt r sin @'V (1)
—h—‘téj‘dr'J‘dH'efiQ"COSQVF ?sin @'V (r")
0 0
Note that

J 400 sin g = 2 sin(Qr')
or'
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— QO
N

Then

(spherical symmetry)

Then the differential cross section is given by

2

d oo 1 (2uY
ot -5(3)

[ar'rv ()sin(Qr")
0
Then we find that " ()is a function of O.

.0
0=2k s1n(5) ,
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where @is an angle between &k’ and k (Ewald’s sphere).

6. Low energy soft-sphere scattering
Suppose that

Vs r<R
Vir)=
0 ry>R

Then we get

FO@) = é ;“ v j dr'r'sin(Or")

1 2u y sin(QR) — QR cos(QR)
on 0’

2,21 RV, sin(OR) — ng cos(QOR)
h O°R

When QR<<1,

2

sin(OR) — QRcos(QR) _x
O’R’ T3 30

where x = QR . Then we have

1 47
Mo RV~ =——2v| LR
0y
and
dO-_ (1) 2 2[Ll1/0
o=17"©) (%ZR
with

. 0
0 =2k s1n(5) ,

We make a plot of ‘f(l)(Q)‘2 /‘f(l)(Q = 0)‘2 as a function QOR.
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|/ (O)1?
| f =012

QR

b 2 3x
Fig. Semi log plot of ‘f(l)(Q)‘2 /‘f(l)(Q = 0)‘2 as a function OR. The value of ‘f(l)(Q)‘2
becomes zero when QR = 4.49341 and 7.72525.
7. Yukawa potential

Hideki Yukawa (23 January 1907 — 8 September 1981) was a Japanese theoretical
physicis-t and the first Japanese Nobel laureate.

http://en.wikipedia.org/wiki/Hideki Yukawa

The Yukawa potential is given by

V(r)= ief”"’ ,

Hor
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where ¥} is independent of 7. 1/ 4, corresponds to the range of the potential.

rP0) = 2” LT jdr “ sin(Qr'") = —2—ﬂlzjdr' “H4” sin(Qr')

Here we use x, for the Yukawa potential in order to avoid the confusion of the reduced
mass 4. Note that

dr'e™™" sin(Qr') = 9 , (Laplace transformation)
2 2 p
0 0"+ u,
or
2u 'V, 1
SO =
n oy O +
Since

0? = 4k* sinz(g) =2k*(1—cos @)

so, in the first Born approximation,

2
do 2 [ 2uV, 1
o=l =2 s =
Q Hh™ ) [2k°(1—cos @)+ " ]

Note that as g, — 0, the Yukawa potential is reduced to the Coulomb potential, provided
the ratio ¥, / 1, is fixed.

o _zz0
Ho
do 2 Quy(ZZ'e*) 1
=‘f(1)(0)‘ =( /J) ( - ) — '
Q h 16k™sin"(8/2)

272
Using E, = Vi we have
U
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= =|ro)
(zz2e) 1
| 4E, | sin*(0/2)

_ [ZZ'a(hc)Jz |

4E, sin*(8/2)

with

e’ 1

he  137.035999084(21)

which is the Rutherford scattering cross section (that can be obtained classically).

8. Validity of the first-order Born approximation
If the Born approximation is to be applicable, <r ‘(//(+)> should not be too different from

<r|k> inside the range of potential. The distortion of the incident wave must be small.

e Hr=r

(o) = el =2 far sy @l )

< ‘(//(” > r|k) at the center of scattering potential at r = 0.

i kr' ik-r' | 1

J’d' ') y 32| << 3/20
Yan |2

or

ikr'
H € n ik-r'
‘27[;_12 jd g brl<<l.

For spherical potential, we have

ikr'

e =2z [[dr'r sin@'dg <V ()"
r

or
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1=2x[[dr'r' e V(r)sing'de'e" "
=2x[dr'r'e" v (r )jsme e’ ="
_2;zjdr' V)= 2 in(kr)
j dr' "V (r ") sin(kr")

where

j sin@'dg' e > _isin(kr')
krv

0

Then we get

” j dr' eV (rsin(kr') << 1.

