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Ernest Rutherford, 1st Baron Rutherford of Nelson OM, FRS (30 August 1871 — 19
October 1937) was a New Zealand-born British chemist and physicist who became known
as the father of nuclear physics. In early work he discovered the concept of radioactive half
life, proved that radioactivity involved the transmutation of one chemical element to
another, and also differentiated and named alpha and beta radiation. This work was done
at McGill University in Canada. It is the basis for the Nobel Prize in Chemistry he was
awarded in 1908 "for his investigations into the disintegration of the elements, and the
chemistry of radioactive substances".

http://en.wikipedia.org/wiki/Ernest Rutherford

1. Rutherford scattering experiment
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P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.4)

Rutherford scattering is the scattering of a-particle (light-particle with charge 2e) by a
nucleus (heavy particle with charge Ze). The mass of nucleus is much larger than that of
the a-particle. Thus the nucleus remains unmoved before and after collision. There is a
repulsive Coulomb interaction between the nucleus and the o particle, leading to the
hyperbolic orbit of the a~particle. The potential energy of the interaction is given by
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The boundary conditions can be specified by the kinetic energy K and the angular
momentum L of the a-particles, or by the initial velocity Vo and impact parameter b,

K:lmv

5 My and L=mypb

where m is the mass of the a-particle.

((Note)) a particle is He nucleus consisting of two protons and two neutrons (He?")

((Ewald's sphere))



Fig.

The hyperbolic Rutherford trajectory.
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Fig. Ewald's sphere for the Rutherford scattering

Ap=p; -p,=Q (Scattering vector)

where
|pf |:| P; |: p=my,

From the Ewald's sphere, we have
Q=Ap=2 psing =2my, sing

((Conservation of angular momentum))

T=rxF = d—L R
dt

where 71s the torque, r is the position vector of the a-particle with charge 2e (e>) and F is
the repulsive Coulomb force (the central force) between the a-particle and the nucleus with
charge Ze. The direction of the Coulomb force is parallel to that of r. In other words, the
torque 7is zero. The angular momentum L is conserved.

L=rxp=m(rxv)=mf)xV,f +V,g)=mrv,2 = mr2%A.
or
mr2%:mvob
dt
or
dg _vb
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where b is the impact parameter.



((The impulse-momentum theorem))
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Since Q is parallel to the unit vector ¢, we get
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Here it should be noted that

t t
f f dt
Fsingdt = | F sing—d
J o j P35

t
1 2ze* . ,r?
= sin g—d
J r’ ¢wp ¢

_47r50 :
) ¢
_ 1 2z Isin¢d¢:0

4re, Vb 4

Then we get
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where K is the kinetic energy of the bombarding o-particle,



K :%mvo

2. Differential cross section: g—g

Let us consider all those particles that approach the target with impact parameters
between b and b +db. These are incident on the annulus (the shaded ring shape). This
annulus has cross sectional area

do =27bdb
These same particles emerge between angles #and €+ dfin a solid angle given by

dQ =27zsind @
The differential cross section j—g is defined as follows.

do =99 40— 20db
dQ

or

do_2abdb _ 2abdb _ b db_ 1 d .
dQ  dQ  27sin@ld sin6déd 2sind do




Note that
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Then we get
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This is the celebrated Rutherford scattering formula. It gives the differential cross section
for scattering of « particle (2e), with kinetic energy K, off a fixed target of charge Ze. In
general, this formula can be rewritten as

do _ (qQ)’ 1
dQ (167, K* ;4 €

for scattering of a charge q, with kinetic energy K, off a fixed target of charge Q.

((Mathematica))



e
Clear["Global «"]; bl = kCot[—z] ;

Tl =D[bl, 6]
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3. Schematic diagram for the Rutherford scattering

Fig.  Schematic diagram for the Rutherford scattering. b is the impact parameter and &
is the scattering angle. The hyperbolic orbit near the target (at the point O) is

simplified by a straight line. OA=R.

As shown in the above figure, the impact parameter b is given by
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The impact parameter b is also expressed by

1 ze? 6
b= ——cot—=kcot—
4re, K 2 2

where

iz
4re, K

Then we get

k
R=—%
SIn —
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The differential cross section can be expressed by

do  Z%* 1 k? 1 R?

do _ - _K
dQ  (875,)°K” z 4 i 4

In general, a particles with impact parameters smaller than a particular value of b will have
scattering angles larger than the corresponding value of b will have scattering angles larger
than the corresponding value of €. The area b is called the cross section for scattering

with angles greater than 6.
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Fig.

