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If the particles which are scattered are identical particles, we have to take into account the 
symmetry properties of the total wave functions, symmetric nature for the fermions and ant-
symmetric nature for the boson, under the interchange of co-ordinates. The differential cross 
section for the identical particles is discussed. 
 
1. Wave function of identical particles 

We consider the two particles (denoted by particle 1 and particle 2) located at r1 and r2, 
respectively. We assume a Hamiltonian of two particles at r1 and r2. p1 and p2 are the momentum 

of particles 1 and 2, respectively. )ˆˆ( 21 rr V  is the interaction between two particles with mass 

m1 and m2. This is so-called the central field problem. 
We discuss the scattering of these two identical particles which exhibits effect of the 

symmetry of their wave function. The wave function of these two identical particles (m1 = m2 = 
m) can be written as 
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In the representation of the basis rr ,G , the wave function can be rewritten as 
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Here we have the following definition. 
 
(i) The relative co-ordinate operator: 
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(ii) The relative momentum operator: 
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(iii) The co-ordinate operator for the center of mass: 
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(iv) The momentum operator for the center of mass: 
 

21 ˆˆˆ ppp G . 

 
2. Symmetry of the wave function 
The wave function can be rewritten as 
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where 
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with the relative co-ordinate, 
 

21 rrr   

 
and the center of mass co-ordinate, 
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The wave function )](
2

exp[ 21 rrp G

i


, of the center of mass is obviously symmetric under the 

interchange of the particles r1 and r2. Thus, in order that )()( rr   , we must have 
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This wave function can be decomposed into a radial part and a spherical-harmonics part,  i.e. 
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Note that exchanging the two particles is equivalent to inverting the vector 21 rr   (i.e. changing 

its sign). With such an inversion, the spherical harmonics undergo the transformation 
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So the wave function )(rr  is an even function (even parity) for l = even and an odd function 

(odd parity). 
 
((Note)) 
The permutation operator is equivalent to the parity operator in this case. 
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3. Scattering of identical particles 
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Fig. Two indistinguishable processes in the scattering of identical particles 
 

Neglecting the symmetry we can write the relative wave function )(rr  asymptotically as 
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(i) The symmetric wave function )(rr  is obtained as 
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where under the interchange of the two particles, rr  , we have 
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The co-efficient of 
r
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 is the scattering amplitude, 
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(ii) The anti-symmetric wave function is obtained as 
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The co-efficient of 
r
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 is the scattering amplitude, 
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We now consider the case of two electrons with spin 1/2. The addition of two spins yields the 
triplet spin state (s = 1, symmetric) and singlet state (s = 0, anti-symmetric). The total wave 
function should be anti-symmetric because of fermion.  
 
(i) Singlet spin state (anti-symmetric) 

The scattering is given by 
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(ii) Triplet spin state (symmetric state) 
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The scattering is given by 
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(iii) Averaged differential cross section 

In most scattering experiments, the particles can form either the singlet or the triplet state. 
Here we define a spin averaged cross section as 
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There are 4 states (3 states are symmetric spin state and 1 state is antisymmetric 
4. Expression of the cross section by partial wave expansion 
 

Here we use the partial wave expansion 
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For the triplet state, we have 
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Note that 
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For the singlet state, we have 
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5. Feynman’s thought experiment on the scattering of un-polarized electrons 

(Feynman’s lecture on physics) 
 

We consider the thought experiment of two electrons with spin 1/2 (one bombarding electron 
and an electron as a target). We assume that the spins of electrons are un-polarized. There are 
four types of possibilities for spin states with equal fraction (1/4). 

Bombarding electron  electron as target fraction 

         1/4 

         1/4 

         1/4 

         1/4 
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(i)  

Suppose, however, the “bombarding” spin is up and the “target” spin is up. The electron 
entering counter 1 can have spin up. In this case we cannot tell whether it came from the 
bombarding beam or from the target. The two possibilities are shown in Figs (a) and (b) below; 
they are indistinguishable in principle, and hence there will be an interference of the two 
probabilities. Then probability of detecting an electron at the detector D1 is given by 
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where 1/4 is a fraction of case for the un-polarized electron experiment. 
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(b) 

 
Fig. The scattering of electrons on electrons. If the incoming electrons have parallel spins, the 

processes (a) and (b) are indistinguishable. 
________________________________________________________________________ 
(ii) 

Suppose that the “bombarding” spin is up and the “target” spin is down. The electron 
entering counter 1 can have spin up or spin down, and by measuring this spin we can tell whether 
it came from the bombarding beam or from the target. The two possibilities are shown in Figs (a) 
and (b) below; they are distinguishable in principle, and hence there will be no interference 
merely an addition of the two probabilities.  
 
The probability of detecting a spin-up electron at the detector D1 is given by 
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The probability of detecting a spin-down electron at the detector D1 is given by 
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(b) 
 
Fig. The scattering of electrons with antiparallel spins. The processes (a) and (b) are 

distinguishable. 
______________________________________________________________________________ 
(iii) 

Suppose that the “bombarding” spin is down and the “target” spin is up. The electron 
entering counter 1 can have spin up or spin down, and by measuring this spin we can tell whether 
it came from the bombarding beam or from the target. The two possibilities are shown in Figs (a) 
and (b) below; they are distinguishable in principle, and hence there will be no interference 
merely an addition of the two probabilities.  
 