At k — oo, the integrand oscillates rapidly. It becomes zero for ’>1/k. Then we have

1/k

dekr'

j dr' " V() sin(kr')| ~

or
5<<1.

In other words, the Born approximation is applicable only for the scattering of particles
with high energy. In the low energy limit, in turn the phase shift analysis is more useful.

9. Lippmann-Schwinger equation

The Lippmann—Schwinger equation (named after Bernard Lippmann and Julian
Schwinger) is one of the most used equations to describe particle collisions— or, more
precisely, scattering— in quantum mechanics. It may be used in scattering of molecules,
atoms, neutrons, photons or any other particles and is important mainly in atomic,
molecular, and optical physics, nuclear physics and particle physics, but also for seismic
scattering problems in geophysics. It relates the scattered wave function with the
interaction that produces the scattering (the scattering potential) and therefore allows
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calculation of the relevant experimental parameters (scattering amplitude and cross
sections).

The Lippmann—Schwinger equation is equivalent to the Schrodinger equation plus the
typical boundary conditions for scattering problems. In order to embed the boundary
conditions, the Lippmann—Schwinger equation must be written as an integral equation. For
scattering problems, the Lippmann—Schwinger equation is often more convenient than the
original Schrodinger equation.
(http://en.wikipedia.org/wiki/Lippmann%E2%80%93Schwinger equation)

B.A. Lippmann and J. Schwinger, Phys. Rev. 19, 469 (1950).

The Hamiltonian A of the system is given by

A

H:ﬂ0+17,

where Ho is the Hamiltonian of free particle. Let |¢> be the eigenket of Hy with the energy

eigenvalue £,
H|¢)=E|¢).
The basic Schrodinger equation is

Hly)=(H,+V)|v)=E|v). (1)

Both I:IO and I:IO +V exhibit continuous energy spectra. We look for a solution to Eq.(1)
such thatas V' — 0,

equation with the same energy eigenvalue E.

l//> - |¢> , where |¢> is the solution to the free particle Schrodinger

Vw)=(E-H,)y).

Since I:IO|¢> = E| ¢> or (E—I:IO)| ¢> = 0, this can be rewritten as
V) =(E-Hyly)~(E-H,)|9).

which leads to

(E-H)(w)~|o)=Vw),

or

v)=le)+ E=H) V]y).
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The presence of |¢> is reasonable because |l//> must reduce to |¢> as V vanishes.

Lippmann-Schwinger equation:

)= k) +(E, - Hy *ie) ' V]|y®)
by making Ex (= 7k’ /241) slightly complex number (£>0, £~0). This can be rewritten as

<r‘z//(i)> = <r|k> + Idr'(r |(Ek - FIO + i8)71|r'><r'|17‘1//(i)>

where
_ 1 ik-r
< | >_ (272_)3/2 e
and
H)|k) = E, |k,
with
2
E. = L
2pu

The Green's function is defined by

2

. i 7 g 1 +ik|r—r'
Gy (o) = _Z<r|(Ek —H, tie)”'|r) =me—k |

((Proof))

2

[:_Z<r|(Ek _ﬁo iig)’1|r'>
h2 ' " : h2 ) . N— 1, "l
= [ ) (B, — ko) () (k')

or
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hz ' " ' hz 124 2.0\ 1 ' " (L1,
Iz—a.”dk dk <r|k>(Ek—Zk +ie) ' o(k'— k") (k"[r")

hz ' I hz 24 .\ 1)
=—Zjdk <r|k>(Ek—Zk +ig)” (k'[r')

hz dkv eik'-(rfr')
5 3 2
2u”@r) g ELANYETR
2u

where

Then we have

2 dk ] eik'-(rfr')
2ud@r) W
2p

dk ' eik'-(rfr ")
_I Qr) k?—(k* tie)

(kK> —Kk"?)*ig

So, we have

1 ik"(r—r")

() (o _ ") — ' e
G (r=r) (27:)3I K=k +ig)

where £>0 is infinitesimally small value. In summary, we get
(rly™) = <r|k>—;—‘2‘ [arG,® @,r)(r 7|y

or
(rly®)= (r|k>—i—‘2‘jdr'c;o“> (W () (ry ™).

