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To speak roughly, the Born approximation may be useful when the energy of the incident
particle is high. There is another approach, known as the partial wave expansion (or partial phase
shift), that is most useful at low energies and is somewhat complementary to the Born
approximation.

Rayleigh's expansion
Optical theorem
Phase shift

1 Introduction

We now look for the solution of the Schrodinger equation for a particle in the presence of
potential energy V(r) (with spherical symmetry)

Vi = Ry (NY,"(0.) = ““T(”Y.m(e,cﬁ) ,

with
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and y is a reduced mass. Note that uy(r) satisfies the differential equation
d’ I+1
@ - U, m -0,

(1) Case-1
The radial equation for the external region r>a, where the scattering potential vanishes, is
equal to

E 10 +1
UK —%}uk.(rﬁo.

where



U(r)=0.

The solution of Ry(r) is

Ra(r) =

Uklfr) = a, J,(kr) + Bn, (kr)
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for r>a (radiation zone)

Fig.  Attractive potential.

AV()

Vo




Fig. Repulsive potential
(i1) Case-2 (free particle)

In the complete absence of a scattering potential (V = 0 everywhere),

Ry (r) =

UkI:r) =7 Ji(kr)

The condition of the normalization:
4y [dre’ (k0P =1
0

2. Semiclassical argument for the angular momentum,
((Classical mechanics))
The particles with the impact parameter b possesses the angular momentum L given by
L =pb,

where p (=7K ) is the linear momentum of the particles. Only particles with impact parameter b
less than or equal to the range R of the potential energy would interact with the target;

L<L, . =#7kR

since b<R.

When energy is low, L,y is small. Partial waves for higher | are, in general, unimportant. That is
why the partial wave expansion is useful in the case of low energy incident particle. The main
contribution to the scattering is the S-wave (I = 0). The P-wave (I = 1) does not contribute in
typical cases.

((Quantum mechanics))
In quantum mechanics, we have



L=nal(d+1) =~nl, p = hk

The potential of interaction is appreciable only over the range r,. If s > 1, the interaction is

negligible,
|
—=5>T,
or
al | K
h_k > T, or > I‘O

where S is comparable to the impact parameter b in the classical mechanics. The partial waves
with | values in excess of r,k will suffer little or no shift in phase.

3. Asymptotic form
Far from the interaction point, where the potential is negligible, the scattered wave function
has the general form

Ra(r)=

0 ) + i k)

since the position of the particle is far from the origin, where the function n,(kr)is poorly
behaved. We use

a, =9,cosJ,, B, =—a,sin4,.
Then we have

R, (r)=a[coso, J,(kr)—sino;n, (Kr)]
=a, coso,[ J, (kr)—tand,n, (kr)]

Note that g = 0 for free particle (the case-2). Since

|
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jikr) > —— 2 n(kr) - —
kr kr

as r — oo, then we have



a, cos o, sin(kr — I—ﬂ) a, cos o, cos(kr — I—ﬂ)
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If the potential is spherically symmetric, the scattering amplitude w”(r,8)is a function of r and
7

Lzl//(+) = Eil// = mh l//(+) = O’

i O¢

(m = 0), leading to the form
y'(r,0) =3 cRy(NY,""(0.4)
|

= Z 2' *1 Rkl(r)P(cosﬁ)
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where ¢, is constant. Note that

21 +1

Y,"(0,4) = —R(cos0).

The complete solution of the scattering wave function is

i'(2|+1)sin(kr—|;[+5,)

w(r,0)= Za| . P (cos0) O
2 ikr—7 4 | itk
=S ae il (2'”J—[e(k 27 e 1P (cos )
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where the replacement of the coefficient is made as

cai

Jaz2+1)

((Note)) Spherical Hankel functions, hl(l)(x) and hfz)(x)

—> 3.

hl(l)(x) = J,(X)+in(x), h|(2)(X) = J,0) =i (x).