The probability of detecting a spin-down electron at the detector D1 is given by 
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The probability of detecting a spin-up electron at the detector D1 is given by 
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(b) 
 
Fig. The scattering of electrons with antiparallel spins. The processes (a) and (b) are 

distinguishable. 
 
____________________________________________________________________ 
(iv) 

Suppose, however, the “bombarding” spin is down and the “target” spin is down. The 
electron entering counter 1 can have spin down. In this case we cannot tell whether it came from 
the bombarding beam or from the target. The two possibilities are shown in Figs (a) and (b) 
below; they are indistinguishable in principle, and hence there will be an interference of the two 
probabilities. Then probability of detecting an electron at the detector D1 is given by 
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Fig. The scattering of electrons on electrons. If the incoming electrons have parallel spins, the 

processes (a) and (b) are indistinguishable. 
 
______________________________________________________________________________ 
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Now if electrons are completely un-polarized, the results for this experiment are best calculated 
by listing all of the various possibilities as we have done in Table. A separate probability is 
computed for each distinguishable alternative. The total probability 
is then the sum of all the separate probabilities.  
 
The total probability is given by 
 

)]()(Re[))())(

))(
2

1
))(

2

1
)()(

2

1

))(
4

1
2))(

4

1
2)()(

4

1
2

*22

222

222

654321















ffff

ffff

ffff

PPPPPPPtot

 

 
6. Fermion with s = 1/2 and boson with s = 1 
(i) Two particles (fermion) with s = 1/2 

We consider the scattering of two identical spin-1/2 fermions, such as electrons. For the 
triplet spin state (s = 1, symmetric spin state, degeneracy 3) the spatial function should be 
antisymmetric. For the singlet spin state (s = 0, antisymmetric spin state, degeneracy 1) the 
spatial function is symmetric. If the spins of electrons are un-polarized, the average cross section 
can be expressed as 
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((Note)) CG (Clebsch-Gordan) values: s1 = 1/2, s2 = 1/2 

 
D1/2 x D1/2 = D1+D0 

 
(i) S = 1 (m = 1, 0, -1).  symmetric spin state 
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(ii) S = 0 (m = 0).   antisymmetric spin state. 
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(ii) Two particles (boson) with s = 1 

The particle with spin s = 1 is a boson. So the wavefunction should be symmetric under the 
exchange of particles. There are 9 states for two spins with s = 1. There are 6 symmetric spin 
states and 3 antisymmetric spin states. Then the total cross section is obtained as 
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((Note) CG (Clebsch-Gordan) values: s1 = 1, s2 = 1 
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(i) S = 2 ( 2m )  symmetric spin states 
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(ii) S = 1 ( 1m )  antisymmetric spin state 
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2

0,11,11,10,1 
   (m = -1) 

______________________________________________________________________ 

(iii) S = 0 (m  0)  symmetric spin state 

3

1,11,10,10,11,11,1 
  (m = 0) 

 
7. General case (Schiff, Schwinger) 

The spin states of the two particles, each of spin s, can be separated into symmetrical states 

and antisymmetrical states. We know that for s = 1/2, the 4)12( 2 s  states consists of three 

symmetrical states and one anti-symmetrical one. In general, if you have two variables, each 

taking on n values, the number of antisymmetrical combinations is 
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Antisymmetrical fraction: 
2

1

122

1

2

)1(
2 








s

s

n

n

n

nn
, 

 

As a check we put 
2

1
s  and get the respective fractions of 3/4 and 1/4. 

In a collision with all spin states equally probable, the fraction of symmetrical spin states will 
have the scattering amplitude 
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for the respective Bose-Einstein (BE)/Fermi-Dirac (FD) statistics, whereas the spin 
antisymmetrical fraction will have the scattering amplitude 
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So 
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and, for 
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which shows how, in principle, the statistics and the spin can be determined. It is an empirical 
fact, one now understood theoretically, that there is a connection between spin and statistics: 
 

BE stastistics:  s = 0, 1, 2, ….. 
 

FD stastistics:  s = 1/2, 3/2, 5/2, ….. 
 
so, in fact the possibilities are 
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((Note)) General formula for the scattering cross section for two particles with s 

In general, for an un-polarized beam of particles with spin s, the system can be in (2s+1)2 
spin states that are distributed with equal probabilities. For the total number of possibilities, 
(2s+1) spin states are antisymmetric. Thus the differential cross section is 
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where s is an half integer for the fermions and an integer for the boson (Schiff L.I. Quantum 
Mechanics). 
(i) 

When s = 1/2 (fermion) 
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(ii) 

When s = 1 (boson) 
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APPENDIX: Two identical particles with s = 3/2 
 
CG (Clebsch-Gordan) values: s1 = 3/2, s2 = 3/2 (2s+1 = 4). 
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There are 4 x 4 = 16 states. The number of symmetric states is 7+3 = 10. The number of 
antisymmetric states is 5+1 = 6 states.  
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(i) S = 3 (m = 3, 2, 1, 0, -1, -2, -3)  symmetric spin states (7 states) 
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(ii) S = 2 (m = 2, 1, 0, -1, -2)  antisymmetric spin state (5 states) 
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(ii) S = 1 (m = 1, 0, -1)  symmetric spin state (3 states) 
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(iv) S = 0 (m  0)  antisymmetric spin state (1 state) 
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