More conveniently, the Lippmann-Schwinger equation can be rewritten as
@) =|k)+ (B, - H, +ie)"V]p™)

with
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A IR
GO(i) __(E HO 18) 5
2u

and

2 )5 y RN
h‘jG“V:(Ek—Hoizg)lV

When two operators A and B are not commutable, we have very useful formula as
follows,

1 1 I ~ ~01
Z—E_Z(B A)—_E(B—A)Z, (formula)
((Proof))

=A"'(B-A)B"!
or
A'=B'=B"'BA" -1
=B'(BA" - 447
=B (B-A)A™"
We assume that
A=(E, - H,*i¢), B=(E, - H +i)

Then
(E,—H,+ie)' =(E —H=+ig)"' —(E,—H +ig)'V(E, - H, +ig)",

A A A A

from A'-B'=B'(B-A)A"
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or
(E,—H+ig)" =(E,—H,+ig)" +(E, —H,+ig)'V(E, —H +is)"
from A'-B'=A"(B-A)B".
For simplicity, we newly define the two operators by
G,(E, +ig)=(E, —H, i)
G(E, +ig)=(E,—H+is)"

where GO(Ek +ig) denotes an outgoing spherical wave and GO(Ek —ig) denotes an in-
coming spherical wave. We note that

N W L
Gy =~ (B, ~ H, ie) =L G,(E, tie).
2u 2u

Then we have

G,(E, tic)=G(E, ic)— G(E, tie)VG,(E, tic)
=G(E, tie)1-VG,(E, +i€)]

and

G(E, tie) =G (E, tic)+ G, (E, tie)WG(E, *i¢)
= G,(E, tie)[1+VG(E, +i)]

Then |1//(i)> can be rewritten as

)=

+ Gy (E, +ie)V |y™)
+G(E, +ie)[1-VG,(E, +ie)lV |y™)
+G(E +zg)V(\ 9N =Gy (E, i)V ™)

or

25



Note that
@) =|K)+ Gy (B, £ie) 'V |p®).

((Note)) Significance of Lippmann-Schwinger equation
Translation from S. Sunagawa, Quantum theory of scattering (in Japanese)

The method of Lippmann-Schwinger (LS) was developed after the World War 1L
Thanks to this method, the theoretical study on the scattering has a significant progress.
One of the reasons is that LS equation can be used for a complicated case such that the
scattering does not occur due to the potential; that is to say, when the target is a complicated

structure consisting of many particles. In this case, the Hamiltonian H o in the propagator
éo(i) cannot be expressed in simple way, leading to the difficulties in expressing the
concrete form, éo(i) . In the LS equation, H o, 1n éo(i) can be replaced by the

corresponding Hamiltonian without knowing any knowledge of H o- So, the theoretical

treatment can be done smoothly. The second reason is that we can also consider the
interaction between fields as well as the potential form. In other words, the LS equation
can be applied to the quantum field theory.

10. The higher order Born Approximation
From the iteration,

1//(”> can be expressed as

‘1//(+)> =|k)+Gy(E, + ig)l}‘l//(+)>
=|k)+ Gy(E, +ie)V (k) + Gy (E, +ie)V|yr™)
=|k)+ Gy(E, +ig)V|k)+G,(E, +ieWG,(E, +ie)V|k)+...
The Lippmann-Schwinger equation is given by

|!//(+)> = |Kk)+ G, (E, +ig)1}|[//(+)> =|k)+ G, (E, +ie)T|k)

b

where the transition operator 7 is defined as

Py = 7la)
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or
T|k)=V]y'") =V|k)+VG,(E, +is)T|k)

This is supposed to hold for any |k > taken to be any plane-wave state.
T=V+ VGO(Ek +ie)T .

The scattering amplitude f(k',k) can now be written as

f(k, k)_—z—”i(zﬂ) (K'P]y) = il” ! — Q) (K'[T]k).