4. Partial wave expansion of the scattering amplitude
On the other hand, " (r,8) has the form

1

(27[)3/2

' (r,0)=

[eikz + %eikr f (0)]
Note that

e =" ="i' (2l +1) j (kr)P (cos ) ,

1=0
(Rayleigh's expansion)

Since

sin(kr —I—ﬁ)
Ji(kr) —> TZ in the limit of r — o

we get

» 1' (21 +1)sin(kr ——)

e 5y - 2P (cosh)
0

ki ikr—7 —i r—— .
Z'I(ﬂzﬂkr e 1R (cos0)

1=0

From Eq.(1),
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From Eq.(2),



W(Jr)(r, H) ~ eikZ +leikr f (6)
r

* ir—l—” —i(kr—
:Z[z'flji'i e " 2)]P(cosl9)+ e 1(9)

Detector
dSARNN \pherical wave
n‘\\\\\ ,
Incident plane wave Scatterer Unscattered plane wave

Fig.  Schematic layout for scattering experiment. The scattering angle is the laboratory angle.

Therefore we have

2i

21 +1 i(kr,'z) Sikr—1T)
—Z( o j pm 2" —e 2 ]P/(cos®)
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The comparison leads to the condition for a.

—ae" +1=0, or a=ge"

from the coefficient of e_I ™ . Then

2141\ e iTisy iC7s)
e"“f 0 e 2 " —e 2 1P(cos®
; 0)= Z‘(zijkr [ IR (cos)

Noting that



[SIE-N

i'=e

we have

£(0)=> (2l +1)f, (k)R (cosh) .

1=0

with
f,(k)=%e“5' sin(3,) , Imf(k)— sin’(4))
or
is 1 . i .
kf k =e|é‘| |5| _ —lé‘, e2|b| —1N=— 1_e2|b| )
1 (K) 2I[ 1= [ ] 2[ ]
f, (k) is defined by

_L 2i6 _ :L _
fl(k)_2ik[e 1] 2ik[S'(k) 1],

where S, (k) is the phase shift given by
S,(k)=¢"

The total cross section is given by
o = [|1(0) d

where dQ =27sin@ @
|f(0)| ii 21 +1)2I+1)f," (k) f.(K)P (cosO) P, (cos)
1=0 1" =0

Noting that

4
dQP 0)P, 0)=—,,,
_[ ) (cos @)P,.(cos ) I

we have



O = 47ri(2| +1)f, (k)| =i—’f (21 +1)sin’ G, .
1=0

1=0

where
| f (k)| —sin e

((D. Bohm, Quantum Theory p.564))
This formula yields the angular-dependent cross section, once we know 9, . The value of ¢,

must be obtained by solving the Schrodinger’s equation. The angular dependence arises, in part,
from the interference of waves of different I.

5. Optical theorem
We can check the optical theorem. We start with the expression of f(6),

o0

f(0)=>(21+1)f (k)R (cosO)

?Tl»— ;\—|.—n JT:
MS EM%;

Il
(=]

(21 +1) sin(5 )P (cosd)

(21 +1)cos(d; ) sin(5, )P (cos §) +— ” Z(zl +1)sin®(5,)P,(cos 8)

1=0

Then we have
m[f(@=0)]=)_ (21 +1)sin’*(5)R(cosO) ,_,
1=0

Z 2|+1 sm ()
1=0

where
P (cosf) |, =1
This means that

Ot = 4T”Im[ f(0=0)] (optical theorem)



What this theorem means? The probability conservation requirement that the amplitude of the

incident wave (K) must ultimately be reduced in proportion to the total probability that the
m

particle is scattered in any way [ (%K /m)o,, ].

Fig. Optical theorem. The intensity of the incident wave is 7k/m . The intensity of
the forward wave is (fik/m)—(4z/m)Im[f(0)]. The waves with the total

intensity (4z1/m)Im[f(0)]=(#k/m)o,, is scattered for all the directions, as the

scattering spherical waves.

When scattering occurs, part of the energy carried by the incident wave is radiated into all
angles. This energy must be removed from the incident wave. Consequently the energy flowing
in the forward direction is reduced and this modifies the scattering amplitude in the forward

direction (€= 0).

We now consider the complex plane

i Lo i1 iea-D)
7 =kf (k)=¢€"sin(5,) = —[e*" —1]=—+— 2
1 (K) (%) 2i[ ] 53
or
| 1 ies->)
7-—=—¢
2 2
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This is a circle of radius Y2 centered at (i/2).