Schematic diagram for the Rutherford scattering where @1is varied as a parameter.
The relation between the impact parameter b and the scattering angle 6. As b
increases, the angle #decreases (smaller angle).
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Fig. The «a particles with impact parameters between b and b + db are scattered into the
angular range between fand &+ dé.

13



N

i‘\\ \\\|Il 7
-
>

Z
L ) ,////
%"'

Fig.

Rutherford scattering of « particles. The hyperbolic orbit near the target (at the
shown in the figure
4.

point O) is simplified by a straight line. OA=R. The point denoted by OA is

Experimental results
Density of Au

If the gold foil were 1 micrometer thick, then using the diameter of the gold atom from
the periodic table suggests that the foil is about 2800 atoms thick

p=19.30 g/cm’
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Atomic mass of Au;
Mg = 196.96654 g/mol

The number of Au atoms per cm?;

p(g/cm?)
:—NA
M, (g/mol)

where Na is the Avogadro number. Then we get the number of target nuclei in the volume
At (cm?®) as

N, =ntA

\, = Number of foil nuclei
in beam is nAt

Fig.  The total number of nuclei of foil atoms in the area covered by the beam is ntA,
where n is the number of foil atoms per unit volume, A is the area of the beam, and
t is the thickness of the foil.
[P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.8)]

If o (= nb?) is the cross section for each nucleus, ntAc is the total area exposed by the
target nuclei. The fraction of incident particles scattered by an angle of 6 or greater is
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The number of « particles which can be compared with measurements, is defined by

where r is the distance between the target and the detector, lo is the intensity of incident
particles, N is the number density of the target, and the solid angle AQ,_ is defined by

AQ, =%.

((Experimental results))
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Figure 4-9 (a) Geiger and Marsden’s data for a scattering from thin gold and silver foils. The graph is a log-log plot to show
the data over several orders of magnitude. Note that scattering angle increases downward along the vertical axis. (b) Geiger and
Marsden also measured the dependence of AN on f predicted by Eguation 4-6 for foils made from a wide range of elements,
this being an equally critical test. Results for four of the elements used are shown.

P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.9).
Z="9 for Au. Z=47 for Ag, Z=29 for Cuand Z = 13 for Al.

Using the value of N(&= x), we have

NO) 1

NO=7) ¢

2

16



where

I, A NtZ%e*
r’(8z¢,)* K’

N@=r)=
N(6)/N(6=n)
300
25/
20/
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5 Size of nucleus
We use the energy conservation law, we have

2
o = K+U ~ L 4 228
2 dre,r

E = const

where K is the kinetic energy and U is the potential energy. At r = oo,

At r =ro (size of nucleus)

2Ze*

E =——
4rs,r,

tot

Then we have
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27¢6?

=K
4re,r,
or
Ze’
r, =
2re K,

((Example)) Z =79 for Au. K=7.7 MeV.
ro=2.955x 10 m.

((Mathematica))

Clear["Global *"];

rulel = {eV - 1.602176487 x 107", ge » 1.602176487 x 107,
€0 » 8.854187817 x 1072, MeV - 1.602176487 x107 13, z 5 79,
KO- 7.7 Mev} :

Z qe?

— //- rulel
2 7 €0 KO

2.95473x 10

6. CONCLUSION
Most of the mass and all of the positive charge of an atom, +Ze, are concentrated in a

minute volume of the atom with a diameter of about 10™'* m.
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APPENDIX-I: Property of hyperbola
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F>

The properties of hyperbola

o
FP=r.  FP=r,
n-r=2a, nr=r+2a
or
I’ =(r+2a)’ =r’ +4ar +4a’
Cosine law:
I’ =r’ +4¢> —4rccosd
Using the above two equations, we get
r’ =r’ +4ar +4a’> =r’ +4c’ —4rccosd
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" 1+ecosf’

where

_E_Va2+b2>1
a a

p=aE’-1)
The ParametricPlot:

X=—-C+rcosé, y=rsiné
with

_ P
1+ecosf

APPENDIX-II

From the book of

H.E. White

Introduction to Atomic and Nuclear Physics (D. Van Nostrand Company, Inc., Princeton,
NJ, 1964).

Fig. Diagram of the Rutherford scattering experiment
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Fig. Schematic diagram of a particles being scattered by the atomic nuclei in a thin
metallic film
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thin foil

Fig. Diagram of the deflection of an « particle by a nucleus: Rutherford scattering
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Fig. Mechanical model of an atomic nucleus for demonstrating Rutherford scattering
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