((Note)) Derivation of the scattering amplitude

) = |k)+(E, - H, +ie) ' V]p®)

(rlv)

<r| K)+(r|(E,—H, £ie)"V |y'®)
[K)+ [ dr (| (E, - H, 2ie) e ) (e[ |y

+jdr |(Ek —H0 tig) |r >V(r')<rV‘l//(i)>

Here we use the expressions

2

G (r,r)= —;l—ﬂ<r|(Ek ~H,xig)"'|r'")

_ 1 ikjr—r|
= e
47z|r -r '|

and
l ik-r
<"|k>=Wek

Thus, we have

zk‘r r|

() =~ L g e )

(272_)3/2

Using the approximation
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)= 2 far vl

1 ar 241 e
= 32 € 2
(27) n Ar
1
- (272_)3/2

r'27)”* (k'|r') I'|V‘l// >

)

2,ule
n* 4r

[ ikr

So that, we have the scattering amplitude as

fk'\k)= (2 ) (k|7 [y®)

- 2” i o (K[7]K)

A

since V

k).

W(i>>:T‘

Using the iteration, we have the Dyson equation
T=V+ VGO (E, +ie)[ =V + VGO(Ek +ig)V + VGO(Ek + ig)VGO (E, +is)V +...
Correspondingly, we can expand f(k',k) as follows:

S k)= fOR )+ O KK+ DK K)o

with
O ) ==L ) (k).
FOU k) = - 2“ ! 1 ) (K'PGy(E, +ig)V|k),
fOK k)= —2—”L(2 Y (k'VG,(E, +ie)VG,(E, +ie)V|k).
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dp

o
Go

Go

ok

oy ”

Fig. Feynman diagram. First order, 2nd order, and 3rd order Born approximations.
@, = |k> is the initial state of the incoming particle and ¢, =|k'> is the final state

of the incoming particle. V is the interaction. (@) V. (b) VGOI}, and (c) VGOI}GOI}.

11. Optical Theorem
The scattering amplitude and the total cross section are related by the identity

Im[ /(0 =0)]= LS Ot >
4
where

f(0=0)= f(k,k): scattering in the forward direction.

o = Z—ng.

This formula is known as the optical theorem, and holds for collisions in general.
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hk

— Otot
> >
hk hk Ak
— @) — —— U0t
M 1y

Fig. Optical theorem. The intensity of the incident wave is 7k/ . The intensity of the
forward wave is (ik/ p) — (4 / 1) Im[ £(0)]. The waves with the total intensity
(4nn/ ) Im[f(0)] = (hk/ p)o,, is scattered for all the directions, as the scattering

spherical waves. Note that a multiplication factor 1/(2z)’ is required for the
expression of probability current.

((Proof))
Im[ f (k, k)] = —i(zyzf %Im[<k|f|k>]

1 2u S
- _E(zﬁfﬁlm[(kwt//( ]

) =|k)+ Gy (B, +ie)P|y)

b

or

k)= "//(+)>— G,(E, + ig)I}‘t//(”>

b



Hermitian conjugate:

<k| = <'//(+) _<'//(+) I}GO(Ek —i¢)
where

[GO(Ek +ig)] = éo(Ek —i£).
Then

(k[P |y )] = Im[ {{y "
= Im{{y "

—<w(”

I}‘ 1//(”>] _ Im[<w(”

VGy(E, ~ie)V |v')

VG, (E, —ie)I}‘lp(+)> :

Now we use the well-known relation

oo ;]

E —H,—is

=[P(E _IH j+i7z5(Ek —H))]

k 0

Then

Im[<k| 14 ‘ W(+)> = [Im<t//(+)

17‘ l//(+)>] _ [Im<w(”

. 1 Sl
VP[—E_FIJV‘W( >>

+Im(y O |Vizs(E - H,)V |p)]

The first two terms of this equation vanish because of the Hermitian operators of V and

ppl L.
E-H,

Therefore, we have

[k |V |y )y =—7 (y " |VS(E, - H)V |w)
=-r(k|T*5(E - H,)T k)

or
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hn[<k|17‘v/(+)> _ _ﬁj-dk.<k|j~+|kv><kv|f“|k>5(Ek —%)

R P h2k|2
= —rzfdax (k|7 k) s(E, -5
Jac 7w o, -
h2k|2 h2k2 h2k|2
O(E, - > )=0(——— )
U 2u 2u

=015 (k™)

=6[f—ﬂ(k+k')(k—k'»]

kn’

= ST (k k)]
y7,
or
2742
s(E-TK sk -k
2u kh
So that,

tm{{k Py ) =~ -2 [k dox (kiR Sk~ k)

— - 1 [acy |

We note that

Since
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do Y
5—“(" )|
1

1677

167" 12 1) a2

= =k T )

h4

2
’

42
@7)° gj (07 )

and

o, =| dQ’% - 16’; “ [ae|(w7]k)

‘2
Then we obtain

/(0 =0)] =0,

((Note)) The violation of optical theorem (E. Merzbacher)
The first Born approximation violates the optical theorem. It can be remedied by
including the second Born approximation for the forward scattering amplitude.