Im(kf))
A

25

5 » Re(kf))

Fig.  Argand diagram of z = kf, (k) ; The circle is called the unitary circle.

OP = k|, (k) 0oC=1/2, CP=1/2
ZOCP =25
(i) 5 ~0

kf, must stay near the bottom of the circle. kf, may be positive or negative, but kf, is almost
purely real.

kf, (k) = " sin(5)) = 5,
(i) 6, = 7 /2

kf, is almost purely imaginary and kf, is maximal. Under such a condition the |-th partial wave
may be in resonance.

ki, (K)=e2 =i.

o, = i—f(zl +1)sin?5, = i—’j(zl 1).
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6. Partial wave approximation for inelastic scattering
In the elastic scattering, we must have

S| (k) — e2i5|

This requirement is not valid whenever there is absorption of the incident beam. In this case,
S,(k) is reduced by

5,(k) =, (k)™
with
0<pk)<1.
Then we have
(0= [, -1]
— (e 1)

2k [—i7,(K){cos(20,) +isin(25,)} +1i

= E[U' (K)sin(26;) +i(1 -1, (k) cos(26)))]
The scattering amplitude is

f(0) = 2—1ki(2| +1)7, sin(26,) +i(1—1, cos(26,))]P, (cos )

1=0

The total elastic scattering cross section is given by
oy =4r) QI+ (k)| = FZ(zl +D)[1+7,° =27, cos(26))]
1=0 1=0
The total inelastic scattering cross section is

Oinel = Z(ZI +1)(1_|S | )

72. o0
=—22 Ql+D(1-77)
1=0
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The total cross section is
Ot =0¢ TO

inel

:i_fi(zl L 1)[I-ReS, ]
_ i_’ji(zl +D)[1-7, c08(28,)]

7. The phase shift and the Green function
We use the following formula,

()
ikjr—r'| o | .
A S KO KN @A (@4, 1)
- 1=0 m=—I

where

Ir.=r for r<r’and r’ for r’<r.

r.=r for r>r’and r’ for r’>r.
and in the Cartesian co-ordinate,

I = (sin @ cos @, sin @sin @, cos )

Ir'=(sin@'cos¢',sinf'sin@',cos ')

(i1)
R ii' (2l +1)P (cos®) j, (kr), )
1=0
(iii)
w(r,0)= #ch 2l +Di'R, " (r)P (cosh), (3)
and
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1 ikjr—r!|

D0 =——5e"“ —[d'r——Ur (o), 4
Vo) = | el OO 4)

where

u(r) :i—fV(r)

Using the above relations, we can derive the integral equation for Ry(r).
C Rkl(+) (r)P(cos @) = j,(kr)R,(cos )

-k, > IZ Tr'z dr'j,. (kr)h (e U (R, & (r)Y,™ (6, ¢)Tsin 0'do' j dgY," (8',4 )P (cos 0")

=1y 0

Here we note that

Va

2r
jsine'de'jd;zwlr"' (6',4")P (cos0') =276,
0 0

VA

['sin 0'do'Y,” (cos@')P, (cos')

m',0
0
:2ﬂ§m,01/MIsinﬁ'dH'P,,(cosH')P,(cos&")
N odrosy
2I'+1 1
=270, L NE
"N o4r 20+1 ¢
| 4z
= ,—5|,|'5m',o
21'+1
4
= —5|,|'5m',0
21+1

where

21 +1

YI0 (9’ ¢) = 4r

R(cosh),

v

jsin & P, (cos O)P, (cos 0) = micsu, .
0

+1

Then we have
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C,R, (NP (cos) = j,(kr)R (cos )

: N T . b [21+1 4
G 30 3 A1 AR (RO (U (MR ()| SR (cos)y 77
or
C,Ry"” (NP (cosO) = ji (kr)P (cos )
—ikC, j r?dr'j, (kr )h® (ke U ()R, (r')P (cos )
0
or
CR, " (r) = jy(kr)=ikC, [ r™ dr'j, (kr)h® (kr U (1R, (1)
0
or
C,R,(r) = j,(kr)—ikC,h{" (kr) j r dr'j, (kr' U (rRr, " (r)
0
—ikC, jy(kn)[ 1> drh® (krHU (MR, (1)
or
C/R, (1) = j (k) =ikC, [y (kr)+in, (k][ r drj, (kr')U (rHR, (1)
0
—ikC, (k) [ r dr L jy (kr') + i, (k)1 (MR, (1)
since

h? (kr) = j, (kr) +in, (kr)

