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In general, the Born approximation is valid for high energy limit, while the phase shift analysis is
useful in the low energy limit. Here the formula for phase shift can be derived based on the Born
approximation. The phase shift from the Born approximation is compared with that derived from
the phase shift analysis. The advantage of the phase shift from the Born approximation is free
from the consideration of the boundary condition of the wave function. We only need to evaluate
the integral.

1. Phase shift derived from the Born approximation
We consider the scattering amplitude in the Born approximation when the potential has
spherical symmetry,
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where Q is the scattering vector; Q = k'—k . The scattering amplitude for a central field in the
Born approximation is given by

f®(9) = —;—gjdrrV(r)sin(Qr) , (spherical symmetry)
0

When we use the formula given by
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Then we have
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This form should be equal to the result derived from the phase shift expansion,
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where we use
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Thus we have
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When all the phase shifts are small, we have
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The advantage of this method is that we do not have to worry about the boundary condition
which is essential to the phase shift analysis.

2. Another approach for the determination of the scattering amplitude in the Born
approximation
Here we show that

f(0) = ——2;2 Id re™ "V (r)e™

- _%i(m +1)P (cose)TdrrZV(r)[jl (kr)P?

using a method which is different from the method used above
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Fig. ki ={k,0,0} in the spherical coordinate (z axis). k, ={k, &, ¢} in the spherical coordinate.
r={r,0,,4.} in the spherical coordinate. @is the angle between k, and r.

We start with the Rayleigh’s expansion formula



kit _ i(m +1)i' jl (kr)F’I (COS@r) ,

1=0

and

glke T Z(zl +1)i" j (kr)P.(cos©) ,
or

gt Z(ZI +1)(-i)" ji.(kr)P.(cos®).
Then we get

ghirg ke Z(2|+1)| J,(kr)P(cose)Z(zl +1)(-i)" j,.(kr)R.(cos ®)

1=0 I'=0

:Z(ZI +1)(21'+2)i' (=i)" j, (kr) j,.(kr)e ™= "P (cos&,)P.(cos ©)
X
Here we use the addition theorem:
P.(cos®) = —ZY"‘ 0.,6)Y,"(0,4) (addition theorem)
Using this relation, we have
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the scattering amplitude can be rewritten as
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The final form of the scattering amplitude is given by
f®©) = —i—fZ(ZI +1)R (cos&)TrzdrV(r)[j, (kn)F
I 0
from the Born approximation. When | = 0 (S-wave), we have
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2. Repulsive square-well potential
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A particle of mass s is scattered from a spherical repulsive potential of radius R, we calculate
the scattering amplitude using the Born approximation.

© 24T ST,V S
() = o }[drrV(r)sm(Qr) o !drrsm(Qr)
Noting that
J'drrsin(Qr) _sin(QR) —QZRcos(QR) .
0 Q
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For x<<1,

sin(x) — xcos(x) = X?s +0(x*)

Then in the limit QR <<1,



2V,
3’

2V,
n*Q 3Q

t®(0)= 2 (QR)’ = R

We now calculate the phase shift derived from the Born approximation
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For kR <<1, we have
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which is the same as the result derived from the phase shift analysis
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3.

Mixing of repulsive and attractive potential
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The phase shift is negative at 2kc = 0, become positive around 2kc = 0.3. It decreases with
increasing o, and becomes again zero around 2kc = 3. After that it becomes negative negative
with further increasing o.

4. Example-1: Phase shift analysis and Born approximation



@) Determine the differential cross section do/dQ in the Born approximation for scattering

from the potential energy U (r) =%2(r)= yo(r —a). Show the explicit dependence of

do/dQ on é.

(b) Evaluate do/dQ in the low-energy limit. Show that the differential cross section is
isotropic. What is the total cross section?

(©) Show that the validity of the Born approximation is given by ya <<1.

Next we consider the spherically symmetric potential energy, U (r) = Z%Z(r) =y5(r-a),

where y is a constant and 6(r —a) is a Dirac delta function that vanishes everywhere

except on the spherical surface specified by r = a. We consider the differential equation
with | =0, in this differential equation

1(+1)

u(r) +[k* ~U(r) - 2 Ju(r)=0, (1)
21,2

where E = 5 is the kinetic energy of a particle with mass g and u(r) = rR(r).
MU

(d) Find the form for u(r) for r>a, where the phase shift is assumed to be &.
(e) Find the form for u(r) for r<a, where u(r=0) = 0.
()] The function u(r) is continuous at r = a. However the derivative of u(r) with respect to r

is not continuous. Use the boundary condition such that u'(r)|,_,., —U'(r)|._..o=1(a).
Show that

ksin(ka) _ tan(ka)
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k
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(9) For ka<<1, find the expression for the phase shift .

(h) Find the expression of the total cross section.

Q) Show that the total cross section [result (g)] from the partial wave expansion at low
energy agrees with that obtained in (b) from the Born approximation at low energy.

((Solution))
(a)

V(r)=%5(r—a), or U(r)=yo(r-a)



The first order Born approximation:
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where

Q = k'-k ; scattering vector
Tde'e“Q“"s“" sing' = isin(Qa)
: Qa

Then

The differential cross section is given by

where

where @is an angle between k” and k (Ewald’s sphere).

(b) Qa<<1



which is isotropic, where we use the approximation
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Then we have the total cross section
o, = 4ryta’.

(©)

The validity of the Born approximation
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Noting that sin(ka) ~ ka for the low energy limit, we have
ra<<l1

which is the condition for the validity of the Born approximation.
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(d)
Here we derive the above solution directly from solving the differential equation.
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u(r) =rR(r),

and

u(r)= i;‘vm —y5(r-a).

The boundary condition:
U'(r) |r-aso =U'(N) lr—a.0=20(a)

Here we assume that | = 0. Then we have the differential equation
u"(r) +[k* -U(r)Ju(r)=0

For r>a

u"(r) +ku(r)=0
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For r<a
u"(r)+k’u(r)=0
u=rR(r)=Bsin(kr)
U] Since u is continuous at r = a,
Asin(ka+ J,) =Bsin(ka) .
Since
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From Egs.(1) and (2), we have
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For ka<<1, we get
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Thus we have
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The total cross section is
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Q) For ya << 1, we have
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5. The phase shift from the Born approximation for the same example
Using the formula for the phase shift derived from the Born approximation

5® = kjrzdru (Do (kn)’

with () =X

(@)  calculate the phase shift 5% .
(b) calculate the total cross section for ka<<1.

(©) Suppose that U (r) = y,8(r —a) + ,0(r —b) where b>a. calculate the cross section amt(B)

((Solution))
@) We now calculate the phase shift derived from the Born approximation
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(b)
For ka<<1,

5 (B) ~—ja k
The total cross section is

O —i—fsm 5" = % 471507 :4k_’2”(_ya2k)2 =4mya’,

which is the same as the result derived from the phase shift analysis
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APPENDIX

Formula for scattering
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