12. Probability Current
Here we discuss the Probability current for the three cases.

J(r) = %Re{w(r)"p )

=i[l//(r)*v w(r)—y(r)Vy (r)]
2iu

For simplicity, we use the wave function

(a) In-coming plane wave
When we use

iker
b

1
l//m(r)—We

we get the probability current as
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(b) Outgoing spherical wave
When we use the wave function

+ 1 ikr
v, ):W e 1(9),

we get the probability current

J, = on ) |f(9)| e,

(c) Outgoing wave with spherical wave and plane wave propagating the forward direction
For the wave function

+ 1 IKer IKr
v, = (27[)3/2[ her | ek 10

We get the e, -component of J(r) as the probability current

———cosf (plane wave as independent source)

——| f (0)| (spherical wave as independent source)

1
20y

_(1+COS 0)[f(0)ezkr(l cos ) +f (0) —ikr (1— cosE’)]

1

ikr(1—cos @) —ikr(1—cos @)
2(2 o [f (O)e - [ (0)e ]

The first term e, %h—k cos @ yields null after integration over the sphere.
y7,
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! 3h—k 271 sin @ cos Od 6 = ! 2h—kr2.|.sin00050d0
2r)y u Q2r) u
= ! 2h—k sin(26)d 6
(27m)" 2u
=0
The second e, ! 3;Z—k|f(6?)|2:
(2r) rp
1 hk 2 1 hk 2
e LA e IO
__1 koo
Q2z) u’oQ
Lok
Qr) pu "

The third and the fourth terms are the interference ones;

Jrin (0) 1 @(1 +Cos 0)[f(9)eikr(17c059) + f* (e)efikr(lfcosg)]

- 227) pr
In the limit of & — 0 (forward scattering),

1

J"(0)= o)

ﬁ[f(o)eikr(lfcosg) + f* (O)efikr(l—cosg)]
ur

Fig. The forward scattering.
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Fig. Surface area contributing to the forward scattering.

The scattering intensity for 0 < 8 < 56 (66 =0) is given by

00
= j 271 sin0d6J ()
0

1 hkl" 59 ikr(1—cos@) —ikr(1—cos @)
Gy sdeH[ f(0)e +f7(0)e ]

1 hkr zkr(l cosf) *lk"(l cos )
“ G a L/ (0)< ~ 1 (O ———

1 hkr 1 1 7(1—cos * —ikr(1-cos
ey D 1] ) 1)

In the limit of » — oo but with 66 # 0 , the exponential terms ¢ "~***” and ¢™*"** tend to
zero because of strong oscillation for the slightest change of £.

B 1 hkrl

- Q@xy
1 hkr 1

=G ——( 2i) Im[ £(0)]

h

Y=y Im[f(0)]

where
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fO-10) _
Y =1m 7(0),

Thus, we have the scattering intensity for the forward scattering (the scattering intensity behind
the target) is

1 &k h 1 hk h
T— - Im[f(0)] = — 7—Im[ 1'(0)]}
(2z) w 27 u (27) U
From the relation
1 nk_ 1 hk -
@Qr) u  (2n) T @ ) 7
or
h—k=ﬁ—4ﬂﬁl [f(O)]+h—ka
H H H H
leading to the optical theorem
Im[/(0)]=—o,,
We now evaluation of V-J
(a) Incoming plane wave
(r)——l e V-J =0
l//in (272_)3/2 ’ in
(b) Outgoing spherical wave
+ 1 hr 2hk
l//sc()=— efO) VI, = |f(9)| 0(—

(272_)3/2 (

(c) Outgoing wave with spherical wave and plane wave propagating the forward direction
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1 1
(+) - elk°r +_elkr 0
Y ou 2" [ . f(0)]

_ _lh cot 0 af(e) eikr(l—cos@) _ af* (0) e—ikr(l—cos@)]

V Yow — 3 3
2Q2nm) ur' - 00 00
_lh azf(e) eikr(l—cos@) _ azf*(e) e—ikr(l—cos@)]
2z ur’ - 06° 06’

which is on the order of 1/7°. In the limit of » — oo, we get

vy =0

out

as well as V-J =0

mn

REFERENCES
Rainer Dick, Advanced Quantum Mechanics, Materials and Photon, 3™ edition (Springer, 2020).