Then we have
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C,R,™ (N = j,(kn)[1- ikc,jr'2 dr'j, (krHU (r")R, ™ ()]
0
+kC, j rdr'j, (kr'n, (kU (R, (r)
0
—ikC, jl(kr)Tr'z dr'j, (krHU (r")R, ™ ()
+ kC,Tr'2 dr' j, (ke (ke (rR ()
or
C,R," () = jy (kn)[1- ikC,Tr'z dr'j, (kU (rR, ™ ()]
0
+kC, T rdr'j, (kr)n, (ke )U (rR, 7 (r')
0
Here we choose C; such that
C, =1—ikC|Tr'2 dr'j, (kU (r"R, ("]
0

or

1

CI = ©
Tk [ drj (kU (MR, ()]

Then we get
Ry (1) = Ji (kr)+k [ 1 dr'j, (kr ), (ke )U (F)R, (1)
0

7. Physical meaning of C;and &
We consider the physical meaning of C,. For simplicity we assume that

u(r)=0, forr>a.

We get
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Ry"'(r>a) = j(kn)+kn, (kr)f rdrj (kU (MR, (1)
+kj (kr)T rdrn, (kr' U (r"R, ™ (r)
 jy (k) +kny k) [ 2 (ke U (F)R, (1)

where we make use of our assumption that U(r) =0 for r>a. The second term vanishes. The
upper limit of integral in the first term extends from r to oo.

If we choose
tan 8, = —k [ dr'j, (kU (1R, (r"). (5)
0

then we get

R, (r>a)= j(kr)—tan&n,(kr)

cosd [cos, J,(kr) —sinon, (kr)] ©6)

and

C = 1

1+ ikT r? dr'j, (krHU (rR, ™ ()]

= ; ="’ cosd,
1-itano,

The wave function (for r>a) given by Eq.(3) has the form

' (r,0) =#ie“ﬂ (21 +1)i'[cos 8, j, (kr) —sin &N, (Kr)](r)P (cos &)
T 1=0

-5 1)3/2 ieia. Q21+ 1) [(%} j, (kr) ‘(%}n. (KPY](P (cosd)
T 1=0

= B 1)3/2 i(zlgl)i'[ezm h,m(kr)+hl<2>(kr)](r)P,(cos 0)
4 =0

In the large limit of r, this solution is approximated by
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) 1 A4l s |
w >(r,9)=(2ﬂ)3/22( - )i'e sm(kr—7”+5,)P,(cos9)
|

The asymptotic form of the incident plane wave is given by

w | (2| +1)sin(kr — I—ﬂ)
(27:)3/2 2 kr

2 (21+1 -(kr—%’) Sikr-'7)
-e 2 ]R(cosd
(27:)3/ 20 ( i jkr R (cos®)

=0

1 2l +1
= " ;( " j (kr——)P(cosé’)

P, (cosO)

We note that the phase of the scattered wave shifts from that of the incident plane wave by the
phase 0, .

8. Born approximation from the phase shift
In the first Born approximation,

Ra"(r) ~ j, (kr)

Then we have
tan 5, ~ kjr'2 drj, (kr)PU (1)

This approximation is good when the phase shift is small. The function j,(kr) is approximated
by

o
21 +1)!

()~ x)".

Then we have

tal’l5(1) ~— 2I(I')2 k2|+lTry2|+2 dI’U (rV) .
' [(21 +1)!T? )

For low energies and high angular momenta,
S M k2|+1
| .
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((Example)) The phase shift for | = 0 (s wave).
We assume that

U(r)=-U, forr<a,0 forr>a.

Then we have

tans," ~ —kU, j r drf j, (kr)T?
0

_ U02 [ak — sin(2ak)
2k 2

]

When ak << 1, we get
2
tans, " ~ 5" =U°Ta<ak>

We note that é](l) >0 for the attractive potential and 5'(1) <0 for the repulsive potential.
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APPENDIX

((Mathematica))
Spherical Bessel function, spherical Neuman function, spherical Hankel function
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