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Ernest Rutherford, 1st Baron Rutherford of Nelson OM, FRS (30 August 1871 – 19 
October 1937) was a New Zealand-born British chemist and physicist who became known 
as the father of nuclear physics. In early work he discovered the concept of radioactive half 
life, proved that radioactivity involved the transmutation of one chemical element to 
another, and also differentiated and named alpha and beta radiation. This work was done 
at McGill University in Canada. It is the basis for the Nobel Prize in Chemistry he was 
awarded in 1908 "for his investigations into the disintegration of the elements, and the 
chemistry of radioactive substances". 
 
 

 
http://en.wikipedia.org/wiki/Ernest_Rutherford 
________________________________________________________________________ 
1. Rutherford scattering experiment 
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P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.4) 
 

Rutherford scattering is the scattering of -particle (light-particle with charge 2e) by a 
nucleus (heavy particle with charge Ze). The mass of nucleus is much larger than that of 

the -particle. Thus the nucleus remains unmoved before and after collision. There is a 

repulsive Coulomb interaction between the nucleus and the  particle, leading to the 

hyperbolic orbit of the -particle. The potential energy of the interaction is given by 
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The boundary conditions can be specified by the kinetic energy K and the angular 

momentum L of the -particles, or by the initial velocity v0 and impact parameter b, 
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where m is the mass of the -particle. 
 

((Note))  particle is He nucleus consisting of two protons and two neutrons (He2+) 
 
((Ewald's sphere)) 
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Fig. The hyperbolic Rutherford trajectory. 
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Fig. Ewald's sphere for the Rutherford scattering 
 
 

Qppp  if  (Scattering vector) 

 
where 
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From the Ewald's sphere, we have 
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((Conservation of angular momentum)) 
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Frτ  , 

 

where  is the torque, r is the position vector of the -particle with charge 2e (e>) and F is 

the repulsive Coulomb force (the central force) between the -particle and the nucleus with 
charge Ze. The direction of the Coulomb force is parallel to that of r. In other words, the 

torque  is zero. The angular momentum L is conserved. 
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where b is the impact parameter.  
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((The impulse-momentum theorem)) 
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Since Q is parallel to the unit vector ̂ , we get 
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where 
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Here it should be noted that 
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Then we get 
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where K is the kinetic energy of the bombarding -particle, 
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2. Differential cross section: 
d

d
 

Let us consider all those particles that approach the target with impact parameters 
between b and b +db. These are incident on the annulus (the shaded ring shape). This 
annulus has cross sectional area  
 

bdbd  2  
 

These same particles emerge between angles  and  + d in a solid angle given by 
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The differential cross section 
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Note that 
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Then we get 
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This is the celebrated Rutherford scattering formula. It gives the differential cross section 

for scattering of  particle (2e), with kinetic energy K, off a fixed target of charge Ze. In 
general, this formula can be rewritten as 
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for scattering of a charge q, with kinetic energy K, off a fixed target of charge Q. 
 
((Mathematica)) 
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3. Schematic diagram for the Rutherford scattering 
 

 
Fig. Schematic diagram for the Rutherford scattering. b is the impact parameter and  

is the scattering angle. The hyperbolic orbit near the target (at the point O) is 

simplified by a straight line. ROA  .  
 

As shown in the above figure, the impact parameter b is given by 
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The impact parameter b is also expressed by 
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Then we get 
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The differential cross section can be expressed by 
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In general, a particles with impact parameters smaller than a particular value of b will have 
scattering angles larger than the corresponding value of b will have scattering angles larger 

than the corresponding value of . The area b2 is called the cross section for scattering 

with angles greater than . 
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Fig. Schematic diagram for the Rutherford scattering where  is varied as a parameter. 

The relation between the impact parameter b and the scattering angle . As b 

increases, the angle  decreases (smaller angle). 
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Fig. The  particles with impact parameters between b and b + db are scattered into the 

angular range between  and  + d. 
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Fig.  Rutherford scattering of  particles. The hyperbolic orbit near the target (at the 

point O) is simplified by a straight line. ROA  . The point denoted by OA  is 
shown in the figure. 

 
 
4. Experimental results 

If the gold foil were 1 micrometer thick, then using the diameter of the gold atom from 
the periodic table suggests that the foil is about 2800 atoms thick. 
 
Density of Au 
 

 = 19.30 g/cm3 
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Atomic mass of Au; 
 

Mg = 196.96654 g/mol 
 
The number of Au atoms per cm3; 
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where NA is the Avogadro number. Then we get the number of target nuclei in the volume 
At (cm3) as 
 

ntANs   
 

 
 
Fig. The total number of nuclei of foil atoms in the area covered by the beam is ntA, 

where n is the number of foil atoms per unit volume, A is the area of the beam, and 
t is the thickness of the foil. 
[P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.8)] 

 
 

If  (= b2) is the cross section for each nucleus, ntA  is the total area exposed by the 

target nuclei. The fraction of incident particles scattered by an angle of  or greater is 
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The number of  particles which can be compared with measurements, is defined by 
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where r is the distance between the target and the detector, I0 is the intensity of incident  

particles, n is the number density of the target, and the solid angle sc  is defined by 
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((Experimental results)) 
 

 
 
P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (Fig.4.9).  
Z = 79 for Au. Z = 47 for Ag, Z = 29 for Cu and Z = 13 for Al. 
 
 

Using the value of N( = ), we have 
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5. Size of nucleus 

We use the  energy conservation law, we have 
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where K is the kinetic energy and U is the potential energy. At r = ∞,  
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At r = r0 (size of nucleus) 
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((Example)) Z = 79 for Au. K = 7.7 MeV. 
 

r0 = 2.955 x 10-14 m. 
 
((Mathematica)) 
 

 
 
6. CONCLUSION 

Most of the mass and all of the positive charge of an atom, +Ze, are concentrated in a 
minute volume of the atom with a diameter of about 10-14 m. 
 
REFERENCES 
P.A. Tipler and R.A. Llewellyn, Modern Physics 5-th edition (W.H. Freeman, 2008). 

H.E. White, Introduction to Atomic and Nuclear Physics (D. Van Nostrand Company, Inc., 

Princeton, NJ, 1964). 
 
_____________________________________________________________________ 
APPENDIX-I:  Property of hyperbola 
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The properties of hyperbola 
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The ParametricPlot: 
 

cosrcx  , sinry   

 
with 
 

cos1 e

p
r




. 

 

APPENDIX-II 

From the book of  
H.E. White 

Introduction to Atomic and Nuclear Physics (D. Van Nostrand Company, Inc., Princeton, 

NJ, 1964). 

 

Fig. Diagram of the Rutherford scattering experiment 
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Fig. Schematic diagram of a particles being scattered by the atomic nuclei in a thin 

metallic film 
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Fig. Diagram of the deflection of an  particle by a nucleus: Rutherford scattering 
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Fig. Mechanical model of an atomic nucleus for demonstrating Rutherford scattering 

 