((Mathematica))
Evaluation of the probability current density
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Clear["Global "];
Gra :=Grad[#, {r, 8, ¢}, "Spherical™] &;
Diva :=Div[#, {r, 8, ¢}, "Spherical™] &;

wl1: Wave function of scattered wave
wlc: Complex conjugate of Wave function of

scattered wave

ylir , &1 :=
1

(2 ) 372
1

(Exp[ieros[E]] + — Exp[i k r] fl[é']);
r

Ylc[r , €] :=
1

(2 ) 372

(Exp[—i krCos[&]] +

1
— Exp[-1 k r] -Flc[é']];
r
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Evaluation of probability current density

J1 =

(ylec([r, 8] ~Gra[yl[r, 8]] -

2u1
yl[r, 6] ~Gra[ylc[r, ©]1]) //
FullSimplify;

e, component of J1

Expand[ J1[[1]]]

thOS[E‘] leEZJikr‘ ikr‘{_l.tos[e]jﬁfl[e]

+ +
87T3,u 16 1° r‘zu
I:ejljikr‘ ikr (1iCos[&]) kf]‘Fl[E’]
+
16JT3r‘u
Ez:ikr‘ ikr (1+Cos[a]) thOS[E‘] 'Fl[@]
16JT3r‘u
JILEZJikr‘Cos{e] ikr (1+Cos[8]) f‘}'FlC[E?]
+
16 77° r‘zu
IE21‘1I«(r‘(:05[6] ikr (1+Cos[s]) kﬁflc[@]
+
16 7° r u
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Ez:flkr‘(:os[e] ikr (1+Cos[&E]) kﬁCOS[S] ‘FlC[S}
16JT3PLI
knfl[e] flc[o]
8 71> r‘zg

+

e4 component of J1

Expand[ J1[[2]]]

khSin[&]
8}T3;.1

e tkr(-1iCosis]) kyF1[6] Sin[6]
16}T3r‘u

etkr (-1:Cos[®) K flc[o] Sin[eo]
16H3r‘u
ie ikr (-1+Cos[&]) f’]'Fl"[S]
16 7° r? u B
inflc[e] f1'[8]
16 7> r® 4 "
i elkr (-11CosIE]) b £1¢' [8]
16 77° r?
iaflie] flc' [6]
16 7° r® 4

+

13.  Summary

Comparison between the partial wave approximation (low-energy scattering) ans high-energy
scattering (Born approximation).
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(1) Although the partial wave expansion is “straightforward”, when the energy of incident
particles is high (or the potential weak), many partial waves contribute. In this case, it is
convenient to switch to a different formalism, the Born approximation.

(i) At low energies, the partial wave expansion is dominated by small orbital angular
momentum.

14. Example
Here we discuss the Problem 6-1 of Sakurai amd Napolitano.

6-1

6.1 The Lippmann-Schwinger formalism can also be applied to a one-dimensional
transmission-reflection problem with a finite-range potential, V(x) # 0 for 0 <
|x| < a only.

(a) Suppose we have an incident wave coming from the left: (x|@) = e** //2m.
How must we handle the singular 1/(E — Hy) operator if we are to have a
transmitted wave only for x > a and a reflected wave and the original wave for
x < —a?lIsthe E — E +ie prescription still correct? Obtain an expression for
the appropriate Green’s function and write an integral equation for (x| ().

(b) Consider the special case of an attractive é-function potential

V= y_hz ) 0
=—(%)s® >0

Solve the integral equation to obtain the transmission and reflection ampli-
tudes. Check your results with Gottfried 1966, p. 52.

(¢) The one-dimensional §-function potential with y > 0 admits one (and only one)
bound state for any value of y. Show that the transmission and reflection am-
plitudes you computed have bound-state poles at the expected positions when
k is regarded as a complex variable.

((Solution))
We use the Lippmann-Schwinger equation

A

o\ 1
v )>_|¢>+E—F10+igV

l//(+)>

Green function;
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G, 06 ) = 2 (x| L)
R ey

hz T IDO " 1 ! 1 " " 1
=E£dp [Odp (x| NP |m|l’ )P
hZ 1 © © ﬂ 1 ' y 71‘[;1”):'
=——— |dp'|dp'e” ———(p'|p")e
2m27zh~[op~[ope E_.2+ig<p| >
2m
oo ip'(x=x") 1
=2 = (dpe
2’"2’m£ . E-P" i
2m
where
[] 1 ﬂ ' " __
<x|p>:%eh ’ <p|p>_§p',p"
Here we put
'k’
= '=hk'
E 2m P
' 1 00 ' ez’k(x—x')
GJr()C,)C): —Zj.dk m
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k'=+(k* +ig)"?
=+k(1+ Z—gz)“z
=+k(1+ 21.—1‘:2)
ic
=+(k+ 2_k)
=+(k+ig)
((Jordan’s lemma, residue theorem))
The integrand has poles in the complex k-plane at
k'=k+ie, and k'=—(k+ig)
When x > x', we take the path in the upper plane. When x < x', we take the path in the lower plane.

(1) For x> x',
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G, (x,x') = —%ZﬂiRes(k': k+ie)
ez’k(x—x')

2k

=i
(i)  For x<x',

G, (x,x') = —%(—27:[) Res(k'= —k —ic)
—ik(x—x")

e
2k

=—i
Combining Egs.(1) and (2),

G.(xx) ==

The Lippmann-Schwinger equation for < ‘1//(+)>

<x‘!//(+)> = ﬁeﬂ‘x — Zh—T T dx'ieikxx‘V(X')<X"‘//(+)>

(b)
V:—;h—nié'(x) (y>0).
(el ) =—pe™ zmjd" ”‘“‘[—f—’;a(x')]@'\w(”}
\/;—ﬁe +yjdx ! " s () (x|
When x =0,
<0M”>=ﬁ+7ﬁ<0\w“)>
or
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)

1 1

‘\/27[ 1_1
2k
Then we get
iy
1. 1 on .
)\ _ ikx 2k tk‘x‘
X = e + —e
O R N 7
2k
For x>0
1 1 ;
+) ikx
X =—— —)e
()=
2k
For x<0
iy
(+) ikx 2k —ikx
X =—[e" +—="—e¢
(el ) = ol + =2
2k
T: probability
R: probability of reflection
2
)
T =;2, R=1-T 2k 5
1+ -2 1+ -2
2k 2k
(c)

The wave function of bound state

Schrodinger equation

h* d?

2m dx*

with

y(x)+V()y(x) = Ey(x)
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2

V(x) = —gh—m 5()

For x#0, V(x)=0.

—h—%w(x) Ey(x)

For E = —|E| <0 (bound state)

l//( )= | |l//(x) Ky (x)
The solution of this equation is
p(x)= e
where

2.2
h'x

E
g="x

Note that w(x) is continuous at x =0, but dy(x)/dx is not continuous.

- E%w(x)d - j SCw (x)dx =

d :
[—-v (O], ==y (0)
dx
leading to the relation
o=t
2

Therefore the wave function of the bound state is

7/ —7‘):‘/2
_— _e
p(x)=, 5
iy

The value of & corresponding to the bound state is &k = B
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APPENDIX -1
Free particle wave function y satisfies the Schrodinger equation

-
—ZV v =Evy,

where m is the mass of particle,

is the energy of the particle, and £ is the wave number. This equation can be rewritten as
V' +k)y =0.
This equation is solved in a formal way as
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V = 0 (1,6, 8) = (rOp|ktm)

1 r
5+ 5000 (1,0.0) = £y, (1,0,9)
y7; r

(separation variables), where L is the angular momentum:

Pium(7,0,0) = R, (r)Y,,(0,0)
with

L'y, (0.¢)=n*(({+1)Y,,(0,9)

Since p, :E_la—r, we have
1L ror

nlo hlo )
D, k/(’”)—j;g’”(—;a—’”)Rk/(’”)— —h"— 6 z[rRk/(r)]
or
1 o
e z[rsz(’”)H 5(5+1)Rk/(’”) KRy, (r)
or

1 az [ﬂ’?u(r)]+[k2 ——€(€+1)]sz(?) 0.

In the limit of » —o0, we have
2

6_2[’”sz(’”)] +k2[rRk/(’”)] =0.
or

Then we get

R, = (outgoing and incoming spherical waves)

APPENDIX 11
For the potential
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V(r)=V,R5(r—R)

Calculate in Born approximation the quantities f(6) and Z—g. Specify the limits of validity of

your calculation for both high- and low-energy scattering, respectively..
((Schaum, Quantum Mechanics))

(a)
(1)9:_l2_,uwdva N ol '
SO == 55 [drrv(singor)
0
1 2/JDO Vo ' ; !
- £ j dr'r'V,RS(r'—R)sin(Qr") .
Qn
2uV,R* .
- !FIIZOQ sin(QR)
2
do 2 2;1VR3 sinz(QR)
ol o 2R
where
0
= 2k sin—
0 sm2

Validity of the Born approximation

2UT L i .
h—;;c-([dr'ek V(r")sin(kr")

h_/;lk-([drv(e%kr' —I)V(l"') << 1

or

['e]

J.drv(eZikr' _ I)V(l"')

0

Wk
<< —
y7;

for the potential with the spherical symmetry. In the present case

Wk
<< —
y7;

V,R j dr' (@ —1)5(r—R)
0
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or
2u .
V,R ﬁsm(kR) <<1
(1) In the limit of AR<<1 (low energy limit),
2u . 2u
VORﬁsm(kR) ~V,R* S << 1.
(i1))  For high energies,
V. R sin(kR) << 1
Tk

APPENDIX IIT The ig prescription
We derive the formula

1
XFie

=Plii7z5(x) ,
X

where £ (—0) is a positive infinitesimally small quantity.

(1) Case-1

I, =1lim T de
ox

£—0 —i&
Yy
I'l Z=.=1€ 12
B T » — X

Since the only singularity near the real axis is z = ig, we make the following deformation of the
contour without changing the value of I. The contour runs along the real axis (the path /1) and
goes around counterclockwise, below the origin in a semicircle (C1), and resumes along the real
axis (the path 72).
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Ilzj@dxvt.[@a%vtj%dx

:PT&dxwLﬂiRes(z:O)
X

=P ACIm——
or
1. :Pl+i7z§(x).
x—ig X
(2) Case-I1

1, zlimIde
20 x+ig

Since the only singularity near the real axis is z = -ig, we make the following deformation of
the contour without changing the value of > The contour runs along the real axis (the path /1) and
goes around clockwise, above the origin in a semicircle (C2), and resumes along the real axis (the
path 72).

Izzj&dxvtj'&ckwtj&dx
Il X Cc2 z r2 X
:PT&dx—ﬂiRes(z=0)
X
:PT&dx—mf(O)
X

or
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! — = Pl—iﬂé(x)
X+ie X

APPENDIX IV Plane wave form
There are two-types of wave functions depending on the size of space.
(a) Plane wave in the finite space
For the plane wave in the cube with the size L?, , the wave function can be expressed by

ik-r 1 ik-r 1 ik-r
l//(l‘)=Cek =Fek =Wek
2

k k. = 277[11 ,» and the volume of the system is L.

where k =2—7zn , k, =—n_,
x L x Y L Y z

The constant C can be determined as

1= [drly )] =|c[ [dr=|c| L,
Vv Vv

or

1

=3
L

C

(b) Plane wave in the free space

For the plane wave in the free space, , the wave function can be expressed by

ipr 1

h , or t//(r)=We

r)=—— ik-r
W( ) (272_7/_1)3/2 e

where p (=#ik) is a continuous momentum.

(r

. h
blp)==Virlp)=pir|p)
leading to

<r|p>:C'exp(%p-r)

Using the property of Dirac delta function, we get

53



<r|r'> =o(r—r")
= [dp(r| p)(p|r)
=[Cf* Japexpp-(r=r]
=|c (27z)3§[%(r—r')]
=|C|’ 2zhy S(r—r")
leading to

L
k)
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